Bayesian Model Selection
for Multiple QTL

Brian S. Yandell
University of Wisconsin-Madison
www.stat.wisc.edu/~yandell/statgen

Animal Genetics Seminar, October 2006

outline

1. Bayesian vs. classical QTL study
2. Bayesian priors & posteriors
3. model search using MCMC
 - Gibbs sampler and Metropolis-Hastings
4. model assessment
 - Bayes factors & model averaging
5. data examples in detail
 - simulation & hyper data
1. Bayesian vs. classical QTL study

- **classical study**
 - maximize likelihood over unknowns
 - test for presence/absence of QTL at loci
 - model selection in stepwise fashion

- **Bayesian study**
 - sample unknowns from posterior
 - estimate QTL loci directly
 - sample simultaneously across models

Bayesian QTL: key players

- observed measurements
 - \(y \) = phenotypic trait
 - \(m \) = markers & linkage map
 - \(i = 1, \ldots, n \) = individual index

- missing data
 - missing marker data
 - \(q \) = QT genotypes
 - alleles QQ, Qq, or qq at locus

- unknown quantities
 - \(\lambda \) = QT locus (or loci)
 - \(\mu \) = phenotype model parameters
 - \(H \) = QTL model/genetic architecture

- \(p(r(q|m, \lambda, H)) \) genotype model
 - grounded by linkage map, experimental cross
 - recombination yields multinomial for \(q \) given \(m \)

- \(p(r(y|q, \mu, H)) \) phenotype model
 - distribution shape (assumed normal here)
 - unknown parameters \(\mu \) (could be non-parametric)

after
Sen Churchill (2001)
Bayes posterior vs. maximum likelihood

- **LOD**: classical Log ODds
 - maximizes likelihood
 - mixture over missing QTL genotypes q
 - maximize phenotype model parameters μ
 - scan over possible loci λ
 - R/qtl scanone/scantwo: method = "em"

- **LPD**: Bayesian Log Posterior Density
 - averages over unknowns
 - average over missing QTL genotypes q
 - average phenotype model parameters μ
 - scan over possible loci λ
 - R/qtl scanone/scantwo: method = "imp"

suppose genetic architecture is known
- $H = 1$ QTL or 2 QTL model
- available in R/qtl via scanone and scantwo routines

- $\text{LOD}(\lambda) = \log_{10} \{\max_{\mu} \text{pr}(y \mid m, \mu, \lambda)\} + c$
- $\text{LPD}(\lambda) = \log_{10} \{\text{pr}(\lambda \mid m) \int \text{pr}(y \mid m, \mu, \lambda) \text{pr}(\mu) d\mu\} + C$

with mixture over missing QTL genotypes:
- $\text{pr}(y \mid m, \mu, \lambda) = \sum_q \text{pr}(y \mid q, \mu) \text{pr}(q \mid m, \lambda)$
LOD & LPD: 1 QTL
n.ind = 100, 10 cM marker spacing

LOD & LPD: 1 QTL
n.ind = 100, 1 cM marker spacing
Bayesian strategy for QTL study

- augment data \((y,m)\) with missing genotypes \(q\)
- study unknowns \((\mu, \lambda, H)\) given augmented data \((y,m,q)\)
 - find better genetic architectures \(H\)
 - find most likely genomic regions = QTL = \(\lambda\)
 - estimate phenotype parameters = genotype means = \(\mu\)
- sample from posterior in some clever way
 - multiple imputation (Sen Churchill 2002)
 - Markov chain Monte Carlo (MCMC) (Yi et al. 2005)

\[
\text{posterior} = \frac{\text{likelihood} \times \text{prior}}{\text{constant}}
\]

\[
\text{posterior for } q, \mu, \lambda, H = \frac{\text{phenotype likelihood} \times \text{prior for } q, \mu, \lambda, H}{\text{constant}}
\]

\[
\text{pr}(q, \mu, \lambda, H \mid y, m) = \frac{\text{pr}(y \mid q, \mu, H) \times \text{pr}(q \mid m, \lambda, H) \times \text{pr}(\mu \mid H) \times \text{pr}(\lambda \mid m, H) \times \text{pr}(H)}{\text{pr}(y \mid m)}
\]

2. Bayesian priors & posteriors

- augmenting with missing genotypes \(q\)
 - prior is recombination model
 - posterior is (formally) E step of EM algorithm
- sampling phenotype model parameters \(\mu\)
 - prior is “flat” normal at grand mean (no information)
 - posterior shrinks genotypic means toward grand mean
 - (details for unexplained variance omitted here)
- sampling QTL loci \(\lambda\)
 - prior is flat across genome (all loci equally likely)
- sampling QTL model \(H\)
 - number of QTL
 - prior is Poisson with mean from previous IM study
 - genetic architecture of main effects and epistatic interactions
 - priors on epistasis depend on presence/absence of main effects
what are likely QTL genotypes q?
how does phenotype y improve guess?
(consider locus λ halfway between D4Mit41 & D4Mit214)

Pr($q=AA$) = 0.5 at λ for recombinants AA:AB
how does $y = bp$ alter posterior?
same math as E step of classical EM algorithm

how to estimate the genotypic means μ_q?
(shrink sample means toward prior to reduce selection bias)
Where are the loci λ on the genome?

- prior over genome for QTL positions
 - flat prior = no prior idea of loci
 - or use prior studies to give more weight to some regions
- no easy way to write down posterior
 - proportional to priors for genotypes q and loci λ
 - constant averaged over all genotypes q and loci λ

what is the genetic architecture H?

- which positions correspond to QTLs?
 - priors on loci (previous slide)
- which QTL have main effects?
 - priors for presence/absence of main effects
 - same prior for all QTL
 - can put prior on each d.f. (1 for BC, 2 for F2)
- which pairs of QTL have epistatic interactions?
 - prior for presence/absence of epistatic pairs
 - depends on whether 0,1,2 QTL have main effects
 - epistatic effects less probable than main effects
3. QTL Model Search using MCMC

- trick: Markov chains are samples from a stable distribution
 - Markov chain: the future depends on the past only through the present
 - artificially construct Markov chain with distribution we want
 - alter one thing (unknown) at a time—make the chain easy to construct
- sample QTL model components from full conditionals
 - sample locus \(\lambda \) given \(q,H \) (using Metropolis-Hastings step)
 - sample genotypes \(q \) given \(\lambda,\mu,y,H \) (using Gibbs sampler)
 - sample effects \(\mu \) given \(q,y,H \) (using Gibbs sampler)
 - sample QTL model \(H \) given \(\lambda,\mu,y,q \) (using Gibbs or M-H)

\[
(\lambda,q,\mu,H) \sim p(\lambda,q,\mu,H \mid y,m)
\]

initial guess: no QTL

\[k^{th}\] sample draw \((\lambda,q,\mu,H)_{k+1}\) given \((\lambda,q,\mu,H)_k\)

stop after \(N = 100,000\) steps

Gibbs sampler idea

- toy problem
 - want to study two correlated effects
 - could sample directly from their bivariate distribution
- instead use Gibbs sampler:
 - sample each effect from its full conditional given the other
 - pick order of sampling at random
 - repeat many times

\[
\begin{pmatrix}
\mu_1 \\
\mu_2
\end{pmatrix}
\sim
N
\left(
\begin{pmatrix}
0 \\
0
\end{pmatrix},
\begin{pmatrix}
1 & \rho \\
\rho & 1
\end{pmatrix}
\right)
\]

\[
\mu_1 \sim N(\rho \mu_2, 1 - \rho^2)
\]

\[
\mu_2 \sim N(\rho \mu_1, 1 - \rho^2)
\]
Gibbs sampler samples: $\rho = 0.6$

$N = 50$ samples

$N = 200$ samples

Metropolis-Hastings idea

- want to study distribution $f(\lambda)$
 - take Monte Carlo samples
 - unless too complicated
 - take samples using ratios of f
 - Metropolis-Hastings samples:
 - propose new value λ^*
 - near (?) current value λ
 - from some distribution g
 - accept new value with prob a
 - Gibbs sampler: $a = 1$ always

\[
a = \min \left(1, \frac{f(\lambda^*) g(\lambda^* - \lambda)}{f(\lambda) g(\lambda - \lambda^*)} \right)
\]
Metropolis-Hastings samples

$N = 200$ samples

$narrow g$
$wide g$

$N = 1000$ samples

$narrow g$
$wide g$

MCMC realization

added twist: occasionally propose from whole domain
Gibbs sampler with loci indicators

- partition genome into intervals
 - at most one QTL per interval
 - interval = 1 cM in length
 - assume QTL in middle of interval
- use loci to indicate presence/absence of QTL in each interval
 - $\gamma = 1$ if QTL in interval
 - $\gamma = 0$ if no QTL
- Gibbs sampler on loci indicators
 - see work of Nengjun Yi (and earlier work of Ina Hoeschele)
 - Yi, Yandell et al. (2005); R/qtlbim (2006)

$$Y = \beta_0 + \gamma_1 \beta_1(q_1) + \gamma_2 \beta_2(q_1) + e$$

reversible jump MCMC

- consider known genotypes q at 2 known loci λ
 - models with 1 or 2 QTL
- M-H step between 1-QTL and 2-QTL models
 - model changes dimension (via careful bookkeeping)
 - consider mixture over QTL models H
- Satagopan, Yandell (1996); Gaffney (2001); R/bim (2002)

$nqtl = 1 : Y = \beta_0 + \beta_1(q_1) + e$

$nqtl = 2 : Y = \beta_0 + \beta_1(q_1) + \beta_2(q_2) + e$
Bayesian shrinkage estimation

- soft loci indicators
 - strength of evidence for λ_j depends on variance of β_j
 - similar to $\gamma > 0$ on grey scale
- include all possible loci in model
 - pseudo-markers at 1cM intervals
- Wang et al. (2005 *Genetics*)
 - Shizhong Xu group at U CA Riverside

\[
Y = \beta_0 + \beta_1 (q_1) + \beta_2 (q_1) + \ldots + e \\
\beta_j (q_j) \sim N(0, \sigma_j^2), \sigma_j^2 \sim \text{inverse - chisquare}
\]

epistatic interactions

- model space issues
 - 2-QTL interactions only?
 - Fisher-Cockerham partition vs. tree-structured?
 - general interactions among multiple QTL
- model search issues
 - epistasis between significant QTL
 - check all possible pairs when QTL included?
 - allow higher order epistasis?
 - epistasis with non-significant QTL
 - whole genome paired with each significant QTL?
 - pairs of non-significant QTL?
4. Model Assessment

- balance model fit against model complexity

<table>
<thead>
<tr>
<th>aspect</th>
<th>smaller model</th>
<th>bigger model</th>
</tr>
</thead>
<tbody>
<tr>
<td>model fit</td>
<td>miss key features</td>
<td>fits better</td>
</tr>
<tr>
<td>prediction</td>
<td>may be biased</td>
<td>no bias</td>
</tr>
<tr>
<td>interpretation</td>
<td>easier</td>
<td>more complicated</td>
</tr>
<tr>
<td>parameters</td>
<td>low variance</td>
<td>high variance</td>
</tr>
</tbody>
</table>

- information criteria: penalize L by model size $|H|$
 - compare $IC = -2 \log L(H \mid y) + \text{penalty}(H)$

- Bayes factors: balance posterior by prior choice
 - compare $\text{pr}(\text{data} \mid \text{model} H)$

Bayes factors and BIC

- Bayesian interpretation
 - $\text{pr}(\text{data} \mid \text{model}) = \text{pr}(\text{model} \mid \text{data}) / \text{pr}(\text{model})$
 - $\text{pr}(\text{data} \mid \text{model}) = \text{model posterior} / \text{model prior}$
 - marginal model averaged over all parameters

- Bayes Information Criteria
 - $BIC = 2\log(\text{likelihood}) + \text{d.f.} \ast \log(\text{n.ind})$
 - downweight data likelihood by complexity
 - complexity penalty matches Bayesian idea
Bayes factors and BIC

• Bayes factor (BF) for model comparison
 – ratio of $\text{pr(data} \mid \text{model})$ for 2 models
 – often reported as $2\log(BF)$
 – weak/moderate/strong evidence: 3/10/30

• BIC comparison
 – difference of two BIC values
 – same as LR statistic with penalty when
 • comparing two nested models
 • simple hypotheses (e.g. 1 vs 2 QTL)

• $BF = BIC$ comparison for nested models

marginal LOD or LPD

• compare two architectures at locus
 – with (H_2) or without (H_1) QTL at λ_2
 • preserve model hierarchy (e.g. drop any epistasis with QTL at λ_2)
 – with (H_2) or without (H_1) epistasis at λ_2
 – allow for QTL at all other loci λ_1 in architecture H_1

• use marginal LPD or other diagnostic
 – posterior, Bayes factor, heritability

\[
\text{LOD}(\lambda_1, \lambda_2 \mid H_2) - \text{LOD}(\lambda_1 \mid H_1)
\]

\[
\text{LPD}(\lambda_1, \lambda_2 \mid H_2) - \text{LPD}(\lambda_1 \mid H_1)
\]
5. simulations and data analyses

- revisit 1 QTL simulation
 - refining position by marginal scan
 - single QTL vs. marginal on multi-QTL
 - $2\log(BF)$
 - substitution effect: 1-QTL vs. multi-QTL
- R/qtl hyper dataset (Sugiyama et al. 2001)
 - higher LPD with multi-QTL
 - detecting epistasis and linked QTL
substitution effect: 1 QTL vs. multi-QTL
single QTL effect vs. marginal effect from QTL at λ

scan of marginal Bayes factor

2logBF of phenotype for main

cellmean of phenotype for A+H
hyper data: scanone

LPD of bp for main+epistasis+sum

2log(BF) scan with 50% HPD region

2logBF of bp for main+epistasis+sum

cellmean of bp for A+H
hyper: number of QTL posterior, prior, Bayes factors

pattern of QTL on chromosomes
relative importance of epistasis

2-D plot of $2\log BF$: chr 6 & 15
1-D Slices of 2-D scans: chr 6 & 15

Cockerham epistatic effects

% of samples with each epistatic pair
1-D Slices of 2-D scans: chr 4 & 15

diagnostic summaries
QTL for Bayesian Interval Mapping
R/qtlbim: our software

• publication
 – Yi, Yandell, Churchill, Allison, Eisen, Pomp (2005 *Genetics*)
 – Yi et al. Yandell (in review)
 – CRAN release Fall 2006

• properties
 – new MCMC algorithms
 • Gibbs with loci indicators; no reversible jump
 – epistasis, fixed & random covariates, GxE
 – extensive graphics

R/qtlbim: our software

• R/qtlbim is cross-compatible with R/qtl
• Bayesian module within WinQTLCart
 – WinQTLCart output can be processed using R/bim

• Software history
 – initially designed (Satagopan Yandell 1996)
 – major revision and extension (Gaffney 2001)
 – R/bim to CRAN (Wu, Gaffney, Jin, Yandell 2003)
 – R/qtlbim to CRAN (Yi, Yandell, Mehta, Banerjee, Shriner, Neely, von Smith 2006)
other Bayesian software for QTLs

- R/bim*: Bayesian Interval Mapping
 - Satagopan Yandell (1996; Gaffney 2001) CRAN
 - no epistasis; reversible jump MCMC algorithm
 - version available within WinQTLCart (statgen.ncsu.edu/qtlcart)
- R/qt1*
 - Broman et al. (2003 Bioinformatics) CRAN
 - multiple imputation algorithm for 1, 2 QTL scans & limited mult-QTL fits
- Bayesian QTL / Multimapper
 - Sillanpää Arjas (1998 Genetics) www.rni.helsinki.fi/~mjs
 - no epistasis; introduced posterior intensity for QTLs
 - (no released code)
 - Stephens & Fisch (1998 Biometrics)
 - no epistasis
- R/bqtl
 - C Berry (1998 TR) CRAN
 - no epistasis, Haley Knott approximation

* Jackson Labs (Hao Wu, Randy von Smith) provided crucial technical support

many thanks

Jackson Labs
Gary Churchill
Hao Wu
Randy von Smith

U AL Birmingham
David Allison
Nengjun Yi
Tapan Mehta
Samprit Banerjee

USDA Hatch, NIH/NIDDK (Attie), NIH/R01 (Yi)

October 2006
Animal Genetics © Brian S. Yandell 47