Solutions for Homework 2

1. (a) \(P(6) = 1 - P(1) - P(2) - P(3) - P(4) - P(5) = 0.1 \)
 (b) \(P(1) + P(2) + P(3) + P(4) + P(5) = 1.15 > 1. \) Impossible.
 (c) \(P(6) = 1 - P(1) - P(2) - P(3) - P(4) - P(5) = 0.3 \)
 (d) \(P(5) < 0. \) Impossible.

2. (a) \(A = \{3R, 3R, 3G\}, B = \{1G, 2G, 3G, 4G\}, A \text{ and } B = \{3G\} \)
 i. \(P(A) = \frac{3}{8}, P(B) = \frac{1}{2}, P(A \text{ and } B) = \frac{1}{8} \)
 \(P(A)P(B) = (\frac{3}{8})(\frac{1}{2}) = \frac{3}{16} \neq \frac{1}{8}. \) Thus \(A \) and \(B \) are not independent.
 ii. \(P(A \text{ or } B) = P(\frac{3}{8}) + P(\frac{1}{2}) = \frac{3}{16} + \frac{1}{2} = \frac{3}{4} \neq 1. \) Thus they are not mutually exclusive.
 iii. \(P(A \text{ and } B) = \frac{1}{8} \)

(b) \(B = \{1G, 2G, 3G, 3G\}. \)
If \(? = 3, \) then \(A = \{3G, 3G, 3R, 3R\} \)
If \(? \neq 3, \) then \(A = \{3G, 3G, 3R\} \)
\(A \text{ and } B = \{3G\} \)
If \(? = 3, \) \(P(B \mid A) = \frac{P(A \text{ and } B)}{P(A)} = \frac{\frac{1}{8}}{\frac{3}{8}} = \frac{1}{3} \)
If \(? \neq 3, \) \(P(B \mid A) = \frac{P(A \text{ and } B)}{P(A)} = \frac{\frac{1}{8}}{\frac{3}{8}} = \frac{1}{3} \)

3. (a) | Male | Female | Juvenile |
 |-----|-------|---------|
 | 4 | 8 | 4 |
 | 6 | 7 | 11 |
 | 10 | 15 | 15 |

 i. \(\frac{15}{40} = 0.375 \)
 ii. \(\frac{4}{40} + \frac{1}{40} = \frac{1}{10} = 0.2 \)
 iii. \(\frac{8}{15/40} = \frac{8}{15} = 0.533 \)

(b) \(P(Q) = \frac{16}{40} = 0.4, P(R) = \frac{10}{40} = 0.25, P(Q \text{ and } R) = \frac{1}{10} = 0.1 \)
\(P(Q)P(R) = (0.4)(0.25) = .1. \) Thus \(Q \) and \(R \) are independent.

4. (a) \(P_X(7) = .4, P_X(1) = .6, \mu_X = 7(.4) + 1(.6) = 3.4 \)
 \(\sigma_X^2 = (7 - 3.4)^2(.4) + (1 - 3.4)^2(.6) = 8.64. \)
 (b) \(P_Y(2) = .5, P_Y(4) = .5, \mu_Y = 3, \sigma_Y^2 = 1. \)
 (c) \(P(X = 7, Y = 4) = P_X(7)P_Y(4) = .2, \)
 \(P(X = 7, Y = 2) = P_X(7)P_Y(2) = .2, \)
 \(P(X = 1, Y = 4) = P_X(1)P_Y(4) = .3, \)
 \(P(X = 1, Y = 2) = P_X(1)P_Y(2) = .3 \)
 (d) \(W = X + Y \)
 \[\begin{array}{cccc}
 3 & 5 & 9 & 11 \\
 .3 & .3 & .2 & .2 \\
 \end{array} \]
 \(\mu_W = 6.4, \sigma_W^2 = 9.64 = \sigma_X^2 + \sigma_Y^2. \)
 (e) \(T = X - Y \)
 \[\begin{array}{cccc}
 -3 & -1 & 3 & 5 \\
 .3 & .3 & .2 & .2 \\
 \end{array} \]
 \(\mu_W = .4, \sigma_W^2 = 9.64 = \sigma_X^2 + \sigma_Y^2. \)