Graphical Diagnostics for Multiple QTL Investigation
Brian S. Yandell
University of Wisconsin-Madison
www.stat.wisc.edu/~yandell/statgen

- studying diabetes with microarrays
- taking a multiple QTL approach
- handling high throughput phenotypes
- designing for expensive phenotypes
Insulin Resistant Mice

Bill Dove

BTBR strain

glucose

insulin

insulin resistance alleles

+ ???

diabetes

obesity

(courtesy AD Attie)

(graphs showing glucose and insulin levels over time for different strains of mice)

(6-9 June 2004 CTC: Yandell © 2004)
1. studying diabetes in an F2

- segregating cross of inbred lines
 - B6.ob x BTBR.ob → F1 → F2
 - selected mice with ob/ob alleles at leptin gene (chr 6)
 - measured and mapped body weight, insulin, glucose at various ages (Stoehr et al. 2000 *Diabetes*)
 - sacrificed at 14 weeks, tissues preserved

- gene expression data
 - Affymetrix microarrays on parental strains, F1
 - (Nadler et al. 2000 *PNAS*; Ntambi et al. 2002 *PNAS*)
 - RT-PCR for a few mRNA on 108 F2 mice liver tissues
 - (Lan et al. 2003 *Diabetes*; Lan et al. 2003 *Genetics*)
 - Affymetrix microarrays on 60 F2 mice liver tissues
 - design (Jin et al. 2004 *Genetics* tent. accept)
 - analysis (work in prep.)
mRNA expression as phenotype:
interval mapping for SCD1 is complicated
Pareto diagram of QTL effects

major QTL on linkage map

- 1
- 2
- 3
- 4
- 5

additive effect

rank order of QTL

0 5 10 15 20 25 30

polygenes

minor QTL

major QTL

(modifiers)
2. taking a multiple QTL approach

• improve statistical power, precision
 – increase number of QTL detected
 – better estimates of loci: less bias, smaller intervals

• improve inference of complex genetic architecture
 – patterns and individual elements of epistasis
 – appropriate estimates of means, variances, covariances
 • asymptotically unbiased, efficient
 – assess relative contributions of different QTL

• improve estimates of genotypic values
 – less bias (more accurate) and smaller variance (more precise)
 – mean squared error = $\text{MSE} = (\text{bias})^2 + \text{variance}$
comparing QTL models

• balance model fit with model "complexity"
 – want best fit (maximum likelihood or posterior)
 – without too complicated a model
• information criteria or Bayes factor quantifies the balance
 – Bayes information criteria (BIC) for classical approach
 – Bayes factors (BF) for Bayesian approach
• find “better” models
 – avoid selection bias (see Broman 2001)
 • QTL of modest effect only detected sometimes
 • genotypic effects biased upwards when detected
 – stochastic QTL detection
 • avoid sharp in/out dichotomy
 • average over better models
QTL Bayes factors

- BF = posterior odds / prior odds
- BF equivalent to BIC
 - simple comparison: 1 vs 2 QTL
 - same as LOD test
 - general comparison of models
 - want Bayes factor >> 1
- $m =$ number of QTL
 - indexes model complexity
 - genetic architecture also important

$$BF_{m,m+1} = \frac{pr(m|\text{data})/pr(m)}{pr(m+1|\text{data})/pr(m+1)}$$
Bayesian model assessment: number of QTL for SCD1

QTL posterior

Bayes factor ratios

weak
moderate
strong
Bayesian LOD and h^2 for SCD1
(summaries from R/bim)
Bayesian model assessment

genetic architecture: chromosome pattern

[Graph showing model indices and posterior probabilities.]
trans-acting QTL for SCD1
multiple QTL Bayesian model averaging

hong7scd.bim summaries with pattern \geq ch2, ch5, ch9

additive QTL?

dominant QTL?
2-D scan: assumes only 2 QTL
(scantwo with HK method, from R/qtl)
sub-peaks can be easily overlooked
3. handling high throughput dilemma

• want to focus on gene expression network
 – ideally capture functional group in a few dimensions
 – allow for complicated genetic architecture
• may have multiple loci influencing expression
 – quick interval mapping assessment may be misleading
 – many genes with epistasis affect coordinated fashion?
• focus gene mapping using dimension reduction
 – initial screening using EB arrays to 2500+ mRNA
 – identify 85 functional groups from 1500+ mRNA
 – model selection for groups with stronger PC signals
hierarchical model for expression phenotypes
(EB arrays: Christina Kendziorski)

\[Y_{QQ} \mid G_{QQ} \sim f(\cdot \mid G_{QQ}) \]

\[Y_{Qq} \mid G_{Qq} \sim f(\cdot \mid G_{Qq}) \]

\[Y_{qq} \mid G_{qq} \sim f(\cdot \mid G_{qq}) \]

mRNA phenotype models given genotypic mean \(G_Q \)

common prior on \(G_Q \) across all mRNA
(use empirical Bayes to estimate prior)
For every mRNA transcript, two possible patterns (DE, EE)

- **no QTL present**

 \[EE: G_{QQ} = G_{Qq} \]

 \[f(Y|EE) \]

- **QTL present**

 \[DE: G_{QQ} \neq G_{Qq} \]

 \[f(Y|DE) \]

\[
\text{odds} = \frac{P(DE|Y) \ f(Y \ | \ DE) \ P(DE)}{P(EE|Y) \ f(Y \ | \ EE) \ P(EE)}
\]

Empirical Bayes methods (EB arrays) make use all of the data to make mRNA-specific inferences.
hierarchical model
across expression phenotypes
(Christina Kendziorski)

• vector of mRNA phenotypes organized by QTL genotype
 \[Y = (Y_1, \ldots, Y_n) = (Y_{QQ}, Y_{Qq}, Y_{qq}) \]
 \[Y \sim f(Y | \mu) \quad \text{if no QTL present} \]
 \[Y \sim f(Y_{QQ}|G_{QQ}) f(Y_{Qq}|G_{Qq}) f(Y_{qq}|G_{qq}) \quad \text{if QTL present} \]

• marginal for phenotype across possible genotypic means
 \[Y \sim f_0(Y) = \int f(\mu) f(Y|\mu) \, d\mu \quad \text{if no QTL present} \]
 \[Y \sim f_1(Y) = f_0(Y_{QQ}) f_0(Y_{Qq}) f_0(Y_{qq}) \quad \text{if QTL present} \]

• mixture across possible patterns of expression
 \[Y \sim p_0 f_0(Y) + p_1 f_1(Y) \]
 \[p_1 = \text{prior probability of QTL present} \]
 (could allow more possibilities—gene action, multiple QTL)
PC across microarray functional groups

Affy chips on 60 mice
~40,000 mRNA

2500+ mRNA show DE
(via EB arrays with
marker regression)

1500+ organized in
85 functional groups
2-35 mRNA / group

which are interesting?
examine PC1, PC2

circle size = # unique mRNA
PC for two correlated mRNA
focus on translation machinery (EIF)
how well does PC1 do?

lod peaks for 2 QTL at best pair of chr
data (red) vs. 500 permutations (boxplots)

blue bars at 1%, 5%; width proportional to group size
PC and DA for 1500+ mRNA traits

PC shows little relation to genotypes

DA based on best fit with marker pair D4Mit17 and D15Mit63
2-marker regression for DA1 on chr 4 & 15 across 1500+ mRNA traits

(20% missing genotypes)
DA for selected chromosomes (mask pairs below p-value = 10^{-8})
4. designing for expensive phenotypes (Jin et al. 2004)

- microarray analysis \(\sim \$1000 \) per mouse
 - could only afford to assay 60 of 108 in panel
 - wanted to preserve power to detect QTL

- selective phenotyping
 - identify set of key markers
 - framework map across subset of genome
 - or key regions identified in previous studies
 - chr 2, 4, 5, 9, 16, 19 for physiological traits in diabetes/obesity study
 - genotype all individuals in panel at markers
 - select subset for phenotyping based on genotype
 - interval map with no bias
simulated LOD profiles with 3 QTL on 2 chr
comparison of different selection methods
improved power over random sample

up to 80% sensitivity of full panel

best with few markers near QTL

genome-wide selection better than random sample

sensitivity = pr(detect QTL | QTL is real)
is this relevant to large QTL studies?

• selectively phenotype 50-75% of F2 mapping panel
 – may capture most effects
 • 1:2:1 F2 allele ratio of genotypes A:H:B
 • 1:0:1 best for additive effects (50%)
 • 1:1:1 best for general effects (75%)
 – with little loss of power
 – and dramatic reduction in cost

• two-stage selective phenotyping?
 – genotype & phenotype subset of 100-300
 • could selectively phenotype using whole genome
 – QTL map to identify key genomic regions
 – selectively phenotype subset using key regions
contact information & resources

- email: byandell@wisc.edu
- web: www.stat.wisc.edu/~yandell/statgen
 - QTL & microarray resources
 - references, software, people
- R/bim freely available
 - download R from cran.r-project.org for your system (Mac, Windows, Linux)
 - Packages... Install package(s) from CRAN... qtl
 - Packages... Install package(s) from Bioconductor... bim
- thanks:
 - students: Chunfang “Amy” Jin, Fei Zou, Pat Gaffney, Jaya Satagopan, Meng Chen (UW Statistics)
 - faculty/staff: Alan Attie, Hong Lan (UW Biochemistry); Michael Newton, Christina Kendziorski, Jason Fine (UW Biostatistics); Gary Churchill, Hao Wu (Jackson Labs)
 - USDA/CSREES, NIH/NIDDK