Seattle Summer Institute 2012

15: Systems Genetics for Experimental Crosses

Brian S. Yandell, UW-Madison
Elias Chaibub Neto, Sage Bionetworks
www.stat.wisc.edu/~yandell/statgen/sisg

Real knowledge is to know the extent of one's ignorance.
Confucius (on a bench in Seattle)

SysGen: Overview Seattle SISG: Yandell © 2012 1

Daily Schedule

Monday
8:30-10 Introductions; Overview of System Genetics 1-50
10:30-12 QTL Model Selection 51-100
1:30-3 Gene Mapping for Multiple Correlated Traits 101-150
3:30-5 Hands On Lab: R/qtl 151-200

Tuesday
8:30-10 Permutation Tests for Correlated Traits 201-250
10:30-12 Scanning the Genome for Causal Architecture 251-300
1:30-3 Causal Phenotype Models Driven by QTL 301-350
3:30-5 Hands On Lab: R/qtlhot, R/qtlnet 351-400

Wednesday
8:30-10 Incorporating Biological Knowledge 401-450
10:30-12 Platforms for eQTL Analysis 451-500

SysGen: Overview Seattle SISG: Yandell © 2012 2
Overview of Systems Genetics

- Big idea: how do genes affect organisms?
- Measuring system(s) state(s) of an organism
- QTL mapping as tool toward goal
- Making sense of multiple traits
- Connecting traits to biochemical pathways
- Putting it all together: workflows

How do genes affect organisms?

- Dogma (with exceptions)
 - DNA -> RNA -> protein -> phenotype
 - redundancy/overlap of biochemical pathways
- System state of organism
 - accumulated effects over time of many genes
 - environmental influences
systems genetics approach

- study genetic architecture of quantitative traits
 - in model systems, and ultimately humans
- interrogate single resource population for variation
 - DNA sequence, transcript abundance, proteins, metabolites
 - multiple organismal phenotypes
 - multiple environments
- detailed map of genetic variants associated with
 - each organismal phenotype in each environment
- functional context to interpret phenotypes
 - genetic underpinnings of multiple phenotypes
 - genetic basis of genotype by environment interaction

Sieberts, Schadt (2007 *Mamm Genome*); Emilsson et al. (2008 *Nature*)
Measuring an organism

- Phenotype measurement is challenging!
- Cannot measure exactly what is important
- Instead measure multiple related traits
- Multiple traits at one time
- Same trait measured over time

QTL as tool toward goal

- Identifying important genomic region(s)
- But they may contain many genes
- Journey from QTL to gene
 – References…
- Corroborative evidence from multiple traits
 – Reassurance
 – Increased power?
 – Evidence at a system level (pathways, etc.)?
cross two inbred lines
→ linkage disequilibrium
 → associations
 → linked segregating QTL
(after Gary Churchill)

Marker -- -> Trait

Making sense of multiple traits

• Aligning QTL mapping results
• Mapping correlated traits
• Inferring hot spots where many traits map
• Organizing traits into correlated sets
 – Function, clustering, QTL alignment
• Inferring (causal) networks
Genetic architecture of gene expression in 6 tissues.

A Tissue-specific panels illustrate the relationship between the genomic location of a gene (y-axis) to where that gene's mRNA shows an eQTL (LOD > 5), as a function of genome position (x-axis). Circles represent eQTLs that showed either cis-linkage (black) or trans-linkage (colored) according to LOD score. Genomic hot spots, where many eQTLs map in trans, are apparent as vertical bands that show either tissue selectivity (e.g., Chr 6 in the islet, V) or are present in all tissues (e.g., Chr 17, T). B The total number of eQTLs identified in 5 cm genomic windows is plotted for each tissue; total eQTLs for all positions is shown in upper right corner for each panel. The peak number of eQTLs exceeding 1000 per 5 cm is shown for islets (Chrs 2, 6 and 17), liver (Chrs 2 and 17) and kidney (Chr 17).
Figure 4 Tissue-specific hotspots with eQTL and SNP architecture for Chrs 1, 2 and 17. The number of eQTLs for each tissue (left axis) and the number of SNPs between B6 and BTBR (right axis) that were identified within a 5 cM genomic window is shown for Chr 1 (A), Chr 2 (B) Chr 17 (C). The location of tissue-specific hotspots are identified by their number corresponding to that in Table 1. eQTL and SNP architecture is shown for all chromosomes in supplementary material.

BxH ApoE-/- chr 2: causal architecture
BxH ApoE-/- causal network for transcription factor Pscdbp

causal trait

work of Elias Chaibub Neto

eQTL Tools Seattle SISG: Yandell © 2010

Connecting to biochemical pathways

- Gene ontology (GO)
 - Functional groups
 - Gene enrichment tests
- KO, PPI, TF, interactome databases
 - Networks built from databases
 - Hybrid networks using QTL and databases
- Proof of concept experiments
 - Do findings apply to your organisms?
KEGG pathway: pparg in mouse

phenotypic buffering of molecular QTL

Fu et al. Jansen (2009 *Nature Genetics*)
Putting it all together: workflows

• Ideally have all tools & data connected
 – Reduce duplication of copies, effort
 – Reduce errors, save time
• Make tools more broadly available
 – User-friendly interfaces
 – Documentation & examples
• Enable comparison of methods
 – Reduce start-up time & translation errors

Swertz & Jansen (2007)
what is the goal of QTL study?

• uncover underlying biochemistry
 – identify how networks function, break down
 – find useful candidates for (medical) intervention
 – epistasis may play key role
 – statistical goal: maximize number of correctly identified QTL

• basic science/evolution
 – how is the genome organized?
 – identify units of natural selection
 – additive effects may be most important (Wright/Fisher debate)
 – statistical goal: maximize number of correctly identified QTL

• select “elite” individuals
 – predict phenotype (breeding value) using suite of characteristics
 (phenotypes) translated into a few QTL
 – statistical goal: minimize prediction error

problems of single QTL approach

• wrong model: biased view
 – fool yourself: bad guess at locations, effects
 – detect ghost QTL between linked loci
 – miss epistasis completely

• low power

• bad science
 – use best tools for the job
 – maximize scarce research resources
 – leverage already big investment in experiment
advantages of multiple QTL approach

- improve statistical power, precision
 - increase number of QTL detected
 - better estimates of loci: less bias, smaller intervals
- improve inference of complex genetic architecture
 - patterns and individual elements of epistasis
 - appropriate estimates of means, variances, covariances
 - asymptotically unbiased, efficient
 - assess relative contributions of different QTL
- improve estimates of genotypic values
 - less bias (more accurate) and smaller variance (more precise)
 - mean squared error = \(\text{MSE} = (\text{bias})^2 + \text{variance} \)
Gene Action and Epistasis

additive, dominant, recessive, general effects of a single QTL (Gary Churchill)

additive effects of two QTL (Gary Churchill)

$$\mu_q = \mu + \beta_{q1} + \beta_{q2}$$
Epistasis (Gary Churchill)

The allelic state at one locus can mask or uncover the effects of allelic variation at another.
- W. Bateson, 1907.

epistasis in parallel pathways (GAC)

• Z keeps trait value low

• neither E_1 nor E_2 is rate limiting

• loss of function alleles are segregating from parent A at E_1 and from parent B at E_2
epistasis in a serial pathway (GAC)

- Z keeps trait value high
- either E_1 or E_2 is rate limiting
- loss of function alleles are segregating from parent B at E_1 or from parent A at E_2

3. Bayesian vs. classical QTL study

- classical study
 - *maximize* over unknown effects
 - *test* for detection of QTL at loci
 - model selection in stepwise fashion
- Bayesian study
 - *average* over unknown effects
 - *estimate* chance of detecting QTL
 - sample all possible models
- both approaches
 - average over missing QTL genotypes
 - scan over possible loci
Bayesian idea

- Reverend Thomas Bayes (1702-1761)
 - part-time mathematician
 - buried in Bunhill Cemetery, Moongate, London
 - famous paper in 1763 *Phil Trans Roy Soc London*
 - was Bayes the first with this idea? (Laplace?)

- basic idea (from Bayes’ original example)
 - two billiard balls tossed at random (uniform) on table
 - where is first ball if the second is to its left?
 - prior: anywhere on the table
 - posterior: more likely toward right end of table

QTL model selection: key players

- observed measurements
 - \(y \) = phenotypic trait
 - \(m \) = markers & linkage map
 - \(i \) = individual index \((1,\ldots,n)\)

- missing data
 - missing marker data
 - \(q \) = QT genotypes
 - alleles QQ, Qq, or qq at locus

- unknown quantities
 - \(\lambda \) = QT locus (or loci)
 - \(\mu \) = phenotype model parameters
 - \(\gamma \) = QTL model/genetic architecture

- \(\Pr(q|m,\lambda,\gamma) \) genotype model
 - grounded by linkage map, experimental cross
 - recombination yields multinomial for \(q \) given \(m \)

- \(\Pr(y|q,\mu,\gamma) \) phenotype model
 - distribution shape (assumed normal here)
 - unknown parameters \(\mu \) (could be non-parametric)

Sen Churchill (2001)
Bayes posterior vs. maximum likelihood

- **LOD**: classical Log ODds
 - maximize likelihood over effects μ
 - R/qtl scanone/scantwo: method = “em”

- **LPD**: Bayesian Log Posterior Density
 - average posterior over effects μ
 - R/qtl scanone/scantwo: method = “imp”

\[
\text{LOD}(\lambda) = \log_{10}\left\{ \max_x \Pr(y|m, \lambda) \right\} + c
\]
\[
\text{LPD}(\lambda) = \log_{10}\left\{ \Pr(\lambda|m) \int \Pr(y|m, \lambda)\Pr(\mu)d\mu \right\} + C
\]

likelihood mixes over missing QTL genotypes:
\[
\Pr(y|m, \mu, \lambda) = \sum_q \Pr(y|q, \mu)\Pr(q|m, \lambda)
\]

LOD & LPD: 1 QTL

n.ind = 100, 1 cM marker spacing
marginal LOD or LPD

- compare two genetic architectures \((\gamma_2, \gamma_1)\) at each locus
 - with \((\gamma_2)\) or without \((\gamma_1)\) another QTL at locus \(\lambda\)
 - preserve model hierarchy (e.g. drop any epistasis with QTL at \(\lambda\))
 - with \((\gamma_2)\) or without \((\gamma_1)\) epistasis with QTL at locus \(\lambda\)
 - \(\gamma_2\) contains \(\gamma_1\) as a sub-architecture
 - allow for multiple QTL besides locus being scanned
 - architectures \(\gamma_1\) and \(\gamma_2\) may have QTL at several other loci
 - use marginal LOD, LPD or other diagnostic
 - posterior, Bayes factor, heritability

\[
\text{LOD}(\lambda \mid \gamma_2) - \text{LOD}(\lambda \mid \gamma_1) \\
\text{LPD}(\lambda \mid \gamma_2) - \text{LPD}(\lambda \mid \gamma_1)
\]
LPD: 1 QTL vs. multi-QTL
marginal contribution to LPD from QTL at λ

substitution effect: 1 QTL vs. multi-QTL
single QTL effect vs. marginal effect from QTL at λ
why use a Bayesian approach?

- first, do both classical and Bayesian
 - always nice to have a separate validation
 - each approach has its strengths and weaknesses
- classical approach works quite well
 - selects large effect QTL easily
 - directly builds on regression ideas for model selection
- Bayesian approach is comprehensive
 - samples most probable genetic architectures
 - formalizes model selection within one framework
 - readily (!) extends to more complicated problems

comparing models

- balance model fit against model complexity
 - want to fit data well (maximum likelihood)
 - without getting too complicated a model

<table>
<thead>
<tr>
<th>fit model</th>
<th>smaller model</th>
<th>bigger model</th>
</tr>
</thead>
<tbody>
<tr>
<td>estimate phenotype</td>
<td>miss key features</td>
<td>fits better</td>
</tr>
<tr>
<td>predict new data</td>
<td>may be biased</td>
<td>no bias</td>
</tr>
<tr>
<td>interpret model</td>
<td>easier</td>
<td>no bias</td>
</tr>
<tr>
<td>estimate effects</td>
<td>low variance</td>
<td>more complicated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>high variance</td>
</tr>
</tbody>
</table>
QTL software options

- methods
 - approximate QTL by markers
 - exact multiple QTL interval mapping

- software platforms
 - MapMaker/QTL (obsolete)
 - QTLCart (statgen.ncsu.edu/qtlcart)
 - R/qtl (www.rqtl.org)
 - R/qtlbim (www.qtlbim.org)

QTL software platforms

- QTLCart (statgen.ncsu.edu/qtlcart)
 - includes features of original MapMaker/QTL
 - not designed for building a linkage map
 - easy to use Windows version WinQTLCart
 - based on Lander-Botstein maximum likelihood LOD
 - extended to marker cofactors (CIM) and multiple QTL (MIM)
 - epistasis, some covariates (GxE)
 - stepwise model selection using information criteria
 - some multiple trait options
 - OK graphics

- R/qtl (www.rqtl.org)
 - includes functionality of classical interval mapping
 - many useful tools to check genotype data, build linkage maps
 - excellent graphics
 - several methods for 1-QTL and 2-QTL mapping
 - epistasis, covariates (GxE)
 - tools available for multiple QTL model selection
QTL Model Selection

1. Bayesian strategy
2. Markov chain sampling
3. sampling genetic architectures
4. criteria for model selection

QTL model selection: key players

- observed measurements
 - \(y \) = phenotypic trait
 - \(m \) = markers & linkage map
 - \(i \) = individual index (1,...,n)
- missing data
 - missing marker data
 - \(q \) = QT genotypes
 - alleles QQ, Qq, or qq at locus
- unknown quantities
 - \(\lambda \) = QT locus (or loci)
 - \(\mu \) = phenotype model parameters
 - \(\gamma \) = QTL model/genetic architecture
- \(\text{pr}(q|m,\lambda,\gamma) \) genotype model
 - grounded by linkage map, experimental cross
 - recombination yields multinomial for \(q \) given \(m \)
- \(\text{pr}(y|q,\mu,\gamma) \) phenotype model
 - distribution shape (assumed normal here)
 - unknown parameters \(\mu \) (could be non-parametric)

after Sen Churchill (2001)
QTL mapping (from ZB Zeng)

Classical likelihood approach

- Genotype model $\operatorname{pr}(q|m, \lambda, \gamma)$
 - Missing genotypes q depend on observed markers m across genome

- Phenotype model $\operatorname{pr}(y|q, \mu, \gamma)$
 - Link phenotypes y to genotypes q

\[
\text{LOD}(\lambda) = \log_{10} \{\max_{\mu} \operatorname{pr}(y|m, \mu, \lambda)\} + c
\]

Likelihood mixes over missing QTL genotypes:

\[
\operatorname{pr}(y|m, \mu, \lambda) = \sum_q \operatorname{pr}(y|q, \mu)\operatorname{pr}(q|m, \lambda)
\]
EM approach

- Iterate E and M steps
 - expectation (E): geno prob’s pr(q|m,λ,γ)
 - maximization (M): pheno model parameters
 - mean, effects, variance
 - careful attention when many QTL present
 - Multiple papers by Zhao-Bang Zeng and others
- Start with simple initial model
 - Add QTL, epistatic effects sequentially

classic model search

- initial model from single QTL analysis
- search for additional QTL
- search for epistasis between pairs of QTL
 - Both in model? One in model? Neither?
- Refine model
 - Update QTL positions
 - Check if existing QTL can be dropped
- Analogous to stepwise regression
comparing models (details later)

- balance model fit against model complexity
 - want to fit data well (maximum likelihood)
 - without getting too complicated a model

<table>
<thead>
<tr>
<th></th>
<th>smaller model</th>
<th>bigger model</th>
</tr>
</thead>
<tbody>
<tr>
<td>fit model</td>
<td>miss key features</td>
<td>fits better</td>
</tr>
<tr>
<td>estimate phenotype</td>
<td>may be biased</td>
<td>no bias</td>
</tr>
<tr>
<td>predict new data</td>
<td>may be biased</td>
<td>no bias</td>
</tr>
<tr>
<td>interpret model</td>
<td>easier</td>
<td>more complicated</td>
</tr>
<tr>
<td>estimate effects</td>
<td>low variance</td>
<td>high variance</td>
</tr>
</tbody>
</table>

1. Bayesian strategy for QTL study

- augment data \((y, m)\) with missing genotypes \(q\)
- study unknowns \((\mu, \lambda, \gamma)\) given augmented data \((y, m, q)\)
 - find better genetic architectures \(\gamma\)
 - find most likely genomic regions = QTL = \(\lambda\)
 - estimate phenotype parameters = genotype means = \(\mu\)
- sample from posterior in some clever way
 - multiple imputation (Sen Churchill 2002)
 - Markov chain Monte Carlo (MCMC)
 - (Satagopan et al. 1996; Yi et al. 2005, 2007)

\[
\text{posterior} = \frac{\text{likelihood} \ast \text{prior}}{\text{constant}}
\]

\[
\text{posterior for } q, \mu, \lambda, \gamma = \frac{\text{phenotype likelihood} \ast \text{[prior for } q, \mu, \lambda, \gamma]}{\text{constant}}
\]

\[
\frac{\text{pr}(q, \mu, \lambda, \gamma \mid y, m)}{\text{pr}(y \mid m)} = \frac{\text{pr}(y \mid q, \mu, \gamma) \ast [\text{pr}(q \mid m, \lambda, \gamma) \ast \text{pr}(\mu \mid \gamma) \ast \text{pr}(\lambda \mid m, \gamma) \ast \text{pr}(\gamma)]}{\text{pr}(y \mid m)}
\]
Bayes posterior for normal data

small prior variance
large prior variance

Posterior on genotypic means?
phenotype model \(\text{pr}(y|q, \mu) \)
Bayes posterior QTL means

posterior centered on sample genotypic mean
but shrunken slightly toward overall mean

phenotype mean:

\[E(y \mid q) = \mu_q \]

\[V(y \mid q) = \sigma^2 \]

genotypic prior:

\[E(\mu_q) = \bar{y}. \]

\[V(\mu_q) = \kappa \sigma^2 \]

posterior:

\[E(\mu_q \mid y) = b_q \bar{y}_q + (1 - b_q) \bar{y}. \]

\[V(\mu_q \mid y) = b_q \sigma^2 / n_q \]

\[n_q = \text{count}\{q_i = q\} \]

\[\bar{y}_q = \text{sum} y_i / n_q \]

shrinkage:

\[b_q = \frac{\kappa n_q}{\kappa n_q + 1} \rightarrow 1 \]

pr\((q|m, \lambda)\) recombination model

\[\text{pr}(q|m, \lambda) = \text{pr}(\text{geno} \mid \text{map, locus}) \approx \]

\[\text{pr}(\text{geno} \mid \text{flanking markers, locus}) \]

\[m_1 \quad m_2 \quad q? \quad m_3 \quad m_4 \quad m_5 \quad m_6 \]

markers

\[\lambda \quad \text{distance along chromosome} \]
what are likely QTL genotypes q?
how does phenotype y improve guess?

what are probabilities for genotype q between markers?
recombinants AA:AB all 1:1 if ignore y and if we use y?
posterior on QTL genotypes q

- full conditional of q given data, parameters
 - proportional to prior $pr(q \mid m, \lambda)$
 - weight toward q that agrees with flanking markers
 - proportional to likelihood $pr(y \mid q, \mu)$
 - weight toward q with similar phenotype values
 - posterior recombination model balances these two
- this is the E-step of EM computations

$$pr(q \mid y, m, \mu, \lambda) = \frac{pr(y \mid q, \mu) \cdot pr(q \mid m, \lambda)}{pr(y \mid m, \mu, \lambda)}$$

Where are the loci λ on the genome?

- prior over genome for QTL positions
 - flat prior = no prior idea of loci
 - or use prior studies to give more weight to some regions
- posterior depends on QTL genotypes q

$$pr(\lambda \mid m, q) = pr(\lambda) \cdot pr(q \mid m, \lambda) / \text{constant}$$
 - constant determined by averaging
 - over all possible genotypes q
 - over all possible loci λ on entire map
- no easy way to write down posterior
what is the genetic architecture γ?

- which positions correspond to QTLs?
 - priors on loci (previous slide)

- which QTL have main effects?
 - priors for presence/absence of main effects
 - same prior for all QTL
 - can put prior on each d.f. (1 for BC, 2 for F2)

- which pairs of QTL have epistatic interactions?
 - prior for presence/absence of epistatic pairs
 - depends on whether 0,1,2 QTL have main effects
 - epistatic effects less probable than main effects

$\gamma =$ genetic architecture:

loci:
 - main QTL
 - epistatic pairs

effects:
 - add, dom
 - aa, ad, dd
Bayesian priors & posteriors

- augmenting with missing genotypes q
 - prior is recombination model
 - posterior is (formally) E step of EM algorithm
- sampling phenotype model parameters μ
 - prior is “flat” normal at grand mean (no information)
 - posterior shrinks genotypic means toward grand mean
 - (details for unexplained variance omitted here)
- sampling QTL loci λ
 - prior is flat across genome (all loci equally likely)
- sampling QTL genetic architecture model γ
 - number of QTL
 - prior is Poisson with mean from previous IM study
 - genetic architecture of main effects and epistatic interactions
 - priors on epistasis depend on presence/absence of main effects

2. Markov chain sampling

- construct Markov chain around posterior
 - want posterior as stable distribution of Markov chain
 - in practice, the chain tends toward stable distribution
 - initial values may have low posterior probability
 - burn-in period to get chain mixing well
- sample QTL model components from full conditionals
 - sample locus λ given q, γ (using Metropolis-Hastings step)
 - sample genotypes q given λ, μ, y, γ (using Gibbs sampler)
 - sample effects μ given q, y, γ (using Gibbs sampler)
 - sample QTL model γ given λ, μ, y, q (using Gibbs or M-H)

$$(\lambda, q, \mu, \gamma) \sim \text{pr}(\lambda, q, \mu, \gamma \mid y, m)$$

$$(\lambda, q, \mu, \gamma)_1 \rightarrow (\lambda, q, \mu, \gamma)_2 \rightarrow \cdots \rightarrow (\lambda, q, \mu, \gamma)_N$$
MCMC sampling of unknowns \((q, \mu, \lambda)\) for given genetic architecture \(\gamma\)

- **Gibbs sampler**
 - genotypes \(q\)
 - effects \(\mu\)
 - *not loci* \(\lambda\)

\[
q \sim \text{pr}(q \mid y, m, \mu, \lambda) \\
\mu \sim \frac{\text{pr}(y \mid q, \mu)\text{pr}(\mu)}{\text{pr}(y \mid q)} \\
\lambda \sim \frac{\text{pr}(q \mid m, \lambda)\text{pr}(\lambda \mid m)}{\text{pr}(q \mid m)}
\]

- **Metropolis-Hastings sampler**
 - extension of Gibbs sampler
 - does not require normalization
 - \(\text{pr}(q \mid m) = \sum_{\lambda} \text{pr}(q \mid m, \lambda) \text{pr}(\lambda)\)

Gibbs sampler for two genotypic means

- want to study two correlated effects
 - could sample directly from their bivariate distribution
 - assume correlation \(\rho\) is known
- instead use Gibbs sampler:
 - sample each effect from its full conditional given the other
 - pick order of sampling at random
 - repeat many times

\[
\begin{pmatrix}
\mu_1 \\
\mu_2
\end{pmatrix} \sim N\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\
\rho & 1 \end{pmatrix} \right) \\
\mu_1 \sim N\left(\rho \mu_2, 1 - \rho^2 \right) \\
\mu_2 \sim N\left(\rho \mu_1, 1 - \rho^2 \right)
\]
Gibbs sampler samples: $\rho = 0.6$

- $N = 50$ samples
- $N = 200$ samples

Full conditional for locus

- cannot easily sample from locus full conditional

 \[
 \text{pr}(\lambda | y, m, \mu, q) = \text{pr}(\lambda | m, q) = \text{pr}(q | m, \lambda) \text{pr}(\lambda) / \text{constant}
 \]

- constant is very difficult to compute explicitly
 - must average over all possible loci λ over genome
 - must do this for every possible genotype q

- Gibbs sampler will not work in general
 - but can use method based on ratios of probabilities
 - Metropolis-Hastings is extension of Gibbs sampler
Metropolis-Hastings idea

- want to study distribution $f(\lambda)$
 - take Monte Carlo samples
 - unless too complicated
 - take samples using ratios of f
- Metropolis-Hastings samples:
 - propose new value λ^*
 - near (?) current value λ
 - from some distribution g
 - accept new value with prob a
 - Gibbs sampler: $a = 1$ always

$$a = \min\left(1, \frac{f(\lambda^*) g(\lambda^* - \lambda)}{f(\lambda) g(\lambda - \lambda^*)}\right)$$

Metropolis-Hastings for locus λ

added twist: occasionally propose from entire genome
3. sampling genetic architectures

- search across genetic architectures \(\gamma \) of various sizes
 - allow change in number of QTL
 - allow change in types of epistatic interactions
- methods for search
 - reversible jump MCMC
 - Gibbs sampler with loci indicators
- complexity of epistasis
 - Fisher-Cockerham effects model
 - general multi-QTL interaction & limits of inference
reversible jump MCMC

- consider known genotypes \(q \) at 2 known loci \(\lambda \)
 - models with 1 or 2 QTL
- M-H step between 1-QTL and 2-QTL models
 - model changes dimension (via careful bookkeeping)
 - consider mixture over QTL models \(H \)

\[
\gamma = 1 \text{QTL} : Y = \beta_0 + \beta(q_1) + e
\]
\[
\gamma = 2 \text{QTL} : Y = \beta_0 + \beta_1(q_1) + \beta_2(q_2) + e
\]
geometry allowing q and λ to change

a short sequence

first 1000 with $m<3$

Model Selection Seattle SISG: Yandell © 2012

collinear QTL = correlated effects

• linked QTL = collinear genotypes
 ➢ correlated estimates of effects (negative if in coupling phase)
 ➢ sum of linked effects usually fairly constant
sampling across QTL models γ

\[
0 \quad \lambda_1 \quad \lambda_{m+1} \quad \lambda_2 \quad \ldots \quad \lambda_m \quad L
\]

action steps: draw one of three choices

- update QTL model γ with probability $1 - b(\gamma) - d(\gamma)$
 - update current model using full conditionals
 - sample QTL loci, effects, and genotypes
- add a locus with probability $b(\gamma)$
 - propose a new locus along genome
 - innovate new genotypes at locus and phenotype effect
 - decide whether to accept the “birth” of new locus
- drop a locus with probability $d(\gamma)$
 - propose dropping one of existing loci
 - decide whether to accept the “death” of locus

Gibbs sampler with loci indicators

- consider only QTL at pseudomarkers
 - every 1-2 cM
 - modest approximation with little bias
- use loci indicators in each pseudomarker
 - $\gamma = 1$ if QTL present
 - $\gamma = 0$ if no QTL present
- Gibbs sampler on loci indicators γ
 - relatively easy to incorporate epistasis
 - Yi, Yandell, Churchill, Allison, Eisen, Pomp (2005 Genetics)
 • (see earlier work of Nengjun Yi and Ina Hoeschele)

\[
\mu_q = \mu + \gamma_1 \beta_1(q_1) + \gamma_2 \beta_2(q_2), \quad \gamma_k = 0,1
\]
Bayesian shrinkage estimation

- soft loci indicators
 - strength of evidence for λ_j depends on γ
 - $0 \leq \gamma \leq 1$ (grey scale)
 - shrink most γs to zero
- Wang et al. (2005 *Genetics*)
 - Shizhong Xu group at U CA Riverside

\[\mu_q = \beta_0 + \gamma_1 \beta_1(q_1) + \gamma_2 \beta_2(q_1), \quad 0 \leq \gamma_k \leq 1 \]

other model selection approaches

- include all potential loci in model
- assume “true” model is “sparse” in some sense
- Sparse partial least squares
 - Chun, Keles (2009 *Genetics*; 2010 *JRSSB*)
- LASSO model selection
 - Foster (2006); Foster Verbyla Pitchford (2007 *JABES*)
 - Xu (2007 *Biometrics*); Yi Xu (2007 *Genetics*)
 - Shi Wahba Wright Klein Klein (2008 *Stat & Infer*)
4. criteria for model selection
balance fit against complexity

• classical information criteria
 – penalize likelihood L by model size $|\gamma|$
 – $IC = -2 \log L(\gamma | y) + \text{penalty}(\gamma)$
 – maximize over unknowns

• Bayes factors
 – marginal posteriors $\text{pr}(y | \gamma)$
 – average over unknowns

classical information criteria

• start with likelihood $L(\gamma | y, m)$
 – measures fit of architecture (γ) to phenotype (y)
 • given marker data (m)
 – genetic architecture (γ) depends on parameters
 • have to estimate loci (μ) and effects (λ)

• complexity related to number of parameters
 – $|\gamma| = \text{size of genetic architecture}$
 • BC: $|\gamma| = 1 + n.qtl + n.qtl(n.qtl - 1) = 1 + 4 + 12 = 17$
 • F2: $|\gamma| = 1 + 2n.qtl + 4n.qtl(n.qtl - 1) = 1 + 8 + 48 = 57$
classical information criteria

- construct information criteria
 - balance fit to complexity
 - Akaike: AIC = –2 log(L) + 2 |γ|
 - Bayes/Schwartz: BIC = –2 log(L) + |γ| log(n)
 - Broman: BIC_δ = –2 log(L) + δ|γ| log(n)
 - general form: IC = –2 log(L) + |γ| D(n)

- compare models
 - hypothesis testing: designed for one comparison
 • 2 log[LR(γ_1, γ_2)] = L(y|m, γ_2) – L(y|m, γ_1)
 - model selection: penalize complexity
 • IC(γ_1, γ_2) = 2 log[LR(γ_1, γ_2)] + (|γ_2| – |γ_1|) D(n)

information criteria vs. model size

- WinQTL 2.0
- SCD data on F2
- A=AIC
- 1=BIC(1)
- 2=BIC(2)
- d=BIC(δ)
- models
 - 1,2,3,4 QTL
 • 2+5+9+2
 - epistasis
 • 2:2 AD
Bayes factors

- ratio of model likelihoods
 - ratio of posterior to prior odds for architectures
 - averaged over unknowns

\[B_{12} = \frac{pr(\gamma_1 \mid y, m)}{pr(\gamma_2 \mid y, m)} = \frac{pr(y \mid m, \gamma_1)}{pr(y \mid m, \gamma_2)} \]

- roughly equivalent to BIC
 - BIC maximizes over unknowns
 - BF averages over unknowns

\[2 \log(B_{12}) = -2 \log(LR) - (|\gamma_2| - |\gamma_1|) \log(n) \]
issues in computing Bayes factors

- \(BF \) insensitive to shape of prior on \(\gamma \)
 - geometric, Poisson, uniform
 - precision improves when prior mimics posterior
- \(BF \) sensitivity to prior variance on effects \(\theta \)
 - prior variance should reflect data variability
 - resolved by using hyper-priors
 - automatic algorithm; no need for user tuning
- easy to compute Bayes factors from samples
 - sample posterior using MCMC
 - posterior \(\text{pr}(\gamma | y, m) \) is marginal histogram

Bayes factors & genetic architecture \(\gamma \)

- \(|\gamma| \) = number of QTL
 - prior \(\text{pr}(\gamma) \) chosen by user
 - posterior \(\text{pr}(\gamma | y, m) \)
 - sampled marginal histogram
 - shape affected by prior \(\text{pr}(A) \)
 \[
 BF_{\gamma_1,\gamma_2} = \frac{\text{pr}(\gamma_1 | y, m) / \text{pr}(\gamma_1)}{\text{pr}(\gamma_2 | y, m) / \text{pr}(\gamma_2)}
 \]
- pattern of QTL across genome
- gene action and epistasis
BF sensitivity to fixed prior for effects

\[\beta_{ij} \sim N\left(0, \sigma^2_G / m\right), \sigma^2_G = h^2 \sigma^2_{\text{total}}, h^2 \text{ fixed} \]

BF insensitivity to random effects prior

\[\beta_{ij} \sim N\left(0, \sigma^2_G / m\right), \sigma^2_G = h^2 \sigma^2_{\text{total}} + \frac{1}{2} h^2 \sim \text{Beta}(a,b) \]
Multiple Correlated Traits

• Pleiotropy vs. close linkage
• Analysis of covariance
 – Regress one trait on another before QTL search
• Classic GxE analysis
• Formal joint mapping (MTM)
• Seemingly unrelated regression (SUR)
• Reducing many traits to one
 – Principle components for similar traits

co-mapping multiple traits

• avoid reductionist approach to biology
 – address physiological/biochemical mechanisms
 – Schmalhausen (1942); Falconer (1952)
• separate close linkage from pleiotropy
 – 1 locus or 2 linked loci?
• identify epistatic interaction or canalization
 – influence of genetic background
• establish QTL x environment interactions
• decompose genetic correlation among traits
• increase power to detect QTL
Two types of data

• Design I: multiple traits on same individual
 – Related measurements, say of shape or size
 – Same measurement taken over time
 – Correlation within an individual

• Design II: multiple traits on different individuals
 – Same measurement in two crosses
 – Male vs. female differences
 – Different individuals in different locations
 – No correlation between individuals

interplay of pleiotropy & correlation

pleiotropy only

Korol et al. (2001)
Brassica napus: 2 correlated traits

- 4-week & 8-week vernalization effect
 - log(days to flower)
- genetic cross of
 - Stellar (annual canola)
 - Major (biennial rapeseed)
- 105 F1-derived double haploid (DH) lines
 - homozygous at every locus (QQ or qq)
- 10 molecular markers (RFLPs) on LG9
 - two QTLs inferred on LG9 (now chromosome N2)
 - corroborated by Butruille (1998)
 - exploiting synteny with Arabidopsis thaliana

QTL with GxE or Covariates

- adjust phenotype by covariate
 - covariate(s) = environment(s) or other trait(s)
- additive covariate
 - covariate adjustment same across genotypes
 - “usual” analysis of covariance (ANCOVA)
- interacting covariate
 - address GxE
 - capture genotype-specific relationship among traits
- another way to think of multiple trait analysis
 - examine single phenotype adjusted for others
R/qtl & covariates

- additive and/or interacting covariates
- test for QTL after adjusting for covariates

```r
## Get Brassica data.
library(qtlbim)
data(Bnapus)
Bnapus <- calc.genoprob(Bnapus, step = 2, error = 0.01)

## Scatterplot of two phenotypes: 4wk & 8wk flower time.
plot(Bnapus$pheno$log10flower4, Bnapus$pheno$log10flower8)

## Unadjusted IM scans of each phenotype.
fl8 <- scanone(Bnapus, find.pheno(Bnapus, "log10flower8"))
fl4 <- scanone(Bnapus, find.pheno(Bnapus, "log10flower4"))
plot(fl4, fl8, chr = "N2", col = rep(1,2), lty = 1:2,
     main = "solid = 4wk, dashed = 8wk", lwd = 4)
```

Correlated Traits SISG (c) Yandell 2012
R/qtl & covariates

- additive and/or interacting covariates
- test for QTL after adjusting for covariates

IM scan of 8wk adjusted for 4wk.
Adjustment independent of genotype
fl8.4 <- scanone(Bnapus, find.pheno(Bnapus, "log10flower8"),
 addcov = Bnapus$pheno$log10flower4)

IM scan of 8wk adjusted for 4wk.
Adjustment changes with genotype.
fl8.4 <- scanone(Bnapus, find.pheno(Bnapus, "log10flower8"),
 intcov = Bnapus$pheno$log10flower4)

plot(fl8, fl8.4a, fl8.4, chr = "N2",
 main = "solid = 8wk, dashed = addcov, dotted = intcov")
scatterplot adjusted for covariate

```r
## Set up data frame with peak markers, traits.
markers <- c("E38M50.133", "ec2e5a", "wg7f3a")
tmpdata <- data.frame(pull.geno(Bnapus)[, markers])
tmpdata$fl4 <- Bnapus$pheno$log10flower4
tmpdata$fl8 <- Bnapus$pheno$log10flower8

## Scatterplots grouped by marker.
library(lattice)
xyplot(fl8 ~ fl4, tmpdata, group = wg7f3a,
   col = "black", pch = 3:4, cex = 2, type = c("p","r"),
   xlab = "log10(4wk flower time)",
   ylab = "log10(8wk flower time)",
   main = "marker at 47cM")
xyplot(fl8 ~ fl4, tmpdata, group = E38M50.133,
   col = "black", pch = 3:4, cex = 2, type = c("p","r"),
   xlab = "log10(4wk flower time)",
   ylab = "log10(8wk flower time)",
   main = "marker at 80cM")
```
Multiple trait mapping

• Joint mapping of QTL
 – testing and estimating QTL affecting multiple traits
• Testing pleiotropy vs. close linkage
 – One QTL or two closely linked QTLs
• Testing QTL x environment interaction
• Comprehensive model of multiple traits
 – Separate genetic & environmental correlation

Formal Tests: 2 traits

\[y_1 \sim N(\mu_{q1}, \sigma^2) \text{ for group 1 with QTL at location } \lambda_1 \]
\[y_2 \sim N(\mu_{q2}, \sigma^2) \text{ for group 2 with QTL at location } \lambda_2 \]

• Pleiotropy vs. close linkage
 • test QTL at same location: \(\lambda_1 = \lambda_2 \)
 • likelihood ratio test (LOD): null forces same location
• if pleiotropic \((\lambda_1 = \lambda_2) \)
 • test for same mean: \(\mu_{q1} = \mu_{q2} \)
 • Likelihood ratio test (LOD)
 • null forces same mean, location
 • alternative forces same location
 • only make sense if traits are on same scale
 • test sex or location effect
3 correlated traits
(Jiang Zeng 1995)

Ellipses centered on genotypic value
width for nominal frequency
main axis angle environmental correlation
3 QTL, F2
27 genotypes

Note signs of genetic and environmental correlation

pleiotropy or close linkage?

2 traits, 2 qtl/trait
pleiotropy @ 54cM
linkage @ 114,128cM
More detail for 2 traits

\(y_1 \sim N(\mu_{q1}, \sigma^2)\) for group 1
\(y_2 \sim N(\mu_{q2}, \sigma^2)\) for group 2

- two possible QTLs at locations \(\lambda_1\) and \(\lambda_2\)
- effect \(\beta_{kj}\) in group \(k\) for QTL at location \(\lambda_j\)
 \(\mu_{q1} = \mu_1 + \beta_{11}(q_1) + \beta_{12}(q_2)\)
 \(\mu_{q2} = \mu_2 + \beta_{21}(q_1) + \beta_{22}(q_2)\)
- classical: test \(\beta_{kj} = 0\) for various combinations

seemingly unrelated regression (SUR)

\(\mu_{q1} = \mu_1 + \gamma_{11}\beta_{q11} + \gamma_{12}\beta_{q12}\)
\(\mu_{q2} = \mu_2 + \gamma_{21}\beta_{q21} + \gamma_{22}\beta_{q22}\)

indicators \(\gamma_{kj}\) are 0 (no QTL) or 1 (QTL)

- include \(\gamma\)s in formal model selection
SUR for multiple loci across genome

- consider only QTL at pseudomarkers (lecture 2)
- use loci indicators $\gamma_j (=0 \text{ or } 1)$ for each pseudomarker
- use SUR indicators $\gamma_{kj} (=0 \text{ or } 1)$ for each trait
- Gibbs sampler on both indicators
 - Banerjee, Yandell, Yi (2008 *Genetics*)

\[
\mu_{q1} = \mu_1 + \gamma_1 \gamma_{11} \beta_{11} (q_1) + \gamma_2 \gamma_{12} \beta_{12} (q_2) + ... \\
\mu_{q2} = \mu_2 + \gamma_1 \gamma_{21} \beta_{21} (q_1) + \gamma_2 \gamma_{22} \beta_{22} (q_2) + ...
\]

Simulation

5 QTL
2 traits
n=200
TMV vs. SUR
Correlated Traits

M16i: large, obese, rapid growth
CAST/Ei: small, lean

M16i × CAST/Ei → F1

BC (421 mice)

- **GONFAT** → Right Gonadal fat pad
- **SUBFAT** → Subcutaneous fat pad
R/qtlbim and GxE

- similar idea to R/qtl
 - fixed and random additive covariates
 - GxE with fixed covariate
- multiple trait analysis tools coming soon
 - theory & code mostly in place
 - properties under study
 - expect in R/qtlbim later this year
 - Samprit Banerjee (N Yi, advisor)
reducing many phenotypes to 1

• *Drosophila mauritiana* x *D. simulans*
 – reciprocal backcrosses, ~500 per bc
• response is “shape” of reproductive piece
 – trace edge, convert to Fourier series
 – reduce dimension: first principal component
• many linked loci
 – brief comparison of CIM, MIM, BIM

PC for two correlated phenotypes

![Graph showing PC for two correlated phenotypes](image-url)
shape phenotype via PC

![Graph showing shape phenotype via PC](image)

Figure 5. A plot of the first two principal components of the Fourier coefficients from posterior tube outlines. Many individuals from each of the five genotypic classes are represented. Each point represents an average of scores from the left and right sides of a particular genotype, and the Fourier coefficients accounted for by each principal component is given in parentheses.

Liu et al. (1996) Genetics

shape phenotype in BC study indexed by PC1

![Graph showing shape phenotype in BC study indexed by PC1](image)

Figure 6. The effect of genotype number on the accuracy of reconstruction of posterior tube outlines by adapted Fourier analysis.

Liu et al. (1996) Genetics
Zeng et al. (2000)
CIM vs. MIM

composite interval mapping
(Liu et al. 1996)
narrow peaks
miss some QTL

multiple interval mapping
(Zeng et al. 2000)
triangular peaks

both conditional 1-D scans
fixing all other "QTL"

CIM, MIM and IM pairscan

2-D im
multiple QTL: CIM, MIM and BIM

Correlated Traits

SISG (c) Yandell 2012
Quantile-based Permutation Thresholds for QTL Hotspots

Brian S Yandell and Elias Chaibub Neto
17 March 2012

Fisher on inference

We may at once admit that any inference from the particular to the general must be attended with some degree of uncertainty, but this is not the same as to admit that such inference cannot be absolutely rigorous, for the nature and degree of the uncertainty may itself be capable of rigorous expression.

Sir Ronald A Fisher (1935)
Why study hotspots?

How do genotypes affect phenotypes?
- genotypes = DNA markers for an individual
- phenotypes = traits measured on an individual
 (clinical traits, thousands of mRNA expression levels)
QTL hotspots = genomic locations affecting many traits
- common feature in genetical genomics studies
- biologically interesting--may harbor critical regulators
But are these hotspots real? Or are they spurious or random?
- non-genetic correlation from other environmental factors
Genetic architecture of gene expression in 6 tissues.

A Tissue-specific panels illustrate the relationship between the genomic location of a gene (y-axis) to where that gene’s mRNA shows an eQTL (LOD > 5), as a function of genome position (x-axis). Circles represent eQTLs that showed either cis-linkage (black) or trans-linkage (colored) according to LOD score. Genomic hot spots, where many eQTLs map in trans, are apparent as vertical bands that show either tissue selectivity (e.g., Chr 6 in the islet,) or are present in all tissues (e.g., Chr 17,).

B The total number of eQTLs identified in 5 cM genomic windows is plotted for each tissue; total eQTLs for all positions is shown in upper right corner for each panel. The peak number of eQTLs exceeding 1000 per 5 cM is shown for islets (Chrs 2, 6 and 17), liver (Chrs 2 and 17) and kidney (Chr 17).

Figure 4 Tissue-specific hotspots with eQTL and SNP architecture for Chrs 1, 2 and 17.

The number of eQTLs for each tissue (left axis) and the number of SNPs between B6 and BTBR (right axis) that were identified within a 5 cM genomic window is shown for Chr 1 (A), Chr 2 (B) and Chr 17 (C). The location of tissue-specific hotspots are identified by their number corresponding to that in Table 4, eQTL and SNP architecture is shown for all chromosomes in supplementary material.
How large a hotspot is large?

recently proposed empirical test
hotspot = count traits above LOD threshold
LOD = rescaled likelihood ratio ~ F statistic
assess null distribution with permutation test
extension of Churchill and Doerge (1994)
extension of Fisher's permutation t-test

Single trait permutation threshold T
Churchill Doerge (1994)

- Null distribution of max LOD
 - Permute single trait separate from genotype
 - Find max LOD over genome
 - Repeat 1000 times
- Find 95% permutation threshold T
- Identify interested peaks above T in data
- Controls genome-wide error rate (GWER)
 - Chance of detecting at least one peak above T
Single trait permutation schema

1. shuffle phenotypes to break QTL
2. repeat 1000 times and summarize

Hotspot count threshold $N(T)$

- Null distribution of max count above T
 - Find single-trait 95% LOD threshold T
 - Find max count of traits with LODs above T
 - Repeat 1000 times
- Find 95% count permutation threshold N
- Identify counts of LODs above T in data
 - Locus-specific counts identify hotspots
- Controls GWER in some way
Hotspot permutation schema

1. shuffle phenotypes by row to break QTL, keep correlation
2. repeat 1000 times and summarize

spurious hotspot permutation histogram for hotspot size above 1-trait threshold

95% threshold at \(N > 82 \) using single trait threshold \(T = 3.41 \)
Hotspot sizes based on count of LODs above single-trait

5 peaks above count threshold $N = 82$
all traits counted are nominally significant
but no adjustment for multiple testing across traits

hotspot permutation test
(Breitling et al. Jansen 2008 *PLoS Genetics*)
• for original dataset and each permuted set:
 – Set single trait LOD threshold T
 • Could use Churchill-Doerge (1994) permutations
 – Count number of traits (N) with LOD above T
 • Do this at every marker (or pseudomarker)
 • Probably want to smooth counts somewhat
• find count with at most 5% of permuted sets above (critical value) as count threshold
• conclude original counts above threshold are real
permutation across traits
(Breitling et al. Jansen 2008 PLoS Genetics)

to right way wrong way

right way

A Observed genotype and expression data

right way

B Observed hotspots

wrong way

False hotspots in permuted eQTLs

break correlation between markers and traits but preserve correlation among traits

quality vs. quantity in hotspots
(Chaibub Neto et al. in review)

- detecting single trait with very large LOD
 - control FWER across genome
 - control FWER across all traits
- finding small “hotspots” with significant traits
 - all with large LODs
 - could indicate a strongly disrupted signal pathway
- sliding LOD threshold across hotspot sizes
Rethinking the approach

- Breitling et al. depends highly on T
- Threshold T based on single trait
 - but interested in multiple correlated traits
- want to control hotspot GWER ($h\text{GWER}_N$)
 - chance of detecting at least one spurious hotspot of size N or larger
- $N = 1$
 - chance of detecting at least 1 peak above threshold across all traits and whole genome
 - Use permutation null distribution of maximum LOD scores across all transcripts and all genomic locations

Hotspot architecture using multiple trait GWER threshold ($T = 7.12$)

count of all traits with LOD above $T_1 = 7.12$
all traits counted are significant
conservative adjustment for multiple traits
locus-specific LOD quantiles in data for 10(black), 20(blue), 50(red) traits

- Quantile: what is LOD value for which at least 10 (or 20 or 50) traits are at above it?
- Breitling hotspots (chr 2,3,12,14,15)
 - have many traits with high LODs
- Chromosome max LOD quantile by trait count

<table>
<thead>
<tr>
<th>color</th>
<th>count</th>
<th>chr 3</th>
<th>chr 8</th>
<th>chr 12</th>
<th>chr 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>black</td>
<td>10</td>
<td>24</td>
<td>10</td>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>blue</td>
<td>20</td>
<td>11</td>
<td>8</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>red</td>
<td>50</td>
<td>6</td>
<td>2012</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

212012 © Yandell MSRC5
Hotspot permutation revisited

1. shuffle phenotypes by row to break QTL, keep correlation
2. repeat 1000 times and summarize

Tail distribution of LOD quantiles and size-specific thresholds

- What is locus-specific (spurious) hotspot?
 - all traits in hotspot have LOD above null threshold
- Small spurious hotspots have higher minimum LODs
 - min of 10 values > min of 20 values
- Large spurious hotspots have many small LODs
 - most are below single-trait threshold
- Null thresholds depending on hotspot size
 - Decrease with spurious hotspot size (starting at $N = 1$)
 - Be truncated at single-trait threshold for large sizes
- Chen Storey (2007) studied LOD quantiles
 - For multiple peaks on a single trait
genome-wide LOD permutation threshold

- Smaller spurious hotspots have higher LOD thresholds
- Larger spurious hotspots allow many traits with small LODS (below $T=3.41$)

Hotspot architecture using multiple trait GWEP threshold ($T=7.12$)
hotspot architectures using LOD thresholds

Sliding threshold between multiple trait ($T_1=7.12$) and single trait ($T_0=3.41$)

$T_1=7.12$ controls GWER across all traits

$T_0=3.41$ controls GWER for single trait
Hotspot size significance profile

• Construction
 – Fix significance level (say 5%)
 – At each locus, find largest hotspot that is significant using sliding threshold
 – Plot as profile across genome

• Interpretation
 – Large hotspots were already significant
 – Traits with LOD > 7.12 could be hubs
 – Smaller hotspots identified by fewer large LODs (chr 8)
 – Subjective choice on what to investigate (chr 13, 5?)
Yeast study

- 120 individuals
- 6000 traits
- 250 markers
- 1000 permutations
- 1.8×10^{10} linear models

Mouse study

- 500 individuals
- 30,000 traits * 6 tissues
- 2000 markers
- 1000 permutations
- 1.8×10^{13} linear models
- 1000 x more than yeast study
Scaling up permutations

- tremendous computing resource needs
 - Multiple analyses, periodically redone
 - Algorithms improve
 - Gene annotation and sequence data evolve
 - Verification of properties of methods
 - Theory gives easy cutoff values (LOD > 3) that may not be relevant
 - Need to carefully develop re-sampling methods (permutations, etc.)
 - Storage of raw, processed and summary data (and metadata)
 - Terabyte(s) of backed-up storage (soon petabytes and more)
 - Web access tools
- high throughput computing platforms (Condor)
 - Reduce months or years to hours or days
 - Free up your mind to think about science rather than mechanics
 - Free up your desktop/laptop for more immediate tasks
 - Need local (regional) infrastructure
 - Who maintains the machines, algorithms?
 - Who can talk to you in plain language?

CHTC use: one “small” project

Open Science Grid Glidein Usage (4 feb 2012)

<table>
<thead>
<tr>
<th>group</th>
<th>hours</th>
<th>percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 BMRB</td>
<td>10710.3</td>
<td>73.49%</td>
</tr>
<tr>
<td>2 Biochem_Attie</td>
<td>3660.2</td>
<td>25.11%</td>
</tr>
<tr>
<td>3 Statistics_Wahba</td>
<td>178.5</td>
<td>1.22%</td>
</tr>
</tbody>
</table>
Brietling et al (2008) hotspot size thresholds from permutations

MSRC5

blue = Male, red = Female, black = Both

Breitling Method

MSRC5

2012 © Yandell
Chaibub Neto sliding LOD thresholds

MSRC5
2012 © Yandell
37

blue = Male, red = Female, black = Both

Sliding LOD method

MSRC5
2012 © Yandell
38
What’s next?

- Further assess properties (power of test)
- Drill into identified hotspots
 - Find correlated subsets of traits
 - Look for local causal agents (*cis* traits)
 - Build causal networks (another talk …)
- Validate findings for narrow hotspot
- Incorporate as tool in pipeline
 - Increase access for discipline researchers
 - Increase visibility of method

References

Causal Graphical Models

Elias Chaibub Neto and Brian S Yandell
SISG 2012
July 12, 2012

Correlation and Causation

The ideal ... is the study of the direct influence of one condition on another ... [when] all other possible causes of variation are eliminated ... The degree of correlation between two variables ... [includes] all connecting paths of influence [Path coefficients combine] knowledge of ... correlation among the variables in a system with ... causal relations.

Sewall Wright (1921)
Directed graphical models

A graphical model is a multivariate probabilistic model whose conditional independence relations are represented by a graph.

We will focus on directed acyclic graph (DAG) models (aka Bayes nets),

\[
\begin{align*}
1 & \\
3 & \rightarrow 5 \rightarrow 6 \\
2 & \\
4
\end{align*}
\]

Assuming the Markov property, the joint distribution factors according to the conditional independence relations:

\[
P(1, 2, 3, 4, 5, 6) = P(6 | 5) P(5 | 3, 4) P(4) P(3 | 1, 2) P(2) P(1)
\]

\[
6 \perp \{1, 2, 3, 4\} | 5, \quad 5 \perp \{1, 2, 3\} | 4, \quad \text{and so on}
\]

i.e., each node is independent of its non-descendants given its parents.
Standard Bayesian networks and causality

Even though the direct edges in a Bayes net are often interpreted as causal relations, in reality they only represent conditional dependencies.

Different phenotype networks, for instance,

\[Y_1 \rightarrow Y_2 \rightarrow Y_3 , \quad Y_1 \leftarrow Y_2 \rightarrow Y_3 , \quad Y_1 \leftarrow Y_2 \leftarrow Y_3 , \]

can represent the same set of conditional independence relations \((Y_1 \perp Y_3 \mid Y_2, \text{ in this example})\). When that is the case, we say the nets are Markov equivalent.

In general (although it is not always true), Markov equivalent networks will have equivalent likelihood functions, so that model selection criteria cannot distinguish between them. The best we can do is to learn equivalent classes of likelihood equivalent phenotype networks from the data.

Genetics as a mean to reduce the size of equivalence classes

The incorporation of genetic information can help distinguish between likelihood equivalent nets two distinct ways:

1. By creating priors for the network structures, using the results of causality tests (Zhu et al. 2007).

2. By augmenting the phenotype network with QTL nodes, creating new sets of conditional independence relations (Chaibub Neto et al. 2008, 2010).
Genetic priors

Consider the networks

\[G_Y^\perp : Y_1 \rightarrow Y_2 \rightarrow Y_3 , \quad G_Y^\parallel : Y_1 \leftarrow Y_2 \leftarrow Y_3 . \]

These Markov equivalent networks have the same likelihood, i.e.,

\[P(Y \mid G_Y^\perp) = P(Y \mid G_Y^\parallel) . \]

If the phenotypes are associated with QTLs, we can use the results of the causality tests to compute prior probabilities for the network structures. If

\[\frac{P(G_Y^\perp)}{P(G_Y^\parallel)} \neq 1 , \text{ then } \frac{P(G_Y^\perp \mid Y)}{P(G_Y^\parallel \mid Y)} = \frac{P(G_Y^\perp)}{P(G_Y^\parallel)} \neq 1 , \]

and we can use the posterior probability ratio to distinguish between the networks.

Augmenting the phenotype network with QTL nodes

By augmenting the phenotype network with a QTL node,

\[G^1 : Q \rightarrow Y_1 \rightarrow Y_2 \rightarrow Y_3 , \quad G^2 : Q \rightarrow Y_1 \leftarrow Y_2 \leftarrow Y_3 . \]

we have that \(G^1 \) and \(G^2 \) have distinct sets of conditional independence relations:

\[Y_2 \perp Q \mid Y_1 , \text{ on } G^1 \]
\[Y_2 \notin Q \mid Y_1 , \text{ on } G^2 \]

Hence, \(G^1 \) and \(G^2 \) are no longer likelihood equivalent.

In the inferential approaches we address here we adopt this augmentation approach.
d-separation

Graphical criterion to read out conditional independence relations from a DAG.

Definition (d-separation): A path p is said to be d-separated (or blocked) by a set of nodes Z if and only if

1. p contains a chain $i \to m \to j$ or a fork $i \leftarrow m \to j$ such that the middle node m is in Z, or
2. p contains an inverted fork (or collider) $i \to m \leftarrow j$ such that the middle node m is not in Z and such that no descendant of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from a node in X to a node in Y. X and Y are d-connected if they are not d-separated (Pearl, 1988, 2000).
Simple graphical criterium to detect Markov equivalence

Detecting Markov equivalence: Two DAGs are Markov equivalent if and only if they have the same skeletons and the same set of v-structures. (Verma and Pearl 1990).

The **skeleton** of a causal graph is the undirected graph obtained by replacing its arrows by undirected edges.

A **v-structure** is composed by two converging arrows whose tails are not connected by an arrow.

![Diagram of v-structures and not a v-structure]

\[\begin{array}{c|c|c}
\text{DAG structures} & \text{skeletons} & \text{v-structures} \\
\hline
Y_1 \rightarrow Y_2 \rightarrow Y_3 & Y_1 - Y_2 - Y_3 & 0 \\
Y_1 \rightarrow Y_2 \leftarrow Y_3 & Y_1 - Y_2 - Y_3 & Y_1 \rightarrow Y_2 \leftarrow Y_3 \\
Y_1 \leftarrow Y_2 \rightarrow Y_3 & Y_1 - Y_2 - Y_3 & 0 \\
\end{array} \]

Extended DAG structures:

\[\begin{array}{c|c|c}
\text{Extended DAG structures} & \text{skeletons} & \text{v-structures} \\
\hline
Q_1 \rightarrow Y_1 \rightarrow Y_2 \rightarrow Y_3 & Q - Y_1 - Y_2 - Y_3 & 0 \\
Q_1 \rightarrow Y_1 \leftarrow Y_2 \rightarrow Y_3 & Q - Y_1 - Y_2 - Y_3 & Q \rightarrow Y_1 \leftarrow Y_2 \\
\end{array} \]
Faithfulness assumption

Given a graph and a probability distribution associated with it, all the conditional independence relations spanned by a probability distribution must match the d-separation relations predicted from the graph structure (Spirtes et al. 2000).

Unfaithfulness example:

\[Y_1 = \epsilon_1, \quad Y_2 = \beta_{21} Y_1 + \epsilon_2, \quad Y_3 = \beta_{31} Y_1 + \beta_{32} Y_2 + \epsilon_3 \]

\[\epsilon_k \sim N(0, \sigma_k^2), \quad \text{Cov}(Y_1, Y_3) = (\beta_{31} + \beta_{32} \beta_{21}) \sigma_1^2 \]

If \(\beta_{31} = -\beta_{32} \beta_{21} \) then \(\text{Cov}(Y_1, Y_3) = 0. \)

Although the data is generated from \(a \), its probability distribution is faithful to \(b \).

![Graph](image)

The PC skeleton algorithm

Infers the skeleton of the causal model (Spirtes et al. 1993).
PC skeleton algorithm

Suppose the true network describing the causal relationships between six transcripts is:

The PC-algorithm starts with the complete undirected graph:

and progressively eliminates edges based on conditional independence tests.

PC skeleton algorithm

The algorithm performs several rounds of conditional independence tests of increasing order.

It starts with all zero order tests, then performs all first order, second order, and so on.

- Remark: in the Gaussian case zero partial correlation implies conditional independence, thus

\[i \perp j \mid k \Leftrightarrow \text{cor}(i, j \mid k) = 0 \Rightarrow \text{drop } (i, j) \text{ edge} \]
PC algorithm - zero order

After all zero order conditional independence tests

The algorithm then moves to first order conditional independence tests.
PC algorithm - first order

true graph

Move to next edge

y₂ d-separates y₁ from y₃

drop edge

PC algorithm - first order

true graph

keep edge

keep edge

change cond set
After all first order conditional independence tests.

The algorithm then moves to second order conditional independence tests.

PC algorithm - first order

PC algorithm - second order

true graph

move to next edge

drop edge

(\(y_2, y_5\)) d-separate \(y_1\) from \(y_4\)
After all second order conditional independence tests

Then the algorithm moves to third order, fourth order ...

PC algorithm - second order

Edge orientation with the QDG algorithm
Edge orientation

We perform model selection using a direction LOD score

\[LOD = \log_{10} \left\{ \frac{\prod_{i=1}^{n} f(y_{1i} \mid q_{1i}) f(y_{2i} \mid y_{1i}, q_{2i})}{\prod_{i=1}^{n} f(y_{2i} \mid q_{2i}) f(y_{1i} \mid y_{2i}, q_{1i})} \right\} \]

where \(f() \) represents the predictive density, that is, the sampling model with parameters replaced by the corresponding maximum likelihood estimates.

QDG algorithm

The QTL-driven Dependency Graph algorithm is composed of 7 steps:

1. Get the causal skeleton (with the PC skeleton algorithm).
2. Use QTLs to orient the edges in the skeleton.
3. Choose a random ordering of edges, and
4. Recompute orientations incorporating causal phenotypes in the models (update the causal model according to changes in directions).
5. Repeat 4 iteratively until no more edges change direction (the resulting graph is one solution)
6. Repeat steps 3, 4, and 5 many times and store all different solutions.
7. Score all solutions and select the graph with best score.
QDG algorithm - step 2
Now suppose that for each transcript we have a set of e-QTLs

Given the QTLs we can distinguish causal direction:

QDG algorithm - steps 2 and 3
First estimate of the causal model, DG_0, (using only QTLs to infer causal direction)

In step 3 we randomly choose an ordering of all edges in DG_0. Say,

In step 4 we recompute the directions including other transcripts as covariates in the models (following the above ordering).
QDG algorithm - step 4

QDG algorithm - steps 5, 6, and 7

Step 5: repeat 4 iteratively until no more edges change direction (the resulting graph is one solution).

Step 6: repeat the process starting from different random orderings several times, and store all different solutions.

Step 7: score all solutions and select the graph with best score.
Real data example
Network of metabolites and transcripts involved in liver metabolism.

Four out of six predictions were validated experimentally (Ferrara et al. 2008).

QTLnet algorithm
QTLnet algorithm

- Perform joint inference of the causal phenotype network and the associated genetic architecture.
- The genetic architecture is inferred conditional on the phenotype network.
- Because the phenotype network structure is itself unknown, the algorithm iterates between updating the network structure and genetic architecture using a Markov chain Monte Carlo (MCMC) approach.
- QTLnet corresponds to a mixed Bayesian network with continuous and discrete nodes representing phenotypes and QTLs, respectively.

QTL mapping conditional on the pheno net structure

We simulated data from the model $Q_1 \to Y_1 \to Y_2 \leftarrow Q_2$ with Q_1 located on chr 1, and Q_2 on chr 2.

- Y_2 maps indirectly to Q_1 (top right), but Y_1 d-separates Y_2 and Q_1 (bottom right).
- Y_1 is marginally independent from Q_2 (top left), but conditional on Y_2 became associated (bottom left).
QTLnet algorithm - MCMC steps

1. Propose a new phenotype network, \mathcal{M}_{new}, by adding, deleting or reversing (with parent orphanning) an edge.

2. Recompute the genetic architecture (only for the phenotypes y_i whose parent set, $pa(y_i)$, has changed).

3. Compute the marginal likelihood $p(y \mid q, M_{new})$.

4. Accept or reject the new phenotype network and QTLs according to the Metropolis-Hastings acceptance probability:

 $$\alpha = \min \left\{ 1, \frac{p(y \mid q, M_{new}) p(M_{new}) q(M_{old} \mid M_{new})}{p(y \mid q, M_{old}) p(M_{old}) q(M_{new} \mid M_{old})} \right\}.$$

QTLnet algorithm

We approximate the Bayes factor comparing old and new models by

$$\frac{p(y \mid q, M_{new})}{p(y \mid q, M_{old})} \approx \exp \left\{ -\frac{1}{2} (BIC_{M_{new}} - BIC_{M_{old}}) \right\},$$

and adopt $p(M_{new})/p(M_{old}) = 1$. The proposal distribution ratio is computed as

$$\frac{q(M_{old} \mid M_{new})}{q(M_{new} \mid M_{old})} = \frac{\# \text{ of DAGs that can be reached from } M_{old}}{\# \text{ of DAGs that can be reached from } M_{new}}.$$
QTLnet algorithm

<table>
<thead>
<tr>
<th>iteration</th>
<th>M_{old}</th>
<th>proposed modification</th>
<th>M_{new}</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k + 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k + 2$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Neighborhood edge reversal

- select edge
- drop edge
- identify parents
- reverse edge
- find new parents

from Grzegorczyk and Husmier (2008)
Neighborhood edge reversal

Trace plots of the logarithmic scores of the DAGs after the burn-in phase.

Bayesian model averaging

\[
\text{Pr}(Y_1 \rightarrow Y_2) = \text{Pr}(M_1) + \text{Pr}(M_4) + \text{Pr}(M_6) = 0.54
\]

\[
\text{Pr}(Y_1 \ldots Y_3) = \text{Pr}(M_2) + \text{Pr}(M_5) + \text{Pr}(M_7) = 0.34
\]

\[
\text{Pr}(Y_1 \leftarrow Y_2) = \text{Pr}(M_6) + \text{Pr}(M_8) + \text{Pr}(M_9) + \text{Pr}(M_{10}) = 0.12
\]
BxH ApoE-/- chr 2: causal architecture

BxH ApoE-/- chr 2: causal network for transcription factor Pscdbp
Scaling up to larger networks

- Reduce complexity of graphs
 - restrict number of causal edges into each node

<p>| BIC computations by maximum number of parents |</p>
<table>
<thead>
<tr>
<th>#</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1,300</td>
<td>2,560</td>
<td>3,820</td>
<td>4,660</td>
<td>5,120</td>
</tr>
<tr>
<td>20</td>
<td>23,200</td>
<td>100,720</td>
<td>333,280</td>
<td>875,920</td>
<td>10.5M</td>
</tr>
<tr>
<td>30</td>
<td>122,700</td>
<td>835,230</td>
<td>4.40M</td>
<td>18.6M</td>
<td>16.1B</td>
</tr>
<tr>
<td>40</td>
<td>396,800</td>
<td>3.69M</td>
<td>26.7M</td>
<td>157M</td>
<td>22.6T</td>
</tr>
<tr>
<td>50</td>
<td>982,500</td>
<td>11.6M</td>
<td>107M</td>
<td>806M</td>
<td>28.1Q</td>
</tr>
</tbody>
</table>

(limit complexity by allowing only 3-4 parents)

- make task parallel: run on many machines
 - pre-compute BIC scores
 - run multiple parallel Markov chains

Parallel phases for larger projects

Phase 1: identify parents
Phase 2: compute BICs
Phase 3: store BICs
Phase 4: run Markov chains
Phase 5: combine results
Parallel implementation

R/qtlNet available at CRAN

- Condor cluster: chtc.cs.wisc.edu
 - System Of Automated Runs (SOAR)
 - ~2000 cores in pool shared by many scientists
 - automated run of new jobs placed in project

Final remarks
Potential issues

- Steady state (static) measures may not reflect dynamic processes (Przytycha and Kim 2010).

- Population-based estimates (from a sample of individuals) may not reflect processes within an individual.

References

Expression Modules

Brian S. Yandell (with slides from Steve Horvath, UCLA, and Mark Keller, UW-Madison)

Weighted models for insulin

Detected by scanone

transcripts that match weighted insulin model in each of 4 tissues:

<table>
<thead>
<tr>
<th>tissue</th>
<th># transcripts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Islet</td>
<td>1984</td>
</tr>
<tr>
<td>Adipose</td>
<td>605</td>
</tr>
<tr>
<td>Liver</td>
<td>485</td>
</tr>
<tr>
<td>Gastroc</td>
<td>404</td>
</tr>
</tbody>
</table>
How many islet transcripts show this same genetic dependence at these loci?

Expression Networks
Zhang & Horvath (2005)
www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork

• organize expression traits using correlation

 • adjacency \[a_{ij} = |\text{cor}(x_i, x_j)|^\beta, \beta = 6 \]

 • connectivity \[k_i = \sum_i(a_{ii}) \]

 • topological overlap \[\text{TOM}_{ij} = \frac{a_{ij} + \sum_i(a_{ii}a_{ji})}{1 - a_{ij} + \min(k_i, k_j)} \]
Using the topological overlap matrix (TOM) to cluster genes

- modules correspond to branches of the dendrogram

Genes correspond to rows and columns

Hierarchical clustering dendrogram

TOM matrix

Module: Correspond to branches

module traits highly correlated

- adjacency attenuates correlation
- can separate positive, negative
- summarize module
 - eigengene
 - weighted average of traits
- relate module
 - to clinical traits
 - map eigengene
advantages of Horvath modules

- **emphasize modules (pathways) instead of individual genes**
 - Greatly alleviates the problem of multiple comparisons
 - \(\approx 20 \) module comparisons versus 1000s of gene comparisons
- **intramodular connectivity** \(k_i \) finds key drivers (hub genes)
 - quantifies module membership (centrality)
 - highly connected genes have an increased chance of validation
- **module definition is based on gene expression data**
 - no prior pathway information is used for module definition
 - two modules (eigengenes) can be highly correlated
- **unified approach for relating variables**
 - compare data sets on same mathematical footing
- **scale-free: zoom in and see similar structure**

modules for 1984 transcripts with similar genetic architecture as insulin

contains the insulin trait
Islet – modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Pvalue</th>
<th>Qvalue</th>
<th>Count</th>
<th>Size</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLUE</td>
<td>0.0006</td>
<td>0.0463</td>
<td>30</td>
<td>1068</td>
<td>biosynthetic process</td>
</tr>
<tr>
<td></td>
<td>0.0006</td>
<td>0.0470</td>
<td>18</td>
<td>511</td>
<td>cellular lipid metabolic process</td>
</tr>
<tr>
<td></td>
<td>0.0011</td>
<td>0.0507</td>
<td>11</td>
<td>241</td>
<td>lipid biosynthetic process</td>
</tr>
<tr>
<td>GREEN</td>
<td>0.0006</td>
<td>0.0457</td>
<td>4</td>
<td>76</td>
<td>phosphate transport</td>
</tr>
<tr>
<td></td>
<td>0.0055</td>
<td>0.0970</td>
<td>220</td>
<td></td>
<td>intermediate filament-based process</td>
</tr>
<tr>
<td>PURPLE</td>
<td>0.0011</td>
<td>0.0165</td>
<td>7</td>
<td>2769</td>
<td>nucleobase, nucleoside, nucleotide and nucleic acid metabolic process</td>
</tr>
<tr>
<td>BLACK</td>
<td>0.0078</td>
<td>0.0138</td>
<td>2</td>
<td>68</td>
<td>sensory perception of sound</td>
</tr>
<tr>
<td>MAGENTA</td>
<td>2.54E-05</td>
<td>0.0011</td>
<td>7</td>
<td>313</td>
<td>cell cycle process</td>
</tr>
<tr>
<td></td>
<td>0.0001</td>
<td>0.0040</td>
<td>5</td>
<td>179</td>
<td>microtubule-based process</td>
</tr>
<tr>
<td></td>
<td>0.0004</td>
<td>0.0040</td>
<td>5</td>
<td>225</td>
<td>mitotic cell cycle</td>
</tr>
<tr>
<td></td>
<td>0.0005</td>
<td>0.0040</td>
<td>5</td>
<td>228</td>
<td>M phase</td>
</tr>
<tr>
<td></td>
<td>0.0009</td>
<td>0.0041</td>
<td>5</td>
<td>266</td>
<td>cell cycle phase</td>
</tr>
<tr>
<td></td>
<td>0.0012</td>
<td>0.0041</td>
<td>4</td>
<td>162</td>
<td>mitosis</td>
</tr>
<tr>
<td></td>
<td>0.0012</td>
<td>0.0041</td>
<td>4</td>
<td>163</td>
<td>M phase of mitotic cell cycle</td>
</tr>
<tr>
<td>YELLOW</td>
<td>0.0026</td>
<td>0.0675</td>
<td>7</td>
<td>281</td>
<td>cell projection organization and biogenesis</td>
</tr>
<tr>
<td></td>
<td>0.0026</td>
<td>0.0675</td>
<td>7</td>
<td>281</td>
<td>cell part morphogenesis</td>
</tr>
<tr>
<td></td>
<td>0.0026</td>
<td>0.0675</td>
<td>7</td>
<td>281</td>
<td>cell projection morphogenesis</td>
</tr>
<tr>
<td>RED</td>
<td>0.0017</td>
<td>0.0619</td>
<td>2</td>
<td>13</td>
<td>steroid hormone receptor signaling pathway</td>
</tr>
<tr>
<td></td>
<td>0.0026</td>
<td>0.0619</td>
<td>5</td>
<td>200</td>
<td>reproductive process</td>
</tr>
<tr>
<td>TURQUOISE</td>
<td>0.0002</td>
<td>0.0830</td>
<td>17</td>
<td>279</td>
<td>enzyme linked receptor protein signaling pathway</td>
</tr>
<tr>
<td></td>
<td>0.0003</td>
<td>0.0830</td>
<td>10</td>
<td>115</td>
<td>morphogenesis of an epithelium</td>
</tr>
<tr>
<td></td>
<td>0.0003</td>
<td>0.0830</td>
<td>7</td>
<td>57</td>
<td>morphogenesis of embryonic epithelium</td>
</tr>
<tr>
<td></td>
<td>0.0004</td>
<td>0.0830</td>
<td>40</td>
<td>1021</td>
<td>anatomical structure morphogenesis</td>
</tr>
<tr>
<td>PINK</td>
<td>0.0004</td>
<td>0.0608</td>
<td>2</td>
<td>14</td>
<td>vesicle organization and biogenesis</td>
</tr>
<tr>
<td></td>
<td>0.0092</td>
<td>0.0612</td>
<td>4</td>
<td>384</td>
<td>regulation of apoptosis</td>
</tr>
</tbody>
</table>

Islet – enrichment for modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Pvalue</th>
<th>Qvalue</th>
<th>Count</th>
<th>Size</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLUE</td>
<td>0.0006</td>
<td>0.0463</td>
<td>30</td>
<td>1068</td>
<td>biosynthetic process</td>
</tr>
<tr>
<td></td>
<td>0.0006</td>
<td>0.0470</td>
<td>18</td>
<td>511</td>
<td>cellular lipid metabolic process</td>
</tr>
<tr>
<td></td>
<td>0.0011</td>
<td>0.0507</td>
<td>11</td>
<td>241</td>
<td>lipid biosynthetic process</td>
</tr>
<tr>
<td>GREEN</td>
<td>0.0006</td>
<td>0.0457</td>
<td>4</td>
<td>76</td>
<td>phosphate transport</td>
</tr>
<tr>
<td></td>
<td>0.0055</td>
<td>0.0970</td>
<td>220</td>
<td></td>
<td>intermediate filament-based process</td>
</tr>
<tr>
<td>PURPLE</td>
<td>0.0011</td>
<td>0.0165</td>
<td>7</td>
<td>2769</td>
<td>nucleobase, nucleoside, nucleotide and nucleic acid metabolic process</td>
</tr>
<tr>
<td>BLACK</td>
<td>0.0078</td>
<td>0.0138</td>
<td>2</td>
<td>68</td>
<td>sensory perception of sound</td>
</tr>
<tr>
<td>MAGENTA</td>
<td>2.54E-05</td>
<td>0.0011</td>
<td>7</td>
<td>313</td>
<td>cell cycle process</td>
</tr>
<tr>
<td></td>
<td>0.0001</td>
<td>0.0040</td>
<td>5</td>
<td>179</td>
<td>microtubule-based process</td>
</tr>
<tr>
<td></td>
<td>0.0004</td>
<td>0.0040</td>
<td>5</td>
<td>225</td>
<td>mitotic cell cycle</td>
</tr>
<tr>
<td></td>
<td>0.0005</td>
<td>0.0040</td>
<td>5</td>
<td>228</td>
<td>M phase</td>
</tr>
<tr>
<td></td>
<td>0.0009</td>
<td>0.0041</td>
<td>5</td>
<td>266</td>
<td>cell cycle phase</td>
</tr>
<tr>
<td></td>
<td>0.0012</td>
<td>0.0041</td>
<td>4</td>
<td>162</td>
<td>mitosis</td>
</tr>
<tr>
<td></td>
<td>0.0012</td>
<td>0.0041</td>
<td>4</td>
<td>163</td>
<td>M phase of mitotic cell cycle</td>
</tr>
<tr>
<td>YELLOW</td>
<td>0.0026</td>
<td>0.0675</td>
<td>7</td>
<td>281</td>
<td>cell projection organization and biogenesis</td>
</tr>
<tr>
<td></td>
<td>0.0026</td>
<td>0.0675</td>
<td>7</td>
<td>281</td>
<td>cell part morphogenesis</td>
</tr>
<tr>
<td></td>
<td>0.0026</td>
<td>0.0675</td>
<td>7</td>
<td>281</td>
<td>cell projection morphogenesis</td>
</tr>
<tr>
<td>RED</td>
<td>0.0017</td>
<td>0.0619</td>
<td>2</td>
<td>13</td>
<td>steroid hormone receptor signaling pathway</td>
</tr>
<tr>
<td></td>
<td>0.0026</td>
<td>0.0619</td>
<td>5</td>
<td>200</td>
<td>reproductive process</td>
</tr>
<tr>
<td>TURQUOISE</td>
<td>0.0002</td>
<td>0.0830</td>
<td>17</td>
<td>279</td>
<td>enzyme linked receptor protein signaling pathway</td>
</tr>
<tr>
<td></td>
<td>0.0003</td>
<td>0.0830</td>
<td>10</td>
<td>115</td>
<td>morphogenesis of an epithelium</td>
</tr>
<tr>
<td></td>
<td>0.0003</td>
<td>0.0830</td>
<td>7</td>
<td>57</td>
<td>morphogenesis of embryonic epithelium</td>
</tr>
<tr>
<td></td>
<td>0.0004</td>
<td>0.0830</td>
<td>40</td>
<td>1021</td>
<td>anatomical structure morphogenesis</td>
</tr>
<tr>
<td>PINK</td>
<td>0.0004</td>
<td>0.0608</td>
<td>2</td>
<td>14</td>
<td>vesicle organization and biogenesis</td>
</tr>
<tr>
<td></td>
<td>0.0092</td>
<td>0.0612</td>
<td>4</td>
<td>384</td>
<td>regulation of apoptosis</td>
</tr>
</tbody>
</table>
www.geneontology.org

- ontologies
 - Cellular component (GOCC)
 - Biological process (GOBP)
 - Molecular function (GOMF)
- hierarchy of classification
 - general to specific
 - based on extensive literature search, predictions
- prone to errors, historical inaccuracies

Bayesian causal phenotype network incorporating genetic variation and biological knowledge

Brian S Yandell, Jee Young Moon
University of Wisconsin-Madison
Elias Chaibub Neto, Sage Bionetworks
Xinwei Deng, VA Tech
bigger picture

- how do DNA, RNA, proteins, metabolites regulate each other?
- regulatory networks from microarray expression data
 - time series measurements or transcriptional perturbations
 - segregating population: genotype as driving perturbations
- goal: discover causal regulatory relationships among phenotypes
- use knowledge of regulatory relationships from databases
causal model selection choices
in context of larger, unknown network

focal trait → large trait

causal

focal trait → large trait

reactive

focal trait → large trait

correlated

focal trait → large trait

uncorrelated
causal architecture references

- BIC: Schadt et al. (2005) *Nature Genet*
- CIT: Millstein et al. (2009) *BMC Genet*
 - Chaibub Neto et al. (2012) *Genetics* (in review)

Extends Vuong’s model selection tests to the comparison of 3, possibly **misspecified**, models.

\[
\begin{align*}
\mathcal{M}_1 & : Q_1 \rightarrow Y_1 \rightarrow Y_2 \leftarrow Q_2 \\
\mathcal{M}_2 & : Q_1 \rightarrow Y_1 \leftarrow Y_2 \leftarrow Q_2 \\
\mathcal{M}_3 & : Q_1 \rightarrow Y_1 \leftarrow Y_2 \leftarrow Q_2
\end{align*}
\]

Modules/Pathways SISG (c) 2012 Brian S Yandell 17

Liver expression data in a mice intercross.

- 3,421 transcripts and 1,065 markers.
- 261 transcripts physically located on chr 2.

Modules/Pathways SISG (c) 2012 Brian S Yandell 18
QTL-driven directed graphs

- given genetic architecture (QTLs), what causal network structure is supported by data?
- R/qdg available at www.github.org/byandell
- references
partial correlation (PC) skeleton

true graph

1st order partial correlations

drop edge

2nd order partial correlations

drop edge

1 \perp 3 | 2

(y_2, y_5) d-separate y_1 from y_4

1 \perp 4 | 2, 5

(y_2, y_5) d-separates y_1 from y_3
edge direction: which is causal?

\[M_1 : \ y_1 \rightarrow y_2 \quad \quad M_2 : \ y_1 \leftarrow y_2 \]

the above models are likelihood equivalent,

\[f(y_1 | y_2) = f(y_1, y_2) = f(y_2) f(y_1 | y_2) \]

\[f(q_1) f(y_1 | q_1) f(y_2 | y_1, q_2) f(q_2) \neq f(q_2) f(y_2 | q_2) f(y_1 | y_2, q_1) f(q_1) \]

not likelihood equivalent due to QTL

test edge direction using LOD score

\[LOD = \log_{10} \left\{ \frac{\prod_{i=1}^{n} f(y_{1i} | q_{1i}) f(y_{2i} | y_{1i}, q_{2i})}{\prod_{i=1}^{n} f(y_{2i} | q_{2i}) f(y_{1i} | y_{2i}, q_{1i})} \right\} \]

not likelihood equivalent because

\[f(q_1) f(y_1 | q_1) f(y_2 | y_1, q_2) f(q_2) \neq f(q_2) f(y_2 | q_2) f(y_1 | y_2, q_1) f(q_1) \]
reverse edges using QTLs

true graph

causal graphical models in systems genetics

• What if genetic architecture and causal network are unknown? jointly infer both using iteration
• R/qtlnet available from www.github.org/byandell
• Related references
Basic idea of QTLnet

• iterate between finding QTL and network
• genetic architecture given causal network
 – trait y depends on parents pa(y) in network
 – QTL for y found conditional on pa(y)
 • Parents pa(y) are interacting covariates for QTL scan
• causal network given genetic architecture
 – build (adjust) causal network given QTL
 each direction change may alter neighbor edges

missing data method: MCMC

• known phenotypes Y, genotypes Q
• unknown graph G
• want to study \(\Pr(Y \mid G, Q) \)
• break down in terms of individual edges
 – \(\Pr(Y \mid G, Q) = \text{sum of} \Pr(Y_i \mid \text{pa}(Y_i), Q) \)
• sample new values for individual edges
 – given current value of all other edges
• repeat many times and average results
MCMC steps for QTLnet

- propose new causal network G
 - with simple changes to current network:
 - change edge direction
 - add or drop edge
- find any new genetic architectures Q
 - update phenotypes when parents $pa(y)$ change in new G
- compute likelihood for new network and QTL
 - $Pr(Y \mid G, Q)$
- accept or reject new network and QTL
 - usual Metropolis-Hastings idea

BxH ApoE-/- causal network for transcription factor Pscdbp

work of Elias Chaibub Neto

Data: Ghazalpour et al. (2006) PLoS Gen
scaling up to larger networks

• reduce complexity of graphs
 – use prior knowledge to constrain valid edges
 – restrict number of causal edges into each node
• make task parallel: run on many machines
 – pre-compute conditional probabilities
 – run multiple parallel Markov chains
• rethink approach
 – LASSO, sparse PLS, other optimization methods

graph complexity with node parents
parallel phases for larger projects

Phase 1: identify parents

Phase 2: compute BICs

\[\text{BIC} = \text{LOD} - \text{penalty} \]

for all possible parents to all nodes

Phase 3: store BICs

Phase 4: run Markov chains

parallel implementation

- R/qtlnet available at www.github.org/byandell
- Condor cluster: chtc.cs.wisc.edu
 - System Of Automated Runs (SOAR)
 - ~2000 cores in pool shared by many scientists
 - automated run of new jobs placed in project
single edge updates

burnin

100,000 runs

neighborhood edge reversal

select edge
drop edge
identify parents

orphan nodes
reverse edge
find new parents

how to use functional information?

- functional grouping from prior studies
 - may or may not indicate direction
 - gene ontology (GO), KEGG
 - knockout (KO) panels
 - protein-protein interaction (PPI) database
 - transcription factor (TF) database
- methods using only this information
- priors for QTL-driven causal networks
 - more weight to local (cis) QTLs?
modeling biological knowledge

- infer graph \(G_Y \) from biological knowledge \(B \)
 - \(\Pr(G_Y \mid B, W) = \exp(-W \cdot |B-G_Y|) / \text{constant} \)
 - \(B = \) prob of edge given TF, PPI, KO database
 - derived using previous experiments, papers, etc.
 - \(G_Y = 0\text{-}1 \) matrix for graph with directed edges
- \(W = \) inferred weight of biological knowledge
 - \(W=0: \) no influence; \(W \) large: assumed correct
 - \(P(W \mid B) = \phi \exp(-\phi W) \) exponential
- Werhli and Husmeier (2007) \(J \) Bioinfo Comput Biol

combining eQTL and bio knowledge

- probability for graph \(G \) and bio-weights \(W \)
 - given phenotypes \(Y \), genotypes \(Q \), bio info \(B \)
- \(\Pr(G, W \mid Y, Q, B) = c \)
 \[\Pr(Y \mid G, Q) \Pr(G \mid B, W, Q) \Pr(W \mid B) \]
 - \(\Pr(Y \mid G, Q) \) is genetic architecture (QTLs)
 - using parent nodes of each trait as covariates
 - \(\Pr(G \mid B, W, Q) = \Pr(G \mid B, W) \Pr(G_{Q \rightarrow Y} \mid Q) \)
 - \(\Pr(G \mid B, W) \) relates graph to biological info
 - \(\Pr(G_{Q \rightarrow Y} \mid Q) \) relates genotype to phenotype

encoding biological knowledge B

transcription factors, DNA binding (causation)

$$B_{ij} = \frac{\lambda e^{-\lambda p}}{\lambda e^{-\lambda p} + (1 - e^{-\lambda})}$$

- p = p-value for TF binding of $i \rightarrow j$
- truncated exponential (λ) when TF $i \rightarrow j$
- uniform if no detection relationship
- Bernard, Hartemink (2005) *Pac Symp Biocomp*

encoding biological knowledge B

protein-protein interaction (association)

$$B_{ij} = B_{ji} = \frac{\text{posterior odds}}{1 + \text{posterior odds}}$$

- post odds = prior odds * LR
- use positive and negative gold standards
- Jansen et al. (2003) *Science*
encoding biological knowledge B
gene ontology (association)

$$B_{ij} = B_{ji} = c \cdot \text{mean}(\text{sim}(GO_i, GO_j))$$

- GO = molecular function, processes of gene
- sim = maximum information content across common parents of pair of genes
- Lord et al. (2003) *Bioinformatics*

MCMC with pathway information

- sample new network G from proposal $R(G^*|G)$
 - add or drop edges; switch causal direction
- sample QTLs Q from proposal $R(Q^*|Q,Y)$
 - e.g. Bayesian QTL mapping given pa(Y)
- accept new network (G^*, Q^*) with probability
- $A = \min(1, f(G, Q|G^*, Q^*)/ f(G^*, Q^*|G, Q))$
 - $f(G, Q|G^*, Q^*) = \Pr(Y|G^*, Q^*)\Pr(G^*|B, W, Q^*)/R(G^*|G)R(Q^*|Q, Y)$
- sample W from proposal $R(W^*|W)$
- accept new weight W^* with probability …
ROC curve simulation

open = QTLnet

closed = phenotypes only

integrated ROC curve

2x2: genetics pathways

probability classifier ranks true > false edges

\[\delta = \text{accuracy of } B \]
weight on biological knowledge

incorrect non-informative correct

\[
\begin{array}{c|c|c}
\delta : -0.1 & \delta : 0 & \delta : 0.1 \\
\hline
\end{array}
\]

Density

W

yeast data—partial success

26 genes
36 inferred edges
dashed: indirect (2)
starred: direct (3)
missed (39)
reversed (0)

Data: Brem, Kruglyak (2005) PNAS
phenotypic buffering of molecular QTL

limits of causal inference

- Computing costs already discussed
- Noisy data leads to false positive causal calls
 - Unfaithfulness assumption violated
 - Depends on sample size and omic technology
 - And on graph complexity (d = maximal path length i→j)
 - Profound limits
sizes for reliable causal inference

genome wide linkage & association

\[\lambda = \min |\text{cor}(Y_i, Y_j)| \]
\[\lambda = c \cdot \sqrt{dp/n} \]
\[d = \text{max degree} \]
\[p = \# \text{ nodes} \]
\[n = \text{sample size} \]

Thanks!

• Grant support
 – NIH/NIDDK 58037, 66369
 – NIH/NIGMS 74244, 69430
 – NCI/ICBP U54-CA149237
 – NIH/R01MH090948

• Collaborators on papers and ideas
 – Alan Attie & Mark Keller, Biochemistry
 – Karl Broman, Aimee Broman, Christina Kendziorski
Computational Infrastructure for Systems Genetics Analysis
Brian Yandell, UW-Madison

high-throughput analysis of systems data enable biologists & analysts to share tools

www.stat.wisc.edu/~yandell/statgen
byandell@wisc.edu

• UW-Madison
 – Alan Attie
 – Christina Kendzierski
 – Karl Broman
 – Mark Keller
 – Andrew Broman
 – Aimee Broman
 – Younjeong Choi
 – Elias Chaibub Neto
 – Jee Young Moon
 – John Dawson
 – Ping Wang
 – NIH Grants DK58037, DK68369, GM00944, GM69430, EY18869

• Jackson Labs (HTDAS)
 – Gary Churchil
 – Ricardo Verdugo
 – Keith Sheppard

• UC-Denver (PhenoGen)
 – Boris Tabakoff
 – Cheryl Hornbaker
 – Laura Saba
 – Paula Hoffman

• Labkey Software
 – Mark Igra

• U Groningen (XGA)
 – Ritser Jansen
 – Morris Swertz
 – Pjor Pims
 – Danny Arends

• Broad Institute
 – Jill Mesirov
 – Michael Reich
experimental context

- **B6 x BTBR obese mouse cross**
 - model for diabetes and obesity
 - 500+ mice from intercross (F2)
 - collaboration with Rosetta/Merck
- **genotypes**
 - 5K SNP Affymetrix mouse chip
 - care in curating genotypes! (map version, errors, …)
- **phenotypes**
 - clinical phenotypes (>100 / mouse)
 - gene expression traits (>40,000 / mouse / tissue)
 - other molecular phenotypes

how does one filter traits?

- want to reduce to “manageable” set
 - 10/100/1000: depends on needs/tools
 - How many can the biologist handle?
- how can we create such sets?
 - data-driven procedures
 - correlation-based modules
 - Zhang & Horvath 2005 *SAGMB*, Keller et al. 2008 *Genome Res*
 - Li et al. 2006 *Hum Mol Gen*
 - mapping-based focus on genome region
 - function-driven selection with database tools
 - GO, KEGG, etc
 - Incomplete knowledge leads to bias
 - random sample
why build Web eQTL tools?

• common storage/maintainence of data
 – one well-curated copy
 – central repository
 – reduce errors, ensure analysis on same data
• automate commonly used methods
 – biologist gets immediate feedback
 – statistician can focus on new methods
 – codify standard choices

how does one build tools?

• no one solution for all situations
• use existing tools wherever possible
 – new tools take time and care to build!
 – downloaded databases must be updated regularly
• human component is key
 – need informatics expertise
 – need continual dialog with biologists
• build bridges (interfaces) between tools
 – Web interface uses PHP
 – commands are created dynamically for R
• continually rethink & redesign organization
perspectives for building a community where disease data and models are shared

Benefits of wider access to datasets and models:
1- catalyze new insights on disease & methods
2- enable deeper comparison of methods & results

Lessons Learned:
1- need quick feedback between biologists & analysts
2- involve biologists early in development
3- repeated use of pipelines leads to
documented learning from experience
increased rigor in methods

Challenges Ahead:
1- stitching together components as coherent system
2- ramping up to ever larger molecular datasets

Swertz & Jansen (2007)
analysis pipeline acts on objects (extends concept of GenePattern)

input → pipeline → output

setting → pipeline → check
pipeline is composed of many steps

combine datasets

compare methods

eQTL Tools Seattle SiSG: Yandell © 2012

alternative path

causal model selection choices in context of larger, unknown network

causal

reactive

correlated

uncorrelated
BxH ApoE-/- chr 2: causal architecture

12 causal calls

BxH ApoE-/- causal network for transcription factor Pscdbp

work of Elias Chaibub Neto
collaborative portal (LabKey)

systems genetics portal (PhenoGen)

view results (R graphics, GenomeSpace tools)

get data (GEO, Sage)

run pipeline (CLIO, XGAP, HTD AS)

develop analysis methods & algorithms

iterate many times

update periodically

check settings

preserve history

draw pipeline

input

output

package

raw code

R&D
Model/View/Controller (MVC) software architecture

- isolate domain logic from input and presentation
- permit independent development, testing, maintenance

Controller
Input/response

View
render for interaction

Model
domain-specific logic

system actions

user changes

Controller
Input/response

View
render for interaction

Model
domain-specific logic

- isolate domain logic from input and presentation
- permit independent development, testing, maintenance
```r
library('B6BTBR07')

out <- multtrait(cross.name='B6BTBR07',
                 filename = 'scanone_1214952578.csv',
                 category = 'islet', chr = c(17),
                 threshold.level = 0.05, sex = 'both',)

sink('scanone_1214952578.txt')
print(summary(out))
sink()

bitmap('scanone_1214952578%03d.bmp',
        height = 12, width = 16, res = 72, pointsize = 20)
plot(out, use.cM = TRUE)
dev.off()
```