Reversible Jump Details

Brian S. Yandell
www.stat.wisc.edu/~yandell/statgen
University of Wisconsin-Madison
April 2008

reversible jump idea

• expand idea of MCMC to compare models
• adjust for parameters in different models
 – augment smaller model with innovations
 – constraints on larger model
• calculus “change of variables” is key
 – add or drop parameter(s)
 – carefully compute the Jacobian
• consider stepwise regression
 – efficient calculation with Hausholder decomposition
model selection in regression

- known regressors (e.g. markers)
 - models with 1 or 2 regressors
- jump between models
 - centering regressors simplifies calculations

\[m = 1 : Y_i = \mu + a(Q_{i1} - \bar{Q}_1) + e_i \]

\[m = 2 : Y_i = \mu + a_1(Q_{i1} - \bar{Q}_1) + a_2(Q_{i2} - \bar{Q}_2) + e_i \]

slope estimate for 1 regressor

recall least squares estimate of slope
note relation of slope to correlation

\[\hat{a} = \frac{r_{1y} s_y}{s_1}, \quad r_{1y} = \frac{\sum_{i=1}^{n}(Q_{i1} - \bar{Q}_1)(Y_i - \bar{Y})}{s_1 s_y} \]

\[s_1^2 = \frac{\sum_{i=1}^{n}(Q_{i1} - \bar{Q}_1)^2}{n}, \quad s_y^2 = \frac{\sum_{i=1}^{n}(Y_i - \bar{Y})^2}{n} \]
2 correlated regressors

slopes adjusted for other regressors

\[\hat{a}_1 = \frac{(r_{1y} - r_{12}r_{2y})s_y}{s_1} = \hat{a} - \frac{r_{2y}s_y}{s_2}c_{21}, \quad c_{21} = \frac{r_{12}s_2}{s_1} \]

\[\hat{a}_2 = \frac{(r_{2y} - r_{12}r_{1y})s_y}{s_2},
\quad s_{2:1}^2 = \frac{\sum_{i=1}^{n}(Q_{i2} - \overline{Q}_2 - c_{21}(Q_{i1} - \overline{Q}_1))^2}{n} \]

Gibbs Sampler for Model 1

- mean
\[\mu \sim \phi \left(\eta + B_n(\overline{Y} - \eta), B_n \frac{\sigma^2}{n} \right), B_n = \frac{n}{n + \kappa} \]

- slope
\[a \sim \phi \left(B_n \frac{\sum_{i=1}^{n}(Q_{i1} - \overline{Q}_1)(Y_i - \overline{Y})}{ns_1^2}, B_n \frac{\sigma^2}{ns_1^2} \right) \]

- variance
\[\sigma^2 \sim \text{inv-\chi}^2 \left(\frac{\nu \tau^2 + \sum_{i=1}^{n}(Y_i - \overline{Y} - a(Q_{i1} - \overline{Q}_1))^2}{v + n}, \frac{v + n}{v + n} \right) \]
Gibbs Sampler for Model 2

- mean
 \[\mu \sim \phi \left(\eta + B \frac{(\bar{Y} - \eta) \cdot \sigma^2}{n} \right) \]

- slopes
 \[a_2 \sim \phi \left(\frac{\sum_{i=1}^{n} (Q_{2i} - \bar{Q}_2)(Y_i - \bar{Y} - a_1(Q_{1i} - \bar{Q}_1))}{n s_{2i}^2}, \frac{\sigma^2}{n s_{2i}^2} \right) \]

- variance
 \[\sigma^2 \sim \text{inv-}\chi^2 \left(v + \sum_{i=1}^{n} \left(Y_i - \bar{Y} - \sum_{k=1}^{2} a_i(Q_{ki} - \bar{Q}_k) \right)^2 \right) \]

updates from 2->1

- drop 2nd regressor
- adjust other regressor

\[a \to a_1 + a_2 c_{21} \]
\[a_2 \to 0 \]
updates from 1->2

- add 2nd slope, adjusting for collinearity
- adjust other slope & variance

\[z \sim \phi(0,1), \quad J = \frac{\sigma}{s_{21} \sqrt{n}} \]

\[a_2 \rightarrow \hat{a}_2 + z \times J, \quad \hat{a}_2 = \frac{\sum_{i=1}^n (Q_{i2} - \bar{Q}_2)(y_i - \hat{\mu} - \hat{a}_1(Q_{i1} - \bar{Q}_1))}{ns_{21}^2} \]

\[a_1 \rightarrow a - a_2 c_{21} = a - z \times c_{21} J - \hat{a}_2 c_{21} \]

model selection in regression

- known regressors (e.g. markers)
 - models with 1 or 2 regressors
- jump between models
 - augment with new innovation \(z \)

\[m \text{ parameters innovations transformations} \]

\[1 \rightarrow 2 \ (\mu, a, \sigma^2; z) \quad z \sim \phi(0,1) \quad \left\{ \begin{array}{l}
a_2 \rightarrow \hat{a}_2 + z \times J \\
a_1 \rightarrow a - a_2 c_{21} \\
\end{array} \right. \]

\[2 \rightarrow 1 \ (\mu, a_1, a_2, \sigma^2) \quad \left\{ \begin{array}{l}
a \rightarrow a_1 + a_2 c_{21} \\
z \rightarrow 0 \\
\end{array} \right. \]
change of variables

- change variables from model 1 to model 2
- calculus issues for integration
 - need to formally account for change of variables
 - infinitesimal steps in integration (db)
 - involves partial derivatives (next page)

\[
\begin{pmatrix}
a_1 \\
a_2 \\
\end{pmatrix} = \begin{pmatrix}
1 - c_{21} J & - c_{21} \\
0 & J & 1
\end{pmatrix} \times \begin{pmatrix}
a \\
z \\
\hat{a}_2 \\
\end{pmatrix} = g(a; z | Y, Q_1, Q_2)
\]

\[
\int \pi(a_1, a_2 | Y, Q_1, Q_2) da_1 da_2 = \int \pi(a; z | Y, Q_1, Q_2) Jdadz
\]

Jacobian & the calculus

- Jacobian sorts out change of variables
 - careful: easy to mess up here!

\[
g(a; z) = (a_1, a_2), \quad \frac{\partial g(a; z)}{\partial \hat{a} \hat{z}} = \begin{pmatrix}
1 - c_{21} J \\
0 & J
\end{pmatrix}
\]

\[
\det \begin{bmatrix}
1 - c_{21} J \\
0 & J
\end{bmatrix} = |J| = |J \times 0 - (-c_{21} J)| = J
\]

\[
da_1 da_2 = \left| \det \left(\frac{\partial g(\mu, a, \sigma^2; z)}{\partial \hat{a} \hat{z}} \right) \right| da_1 da_2 = Jdadz
\]
geometry of reversible jump

Move Between Models

Reversible Jump Sequence

\[c_{21} = 0.7 \]

\[m = 2 \]

\[m = 1 \]

QT additive reversible jump

a short sequence

first 1000 with \(m < 3 \)
credible set for additive

90% & 95% sets based on normal regression line corresponds to slope of updates

multivariate updating of effects

• more computations when $m > 2$
• avoid matrix inverse
 – Cholesky decomposition of matrix
• simultaneous updates
 – effects at all loci
• accept new locus based on
 – sampled new genos at locus
 – sampled new effects at all loci
• also long-range positions updates
References

• Satagopan, Yandell (1996); Heath (1997); Sillanpää, Arjas (1998); Stephens, Fisch (1998)
• Green (1995); Richardson, Green (1997); Green 2003, 2004