Genetics or Genomics?

- genetics: study single genes or a few genes
 - first identify mutant organism with change of interest
 - characterize effects of mutation
 - but only a fraction of 30k human genes directly studied!

- genomics: genes as dynamics system
 - over space (chromosomes) & time (evolution)
 - gene interactions, biological networks

- gene ontology (www.geneontology.org)
 - molecular function: what gene does
 - biological process: objective via assemblies of molecular functions
 - cellular component: of anatomical structure or gene product group

- (www.genomicglossaries.com)

1 General Biology Relevant to QTL

why do QTL mapping?

- **agriculture:**
 - crop/breed improvement
 - pest/pathogen resistance
 - marker assisted selection/introgression
 - bypass transgenics/GMOs?

- **biomedicine:**
 - unravel complex diseases
 - function of biochemical networks
 - genotype-specific therapy

- **evolution:**
 - basic biological science
 - model systems & comparative genomics
 - interplay of genetics & ecology
What is a QTL?

- QTL = quantitative trait locus (or loci)
 - trait = phenotype = characteristic of interest
 - quantitative = measured somehow
 - qualitative traits can often be directly mapped
 - quantitative traits not readily mapped
 - locus = location in genome affecting trait
 - gene or collection of tightly linked genes
 - some physical feature of genome
Components of QTL

- What is a phenotype?
- Meiosis and recombination
 - common experimental crosses: BC and F2
- What is a QTL?
 - central dogma of biology
 - relating phenotype to genotype
- QTL success stories?

What is a phenotype or trait?
- phenotype = measured characteristic
- phenotype examples
 - size, color, disease resistance score
 - developmental times (flowering, disease onset)
 - number of offspring, number of tumors
 - response to stimuli (shock, loud sound)
 - changes in internal biochemistry
- simple vs. complex phenotypes
 - simple: one gene, highly heritable
 - complex: multiple genes, environment important
Dogma of DNA

- DNA → mRNA → protein
 - (www.accessexcellence.org/AB/GG/central.html)

- protein → metabolites → network cascade → “latent” phenotype → measured phenotype
 (www.jic.bbsrc.ac.uk/corporate/Facilities/metabolomics.html)

- How to relate changes in DNA to changes in measured phenotype?

- MIT Dogma Show
 - (web.mit.edu/esgbio/www/dogma/dogmadir.html)
What is Meiosis?

- meiosis = two consecutive cell divisions
 - (diploid) chromosomes resegregate
 - 2 chromatids each for 2 chromosomes

- Meiosis 1
 - prophase I
 - homologous chromosomes pair (bivalent) and align
 - form synaptonemal complex
 - crossing over can occur at recombination nodules
 - chiasmata result from crossover event
 - prometaphase 1, metaphase 1, anaphase 1, telophase 1
 - Chromosomes separate into 2 daughter cells

- Meiosis 2
 - chromatids separate into 4 daughter cells

- Quicktime cartoon of meiosis:
 www.biology.arizona.edu/cell_bio/tutorials/meiosis/page3.html
Prophase 1 Synaptonemal Complex

recombination & crossovers

- crossovers occur in synaptonemal complex
 - physical process during meiosis
 - cannot observe except using cytology
- recombination is between genetic markers
 - observe change in phase at genetic markers
 - infer odd number of crossover events between
- McPeek presentation
 stat-www.berkeley.edu/users/sandrine/ PH296.F02/Disc/linkage.pdf
recombination model $\text{pr}(Q|X, \lambda)$

- locus λ is distance along linkage map
 - identifies flanking marker region
- flanking markers provide good approximation
 - map assumed known from earlier study
 - inaccuracy slight using only flanking markers
 - extend to next flanking markers if missing data
 - could consider more complicated relationship
 - but little change in results

$$\text{pr}(Q|X, \lambda) = \text{pr}(\text{geno} | \text{map, locus}) \approx \text{pr}(\text{geno} | \text{flanking markers, locus})$$

common experimental designs

- inbred parent lines P1, P2 (homozygous)
- F1 = P1 x P2 (completely heterozygous)
- backcross
 - B1 = P1 x F1 or B2 = P2 x F1
 - 1:1 expected ratio of homozygous to heterozygous loci
 - observe recombinations in F1 gametes
 - linkage leads to local patterns of homo- & hetero-zygous
 - parental background can affect phenotype
- F2 intercross
 - F1 selfing (plants) or brother-sister mating
 - recombinations possible for both gametes
backcross experiment

- 2 inbred strains A, B
 - genotypes AA and BB
 - differ in trait
- cross to for F1
 - genotype AB
- backcross to A
 - genetic variation
 - AA : AB
 - recombination in F1
 - examine loci pairs
 - rare double recomb
- Goal: predict phenotype
 - find genomic regions
- from Broman (2000)

F2 intercross experiment

- cross A and B
- F1 offspring
 - All genotype AB
 - 2 meioses in F1
- F2 intercross
 - recombinants from both parents
 - 1:2:1 ratio
 - AA : 2 AB : BB
 - additive/dominance
- same basic goal
 - map genome regions
 - influencing phenotype
why restrict to inbred lines?

- simplified genetics
- common design
 - easy to conduct
- good power
 - for “coarse” map
 - but not fine map

what is missing genotype?