Causal Network Models for Correlated Quantitative Traits

Elias Chaibub Neto & Brian S. Yandell

UW-Madison

September 2010
outline

• Correlation and causation
• Correlated traits in organized groups
 – modules and hotspots
 – Genetic vs. environmental correlation
• QTL-driven directed graphs
 – Assume QTLs known, causal network unknown
• Causal graphical models in systems genetics
 – QTLs unknown, causal network unknown
• Scaling up to larger networks
 – Searching the space of possible networks
 – Dealing with computation
“The old view of cause and effect ... could only fail; things are not in our experience either independent or causative. All classes of phenomena are linked together, and the problem in each case is how close is the degree of association.”

Karl Pearson (1911)

The Grammar of Science
“The ideal ... is the study of the direct influence of one condition on another ...[when] all other possible causes of variation are eliminated.... The degree of correlation between two variables ... [includes] all connecting paths of influence.... [Path coefficients combine] knowledge of ... correlation among the variables in a system with ... causal relations.

Sewall Wright (1921)
Correlation and causation. *J Agric Res*
"Causality is not mystical or metaphysical. It can be understood in terms of simple processes, and it can be expressed in a friendly mathematical language, ready for computer analysis."

Judea Pearl (2000)

Causality: Models, Reasoning and Inference
problems and controversies

• Correlation does not imply causation.
 – Common knowledge in field of statistics.

• Steady state (static) measures may not reflect dynamic processes.

• Population-based estimates (from a sample of individuals) may not reflect processes within an individual.
randomization and causation

• RA Fisher (1926) *Design of Experiments*
• control other known factors
• randomize assignment of treatment
 – no causal effect of individuals on treatment
 – no common cause of treatment and outcome
 – reduce chance correlation with unknown factors
• conclude outcome differences are caused by (due to) treatment
correlation and causation

• temporal aspect: cause before reaction
 – genotype (usually) drives phenotype
 – phenotypes in time series
 – *but* time order is not enough

• axioms of causality
 – transitive: if A → B, B → C, then A → C
 – local (Markov): events have only proximate causes
 – asymmetric: if A → B, then B cannot → A

• Shipley (2000) *Cause and Correlation in Biology*
causation casts probability shadows

- **causal relationship**
 - $Y_1 \rightarrow Y_2 \rightarrow Y_3$

- **conditional probability**
 - $\Pr(Y_1) \ast \Pr(Y_2 \mid Y_1) \ast \Pr(Y_3 \mid Y_2)$

- **linear model**
 - $Y_1 = \mu_1 + e$
 - $Y_2 = \mu_2 + \beta_1 \ast Y_2 + e$

- **adding in QTL**: $Q_1 \rightarrow Y_1 \rightarrow Y_2$
 - $Y_2 = \mu_2 + \beta_1 \ast Y_1 + \beta_2 \ast Q_1 + e$
organizing correlated traits

• functional grouping from prior studies
 – GO, KEGG; KO panels; TF and PPI databases

• co-expression modules (Horvath talk on Friday)

• eQTL hotspots (here briefly)

• traits used as covariates for other traits
 – does one trait essentially explain QTL of another?

• causal networks (here and Horvath talk)
 – modules of highly correlated traits
Correlated traits in a hotspot

• why are traits correlated?
 – Environmental: hotspot is spurious
 – One causal driver at locus
 • Traits organized in causal cascade
 – Multiple causal drivers at locus
 • Several closely linked driving genes
 • Correlation due to close linkage
 • Separate networks are not causally related
one causal driver

gene

gene product

downstream traits

chromosome
two linked causal drivers
pathways independent given drivers
hotspots of correlated traits

• multiple correlated traits map to same locus
 – is this a real hotspot, or an artifact of correlation?
 – use QTL permutation across traits

• references
hotspot permutation test
(Breitling et al. Jansen 2008 PLoS Genetics)

• for original dataset and each permuted set:
 – Set single trait LOD threshold T
 • Could use Churchill-Doerge (1994) permutations
 – Count number of traits (N) with LOD above T
 • Do this at every marker (or pseudomarker)
 • Probably want to smooth counts somewhat

• find count with at most 5% of permuted sets above (critical value) as count threshold

• conclude original counts above threshold are real
permutation across traits
(Breitling et al. Jansen 2008 *PLoS Genetics*)

right way

wrong way

break correlation between markers and traits

but

preserve correlation among traits
quality vs. quantity in hotspots (Chaibub Neto et al. in review)

• detecting single trait with very large LOD
 – control FWER across genome
 – control FWER across all traits

• finding small “hotspots” with significant traits
 – all with large LODs
 – could indicate a strongly disrupted signal pathway

• sliding LOD threshold across hotspot sizes
BxH ApoE-/- chr 2: hotspot

x% threshold on number of traits
causal model selection choices
in context of larger, unknown network

focal trait \rightarrow target trait
causal

focal trait \rightarrow target trait
reactive

focal trait \leftrightarrow target trait
correlated

focal trait \leftrightarrow target trait
uncorrelated

Jax SysGen: Yandell © 2010
causal architecture

• how many traits are up/downstream of a trait?
 – focal trait causal to downstream target traits
 – record count at Mb position of focal gene
 – red = downstream, blue = upstream

• what set of target traits to consider?
 – all traits
 – traits in module or hotspot
causal architecture references

• BIC: Schadt et al. (2005)
• CMST: Chaibub Neto et al. (2010)
 – Chapter in thesis to be submitted
• CIT: Millstein et al. (2009)
Liver expression data in a mice intercross.

3,421 transcripts and 1,065 markers.

261 transcripts physically located on chr 2.
Analysis restricted to 78 traits composing a hotspot around 54.2Mb.

This collection of traits enriches for “immune system process”.

Pscdbp, the local trait at 58.4Mb, is a transcription factor.
QTL-driven directed graphs

• given genetic architecture (QTLs), what causal network structure is supported by data?
• R/qdg available at www.github.org/byandell
• references
partial correlation (PC) skeleton

true graph

1st order partial correlations

drop edge

correlations

y_2 d-separates y_1 from y_3

$1 \perp 3 \mid 2$
partial correlation (PC) skeleton

true graph

1st order partial correlations

2nd order partial correlations

drop edge

(y₂, y₅) d-separate y₁ from y₄

1 ⊥ 4 | 2, 5

Jax SysGen: Yandell © 2010
edge direction: which is causal?

\[
M_1: \quad y_1 \rightarrow y_2 \quad \quad M_2: \quad y_1 \leftarrow y_2
\]

the above models are likelihood equivalent,

\[
f(y_1)f(y_2 \mid y_1) = f(y_1, y_2) = f(y_2)f(y_1 \mid y_2)
\]

\[
q_{11} \quad q_{21} \quad q_{11} \quad q_{21}
\]

\[
\vdots \quad \vdots \quad \vdots \quad \vdots
\]

\[
q_{1k} \quad q_{2l} \quad q_{1k} \quad q_{2l}
\]

not likelihood equivalent due to QTL

\[
f(q_1)f(y_1 \mid q_1)f(y_2 \mid y_1, q_2)f(q_2)
\]

\[
\neq
\]

\[
f(q_2)f(y_2 \mid q_2)f(y_1 \mid y_2, q_1)f(q_1)
\]
test edge direction using LOD score

\[
LOD = \log_{10} \left\{ \frac{\prod_{i=1}^{n} f(y_{1i} \mid q_{1i}) f(y_{2i} \mid y_{1i}, q_{2i})}{\prod_{i=1}^{n} f(y_{2i} \mid q_{2i}) f(y_{1i} \mid y_{2i}, q_{1i})} \right\}
\]

not likelihood equivalent because

\[
f(q_1)f(y_1 \mid q_1)f(y_2 \mid y_1, q_2)f(q_2) \neq f(q_2)f(y_2 \mid q_2)f(y_1 \mid y_2, q_1)f(q_1)
\]
reverse edges using QTLs
We constructed a network from metabolites and transcripts involved in liver metabolism.

We validated this network with \textit{in vitro} experiments (Ferrara et al 2008). Four out of six predictions were confirmed.
causal graphical models in systems genetics

• What if genetic architecture and causal network are unknown?
 – jointly infer both using iteration

• R/qtlnet available from www.github.org/byandell

• Related references
Basic idea of QTLnet

- iterate between finding QTL and network
- genetic architecture given causal network
 - trait \(y \) depends on parents \(\text{pa}(y) \) in network
 - QTL for \(y \) found conditional on \(\text{pa}(y) \)
 - Parents \(\text{pa}(y) \) are interacting covariates for QTL scan
- causal network given genetic architecture
 - build (adjust) causal network given QTL
missing data method: MCMC

- known phenotypes Y, genotypes Q
- unknown graph G
- want to study $\Pr(Y \mid G, Q)$
- break down in terms of individual edges
 - $\Pr(Y \mid G, Q) = \text{sum of } \Pr(Y_i \mid \text{pa}(Y_i), Q)$
- sample new values for individual edges
 - given current value of all other edges
- repeat many times and average results
MCMC steps for QTLnet

• propose new causal network G
 – with simple changes to current network:
 – change edge direction
 – add or drop edge

• find any new genetic architectures Q
 – update phenotypes when parents $\text{pa}(y)$ change in new G

• compute likelihood for new network and QTL
 – $\Pr(Y \mid G, Q)$

• accept or reject new network and QTL
 – usual Metropolis-Hastings idea
BxH ApoE-/- chr 2: causal architecture

12 causal calls

hotspot
BxH ApoE-/- causal network for transcription factor Pscdbp

causal trait

work of Elias Chaibub Neto

Jax SysGen: Yandell © 2010
scaling up to larger networks

• reduce complexity of graphs
 – use prior knowledge to constrain valid edges
 – restrict number of causal edges into each node

• make task parallel: run on many machines
 – pre-compute conditional probabilities
 – run multiple parallel Markov chains

• rethink approach
 – LASSO, sparse PLS, other optimization methods
graph complexity with node parents
how many node parents?

• how many edges per node?
 – few parents directly affect one node
 – many offspring affected by one node

<p>| BIC computations by maximum number of parents |</p>
<table>
<thead>
<tr>
<th>#</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1,300</td>
<td>2,560</td>
<td>3,820</td>
<td>4,660</td>
<td>5,120</td>
</tr>
<tr>
<td>20</td>
<td>23,200</td>
<td>100,720</td>
<td>333,280</td>
<td>875,920</td>
<td>10.5M</td>
</tr>
<tr>
<td>30</td>
<td>122,700</td>
<td>835,230</td>
<td>4.40M</td>
<td>18.6M</td>
<td>16.1B</td>
</tr>
<tr>
<td>40</td>
<td>396,800</td>
<td>3.69M</td>
<td>26.7M</td>
<td>157M</td>
<td>22.0T</td>
</tr>
<tr>
<td>50</td>
<td>982,500</td>
<td>11.6M</td>
<td>107M</td>
<td>806M</td>
<td>28.1Q</td>
</tr>
</tbody>
</table>
BIC computation

• each trait (node) has a linear model
 – $Y \sim QTL + \text{pa}(Y) + \text{other covariates}$

• BIC = LOD – penalty
 – BIC balances data fit to model complexity
 – penalty increases with number of parents

• limit complexity by allowing only 3-4 parents
parallel phases for larger projects

Phase 1: identify parents

Phase 2: compute BICs

Phase 3: store BICs

Phase 4: run Markov chains

Phase 5: combine results
parallel implementation

• R/qtlnet available at www.github.org/byandell
• Condor cluster: chtc.cs.wisc.edu
 – System Of Automated Runs (SOAR)
 • ~2000 cores in pool shared by many scientists
 • automated run of new jobs placed in project
BIC samples for 100 MCMC runs

- Single edge updates
- Burnin

100,000 runs
neighborhood edge reversal

select edge
drop edge
identify parents

orphan nodes
reverse edge
find new parents

neighborhood for reversals only

burnin

BIC samples for 100 MCMC runs

Sample Index

100,000 runs
best run not well matched by other runs
new update scheme
MCMC proposals

1. decide to update edge (2) or node (3)

2. pick edge at random
drop or reverse edge
update node parents

3. pick node at random
keep or drop offspring edges
update node parents
BIC samples for 100 MCMC runs

neighborhood for edges and nodes

burnin

100,000 runs
how to use functional information?

• functional grouping from prior studies
 – may or may not indicate direction
 – gene ontology (GO), KEGG
 – knockout (KO) panels
 – protein-protein interaction (PPI) database
 – transcription factor (TF) database

• methods using only this information

• priors for QTL-driven causal networks
 – more weight to local (cis) QTLs?
modeling biological knowledge

• infer graph G from biological knowledge B
 $- \Pr(G \mid B, W) = \exp(-W \cdot |B-G|) / \text{constant}$
 $- B =$ prob of edge given TF, PPI, KO database
 \cdot derived using previous experiments, papers, etc.
 $- G = 0\text{-}1$ matrix for graph with directed edges
• $W =$ inferred weight of biological knowledge
 $- W=0$: no influence; W large: assumed correct
• Werhli and Husmeier (2007) *J Bioinfo Comput Biol*
combining eQTL and bio knowledge

• probability for graph G and bio-weights W
 – given phenotypes Y, genotypes X, bio info B
 $\Pr(G, W \mid Y, Q, B) = \Pr(Y \mid G, Q)\Pr(G \mid B, W)\Pr(W \mid B)$
 – $\Pr(Y \mid G, Q)$ is genetic architecture (QTLs)
 • using parent nodes of each trait as covariates
 – $\Pr(G \mid B, W)$ is relation of graph to biological info
 • see previous slides
 • put priors on QTL based on proximity, biological info
future work

• improve algorithm efficiency
 – Ramp up to 100s of phenotypes

• develop visual diagnostics to explore estimates

• incorporate latent variables
 – Aten et al. Horvath (2008 BMC Sys Biol)

• extend to outbred crosses, humans