
Multiple Trait Analysis

observations on multiple traits
one or more traits in multiple environments

Does QTL have pleiotropic effects on multiple traits?
Does QTL show genotype-environment interaction?
What is genetic correlation between different traits?
Is correlation due to pleiotropy or linkage? Where?

view multiple traits as multivariate vector
Falconer (1952); Jiang Zeng (1995)

statistical models and likelihood analyses
hypothesis tests of QTL effects
pleiotropy vs. close linkage
QTL by environment interaction
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Statistical Models and Likelihood Analyses
CIM model for multiple traits

sample of n individuals from a F2 population
additive effects only (for now)
observe m quantitative traits
CIM scan for QTL on a marker interval (Mi, Mi+1)

yj1 = b01 + a∗1x∗j +
∑

l

bl1xjl + ej1

yj2 = b02 + a∗2x∗j +
∑

l

bl2xjl + ej2

... ...

yjm = b0m + a∗mx∗j +
∑

l

blmxjl + ejm

yjk : phenotype of kth trait on individual j

b0k : mean effect (reference) for trait k
a∗k : additive effect of putative QTL on trait k
x∗j : number of alleles of P1 at putative QTL
xjl : genotype at marker l
blk : marker regression coefficients
ejk : residual effect on trait k for individual j
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assumptions on residual “error” effects ejk

errors correlated among traits within individuals
covariance: Cov(ejk, ejl) = σkl = σlk = ρklσkσl

independent individuals: Cov(ejk, eik) = 0

variance-covariance matrix
errors multivariate normal among individuals
mean zero
general covariance matrix (σkl = σlk)

V =













σ2
1 σ12 · · · σ1m

σ21 σ2
2 · · · σ2m

... ... . . . ...
σm1 σm2 · · · σ2

m












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vector notation

yj = x∗ja
∗ + xT

jB + ej

yj = m vector of phenotypes yjk
a∗ = m vector of QTL effects a∗k
xj = np + 1 vector of 1 and marker data xjk
B = (np + 1)× m matrix of cofactor effects

= (reference b0k and cofactors blk)
ej = m vector of errors ejk
Cov(ej) = V covariance matrix

matrix notation

Y = x∗
T
a∗ + XB + E

Y = n × m matrix of yjk (row j = yj)
x∗ = n vector of x∗j
X = n × (np + 1) marker matrix (column j = xj)
E = n × m error matrix of ejk (row j = ej)

choice of background markers?
additive and dominance effects?
same issues for selecting cofactors as ordinary CIM
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likelihood analysis

Y = x∗
T
a∗ + XB + E

yj = x∗ja
∗ + xT

jB + ej

Cov(ej) = V

however we do not know x∗ = {x∗j}

mixture model with multivariate normal

L1 =
n
∏

j=1





∑

k

pkjfk(yj)





pkj = Prob{x∗j = k|markers} for putative QTL
fk(yj) = φ(ka∗ + xT

jB,V) multivariate normal
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maximum likelihood estimates

Expectation/Conditional Maximization (ECM)
special version of general EM algorithms
Meng Rubin 1993

Expectation E-step
individual posterior QTL genotype probabilities

P
(t+1)
kj =

pkjf
(t)
k (yj)

∑

l pljf
(t)
l (yj)

f
(t)
k (yj) = normal density functions with parameters

replaced by estimates in iteration t

Conditional Maximization CM-step
model parameters divided into three groups:
QTL (a∗,d∗), cofactors (B), covariance (V)
estimated consecutively between groups
but simultaneously within each group
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Conditional Maximization CM-step
model parameters divided into three groups
estimated consecutively between groups
but simultaneously within each group

QTL

a∗
(t+1) = P

(t+1)T
2 (Y −XB(t))/(2P

(t+1)T
2 1)

d∗(t+1) =
[

P
(t+1)′
1 /(P(t+1)′

1 1)−P
(t+1)′
2 /(2q

(t+1)′
2 1)

]

(Y −XB(t))

cofactors

B(t+1) = (X
T
X)−1X

T [
Y − (2P

(t+1)
2 + P

(t+1)
1 )a∗(t+1) −P

(t+1)
1 d∗(t+1)

]

covariance

V(t+1) =

[

(Y −XB(t+1))
T
(Y −XB(t+1))− 4(P

(t+1)T
2 1)a∗(t+1)Ta∗(t+1)

−(P
(t+1)T
1 1)(a∗(t+1) + d∗(t+1))

T
(a∗(t+1) + d∗(t+1))

]

/n

P
(t+1)
k = n vector of P

(t+1)
kj genotype probabilities

1 = column vector of ones

P
(0)
kj = pkj initial values

a∗(0) = 0 (or some other initial value)

iterations terminated with a predetermined criterion
changes of estimates or log-likelihood value is
negligible (< 10−8)
final estimates â∗, B̂, V̂ used for LR (or LOD) test
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log-likelihood with parameter estimates

ln(L1(λ)) = −
nm ln(2π)

2
−

n

2
ln(|V̂|)+

n
∑

j=1

ln

{

∑

k

pkj exp

[

−
1

2
(yj − kâ∗ − xT

j B̂)TV̂−1(yj − kâ∗ − xT
j B̂)

]

}

ln(L1(λ)) = −
nm ln(2π)

2
−

n

2
ln(|V̂|)−

1

2

n
∑

j=1

(yj−xT
j B̂)TV̂−1(yj−xT

j B̂)

+

n
∑

j=1

ln

{

∑

k

pkj exp
[

kâ∗TV̂−1(2yj − kâ∗ − 2xT
j B̂)

]

}

|V̂| = determinant of covariance matrix

log-likelihood under null model of no QTL

QTL dropped, but cofactors remain
note that covariance matrix estimate changes

ln(L0) = −
nm ln(2π)

2
−

n

2
ln(|V̂0|)−

nm

2

V̂0 = (Y −XB̂0)
T(Y −XB̂0)/n

B̂0 = (XTX)−1XTY
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Hypothesis Tests of QTL Effects

model 1 = full model (QTL for all m traits)
model 0 = null model (no QTL)
intermediate models: QTL for only some traits
additive and/or dominance
case of m = 2 traits has key features

joint mapping for QTL on two traits

map QTL for each trait individually or jointly on both?
joint mapping hypotheses

H0 : a∗1 = 0, d∗1 = 0, a∗2 = 0, d∗2 = 0

H1 : At least one of them is not zero

likelihood ratio test statistic

LR1 = −2 ln(L0/L1(λ))

approximately chi-square distributed under H0
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threshold value for significance

hard to determine critical value for whole genome
same problem as CIM (Zeng 1994)
Bonferroni approximate test

extend permutation test of Churchill Doerge
available in theory–not implemented

why perform joint mapping?

formal procedures to test biologically interesting
hypotheses
– pleiotropic effects of QTL
– QTL by environment interaction
– pleiotropy vs. close linkage

may perform better than separate CIM
– putative QTL has pleiotropic effects on both traits
– genotypic & environmental correlation opposite
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Testing pleiotropic effects

does one QTL affect more than one trait?
pick a genome position λ and jointly test traits
pleiotropic effects on both traits

H10 : a∗1 = 0, d∗1 = 0, a∗2 6= 0, d∗2 6= 0 at λ

only trait 2 is affected

H11 : a∗1 6= 0, d∗1 6= 0, a∗2 6= 0, d∗2 6= 0 at λ

both traits affected by QTL

and

H20 : b∗1 6= 0, d∗1 6= 0, b∗2 = 0, d∗2 = 0 at λ

only trait 2 is affected

H21 : b∗1 6= 0, d∗1 6= 0, b∗2 6= 0, d∗2 6= 0 at λ

both traits affected by QTL

H11 = H21 is alternative of pleiotropy
need to test H10 and H20 together
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estimates and tests under restrictions

test of H10 vs. H11 differs from test of trait 1 alone
since traits are correlated

test has more power than separate analyses

estimates of model parameters under H10 and H20

use ECM with some parameters set to 0

likelihood ratio test statistics use these estimates
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testing pleiotropic effects against close linkage

rejecting both H10 and H20 supports hypothesis of
pleiotropic effects of a single QTL

what if there were two closely linked QTL?
want to separate genetic correlation from linkage

two closely linked QTL may behave like one
pleiotropic QTL
one pleiotropic QTL may be estimated as two QTL
with separate trait analysis

implications for genetics and breeding
power to detect the difference?
linkage vs. fine mapping: what is a QTL?

need to focus on small region for test of 2 QTL
only genome regions significant under joint mapping
linkage at distance may be obvious
computation costs
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likelihood analysis: pleiotropy vs. close linkage

two QTL at positions λ1, λ2

|λ1 − λ2| < 5cM for convenience

H0 : λ1 = λ2

H1 : λ1 6= λ2

allow both QTL to have effects (a∗k 6= 0)
H1 is special case of many possible alternatives
more general alternative: both QTL have pleiotropic
effects (more complicated)

statistical model for closely linked QTL

yj1 = b01 + a∗1x∗1j +
∑

l

bl1xjl + ej1

yj2 = b02 + a∗2x∗2j +
∑

l

bl2xjl + ej2

looks like multiple trait model defined earlier
but QTL genotypes x∗kj = x∗kj(λk)

defined for separate QTL at different positions
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caution on choice of cofactors
avoid using markers inside search region
models under hypotheses depend on cofactors

mixture model over two loci
nine components: recombination for two loci in F2

pkij = Prob{x∗1j = k, x∗2j = i|λ1, λ2}

probability pkij inferred from flanking markers

– different marker intervals: independence pkij = pkjpij

– same marker interval: Table 11.1 for 4 positions

linked QTL likelihood function

L2(λ1, λ2) =
n
∏

j=1

∑

k,i

pkijfki(yj)

bivariate normal density fki(yj):

E

(

yj1
yj2

)

=

(

ka∗1 + xT
jb1

ia∗2 + xT
jb2

)

, V ar(yj) = V

c©ZB Zeng & BS Yandell 11.15 March 19, 2001

ECM iteration to maximize likelihood

E-step: posterior probabilities of QTL genotypes

P
(t+1)
kij =

pkijf̂
(t)
ki (yj)

∑

k,i pkijf̂
(t)
ki (yj)

CM-step: maximize likehood estimates

QTL effects

a
∗(t+1)
1 = blah

cofactors

B(t+1) = (X
T
X)−1X

T
W(t+1)

variance

V(t+1) =
(W −XB)

T
(W −XB)

n

where B = (B1 B2), W = (W1 W2),

W1 = Y1 − (
∑

kPk·)
T
a∗1

W2 = Y2 − (
∑

iP·i)
T
a∗2

with Yl = {yjl} and Pk· =
∑

i Pki, P·i =
∑

k Pki
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joint log likelihood for linked QTL

depends on putative QTL λ1 and λ2

ln(L2(λ1, λ2)) = −
nm ln(2π)

2
−

n

2
ln(|V̂|)+

n
∑

j=1

ln







∑

k,i

pkij exp

[

−
1

2
(yj − ûkij)V̂

−1(yj − ûkij)
T
]







.

with ûkij = Ê(yj)

pkij, ûkij and V̂ depend on λ1, λ2

search for maximum likelihood
search possible λ1, λ2 in region
test statistic

LR2 = −2 ln

(

maxλL2(λ, λ)

maxλ1,λ2
L2(λ1, λ2)

)

nested hypotheses: asymptotically χ2
1 under H0

scan LODs for joint and separate QTL
approximate test: do peaks match?
grid search in neighborhood
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QTL by environment interaction

different environments → different gene effects
Paterson et al. (1991); Stuber et al. (1992)

Design I: same genotypes evaluated in different
environments (paired comparison)
Design II: different genotypes (individuals) from
common population evaluated in different
environments (group comparison)

QTL × environment interaction hypotheses

H0 : a∗1 = a∗2 = a∗, d∗1 = d∗2 = d∗

H1 : a∗1 6= a∗2, d∗1 6= d∗2

only test in regions suggested by joint mapping
(why?)

recombination probabilities
pkij = Prob{x∗kj = i}, k = 1,2, j = 1, · · · , nk
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Design I paired comparison
same X (marker data) matrix
multiple phenotypic vectors Y across environments
same statistical model as multiple traits
V reflects within and between environment variation

log likelihood under H0: not G× E

construct likelihood L3 under restriction of H0

maximize likelihood using ECM again
E-step: substitute a∗ for a∗1, a∗2 (d∗ for d∗l )
CM-step: a∗(t+1) is V(t) weighted average

V =

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

likelihood ratio test for G× E

LR3(λ) = −2 ln(L3(λ)/L1(λ))

asymptotically chi-square under H0
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Design II group comparison

statistical model

y1j = x∗1ja
∗
1 + xT

1jb1 + e1j j = 1,2, · · · , n1

y2j = x∗2ja
∗
2 + xT

2jb2 + e2j j = 1,2, · · · , n2

matrix notation

y1 = x∗1a∗1 + X1b1 + e1
y2 = x∗2a∗2 + X2b2 + e2

assume environmental errors e1j, e2j independent
normal with means zero and variances σ2

1, σ2
2

estimate separately by environment under H1

sum of separate ln(L1)s by environment

ln(L4(λ)) =

n1
∑

j=1

ln

(

∑

i

p1ijfi(y1j)

)

+

n2
∑

j=1

ln

(

∑

i

p2ijfi(y2j)

)

= ln(L11(λ)) + ln(L12(λ))

L11(λ), L12(λ) are L1(λ) for groups 1,2
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Design II group comparison
estimate jointly under H0

one QTL effect parameter a∗

same λ, different individuals 1j and 2j

p1ij and p2ij independent but posterior probabilities
depend on a∗ in E-step through normal density

P
(t+1)
kij =

pkijf
(t)
i (ykj)

∑2
i=0 pkijf

(t)
i (ykj)

, k = 1,2

CM-step involves block update
– QTL effect a∗

– cofactors B1,B2

– variances σ2
1, σ2

2

ln(L5(λ)) looks like ln(L4(λ)) with â∗1 = â∗2 = â∗

likelihood ratio test statistic

LR4(λ) = −2 ln(L5(λ)/L4(λ))

asymptotically chi-square under H0: no G×E
degrees of freedom depend on model (BC, F2)
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relative efficiency of Designs I and II

mapping QTL, testing QTL × environment interaction
assume n1 = n2 = n and n large

LR4(λ) is special case of LR3(λ) with ρ = 0

Design II: has more power for mapping QTL
Design I: more power to detect QTL × env interaction

QTL × environment as fixed effects here
random effects → mixed models
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