1. why study multiple traits together?
 - avoid reductionist approach to biology
 - address physiological/biochemical mechanisms
 - Schmalhausen (1942); Falconer (1952)
 - separate close linkage from pleiotropy
 - 1 locus or 2 linked loci?
 - identify epistatic interaction or canalization
 - influence of genetic background
 - establish QTL x environment interactions
 - decompose genetic correlation among traits
 - increase power to detect QTL
Type 2 Diabetes Mellitus

![Diagram of glucose metabolism in Type 2 Diabetes Mellitus](image)

- **Insulin Requirement**
- **Insulin Resistance**
- **Insulin Production**
- **Blood Glucose**
- **Insulin Resistance**
- **Insulin Production**

from Unger & Orci FASEB J. (2001) 15,312
studying diabetes in an F2

- segregating cross of inbred lines
 - B6.ob x BTBR.ob → F1 → F2
 - selected mice with ob/ob alleles at leptin gene (chr 6)
 - measured and mapped body weight, insulin, glucose at various ages (Stoehr et al. 2000 *Diabetes*)
 - sacrificed at 14 weeks, tissues preserved

- gene expression data
 - Affymetrix microarrays on parental strains, F1
 - (Nadler et al. 2000 *PNAS*; Ntambi et al. 2002 *PNAS*)
 - RT-PCR for a few mRNA on 108 F2 mice liver tissues
 - (Lan et al. 2003 *Diabetes*; Lan et al. 2003 *Genetics*)
 - Affymetrix microarrays on 60 F2 mice liver tissues
 - design (Jin et al. 2004 *Genetics* tent. accept)
 - analysis (work in prep.)
why map gene expression as a quantitative trait?

- *cis-* or *trans-*action?
 - does gene control its own expression?
 - or is it influenced by one or more other genomic regions?
 - evidence for both modes (Brem et al. 2002 Science)

- simultaneously measure all mRNA in a tissue
 - ~5,000 mRNA active per cell on average
 - ~30,000 genes in genome
 - use genetic recombination as natural experiment

- mechanics of gene expression mapping
 - measure gene expression in intercross (F2) population
 - map expression as quantitative trait (QTL)
 - adjust for multiple testing

LOD map for PDI:

*cis-*regulation (Lan et al. 2003)
mapping microarray data

- single gene expression as trait (single QTL)
 - Dumas et al. (2000 *J Hypertens*)

- overview, wish lists
 - Jansen, Nap (2001 *Trends Gen*); Cheung, Spielman (2002); Doerge (2002 *Nat Rev Gen*); Bochner (2003 *Nat Rev Gen*)

- microarray scan via 1 QTL interval mapping
 - Brem et al. (2002 *Science*); Schadt et al. (2003 *Nature*); Yvert et al. (2003 *Nat Gen*)
 - found putative cis- and trans- acting genes

- multivariate and multiple QTL approach
 - Lan et al. (2003 *Genetics*)
2. design issues for expensive phenotypes
(thanks to CF “Amy” Jin)

- microarray analysis ~ $1000 per mouse
 - can only afford to assay 60 of 108 in panel
 - wish to not lose much power to detect QTL

- selective phenotyping
 - genotype all individuals in panel
 - select subset for phenotyping
 - previous studies can provide guide

selective phenotyping

- emphasize additive effects in F2
 - F2 design: 1QQ:2Qq:1qq
 - best design for additive only: 1QQ:1Qq
 - drop heterozygotes (Qq)
 - reduce sample size by half with no power loss

- emphasize general effects in F2
 - best design: 1QQ:1Qq:1qq
 - drop half of heterozygotes (25% reduction)

- multiple loci
 - same idea but care is needed
 - drop 7/16 of sample for two unlinked loci
is this relevant to large QTL studies?

• why not phenotype entire mapping panel?
 – selectively phenotype subset of 50-67%
 – may capture most effects
 – with little loss of power
• two-stage selective phenotyping?
 – genotype & phenotype subset of 100-300
 • could selectively phenotype using whole genome
 – QTL map to identify key genomic regions
 – selectively phenotype subset using key regions

3. why are traits correlated?

• environmental correlation
 – non-genetic, controllable by design
 – historical correlation (learned behavior)
 – physiological correlation (same body)
• genetic correlation
 – pleiotropy
 • one gene, many functions
 • common biochemical pathway, splicing variants
 – close linkage
 • two tightly linked genes
 • genotypes \(Q \) are collinear
interplay of pleiotropy & correlation

pleiotropy only

Korol et al. (2001)

3 correlated traits
(Jiang Zeng 1995)

ellipses centered on genotypic value
width for nominal frequency
main axis angle environmental correlation
3 QTL, F2
27 genotypes

note signs of
genetic and
environmental correlation

\(\rho_P = 0.06, \rho_G = 0.68, \rho_E = -0.2 \)

\(\rho_P = 0.3, \rho_G = 0.54, \rho_E = 0.2 \)

\(\rho_P = -0.07, \rho_G = -0.22, \rho_E = 0 \)
pleiotropy or close linkage?

2 traits, 2 qtl/trait
pleiotropy @ 54cM
linkage @ 114,128cM

4. modern high throughput biology

- measuring the molecular dogma of biology
 - DNA → RNA → protein → metabolites
 - measured one at a time only a few years ago
- massive array of measurements on whole systems (“omics”)
 - thousands measured per individual (experimental unit)
 - all (or most) components of system measured simultaneously
 - whole genome of DNA: genes, promoters, etc.
 - all expressed RNA in a tissue or cell
 - all proteins
 - all metabolites
- systems biology: focus on network interconnections
 - chains of behavior in ecological community
 - underlying biochemical pathways
- genetics as one experimental tool
 - perturb system by creating new experimental cross
 - each individual is a unique mosaic
coordinated expression in mouse genome (Schadt et al. 2003)

expression pleiotropy in yeast genome (Brem et al. 2002)

finding heritable traits (from Christina Kendziorski)

- reduce 30,000 traits to 300-3,000 heritable traits

- probability a trait is heritable
 \[\text{Pr}(H|Y,Q) = \frac{\text{Pr}(Y|Q,H) \text{Pr}(H|Q)}{\text{Pr}(Y|Q)} \]
 \[\text{Pr}(Y|Q) = \text{Pr}(Y|Q,H) \text{Pr}(H|Q) + \text{Pr}(Y|Q, \text{not } H) \text{Pr}(\text{not } H|Q) \]

- phenotype averaged over genotypic mean \(\mu \)
 \[\text{Pr}(Y|Q, \text{not } H) = f_0(Y) = \int f(Y|G) \text{Pr}(G) \text{d}G \]
 if not \(H \)
 \[\text{Pr}(Y|Q, H) = f_1(Y|Q) = \prod_q f_0(Y_q) \]
 if heritable

\[Y_q = \{Y_i | Q_i = q\} = \text{trait values with genotype } Q=q \]
hierarchical model for expression phenotypes
(EB arrays: Christina Kendziorski)

mRNA phenotype models given genotypic mean G_q

common prior on G_q across all mRNA
(use empirical Bayes to estimate prior)

expression meta-traits: pleiotropy

- reduce 3,000 heritable traits to 3 meta-traits(!)
- what are expression meta-traits?
 - pleiotropy: a few genes can affect many traits
 - transcription factors, regulators
 - weighted averages: $Z = YW$
 - principle components, discriminant analysis
- infer genetic architecture of meta-traits
 - model selection issues are subtle
 - missing data, non-linear search
 - what is the best criterion for model selection?
 - time consuming process
 - heavy computation load for many traits
 - subjective judgement on what is best
PC for two correlated mRNA

Affy chips on 60 mice
~40,000 mRNA
2500+ mRNA show DE
(via EB arrays with marker regression)
1500+ organized in 85 functional groups
2-35 mRNA / group
which are interesting?
examine PC1, PC2
circle size = # unique mRNA

PC across microarray functional groups

Traits
NCSU QTL II: Yandell © 2005
84 PC meta-traits by functional group
focus on 2 interesting groups

red lines: peak
for PC meta-trait
black/blue: peaks
for mRNA traits
arrows: cis-action?
interaction plots for DA meta-traits

DA for all pairs of markers:
separate 9 genotypes based on markers
(a) same locus pair found with PC meta-traits
(b) Chr 2 region interesting from biochemistry (Jessica Byers)
(c) Chr 5 & Chr 9 identified as important for insulin, SCD
comparison of PC and DA meta-traitson 1500+ mRNA traits

- genotypes from Chr 4/Chr 15 locus pair (circle=centroid)
- PC captures spread without genotype
- DA creates best separation by genotype

relating meta-traits to mRNA traits

- DA meta-trait standard units
- SCD trait log2 expression
DA: a cautionary tale
(184 mRNA with |cor| > 0.5; mouse 13 drives heritability)

building graphical models

- infer genetic architecture of meta-trait
 \[E(Z \mid Q, M) = \mu_q = \beta_0 + \sum_{\{q \text{ in } M\}} \beta_{qk} \]
- find mRNA traits correlated with meta-trait
 \[Z \approx YW \text{ for modest number of traits } Y \]
- extend meta-trait genetic architecture
 - \(M = \text{genetic architecture for } Y \)
 - expect subset of QTL to affect each mRNA
 - may be additional QTL for some mRNA
posterior for graphical models

• posterior for graph given multivariate trait & architecture
 \[\text{pr}(G | \bar{Y}, Q, M) = \text{pr}(\bar{Y} | Q, G) \text{pr}(G | M) / \text{pr}(\bar{Y} | Q) \]
 \[-\text{pr}(G | M) = \text{prior on valid graphs given architecture} \]

• multivariate phenotype averaged over genotypic mean \(\mu \)
 \[\text{pr}(Y | Q, G) = f_1(Y | Q, G) = \prod_q f_0(Y_q | G) \]
 \[f_0(Y_q | G) = \int f(Y_q | \mu, G) \text{pr}(\mu) \, d\mu \]

• graphical model \(G \) implies correlation structure on \(Y \)

• genotype mean prior assumed independent across traits
 \[\text{pr}(\mu) = \prod_t \text{pr}(\mu_t) \]

from graphical models to pathways

• build graphical models
 QTL \(\rightarrow \) RNA1 \(\rightarrow \) RNA2
 – class of possible models
 – best model = putative biochemical pathway

• parallel biochemical investigation
 – candidate genes in QTL regions
 – laboratory experiments on pathway components
graphical models (with Elias Chaibub)

\[f_1(Y \mid Q, G=g) = f_1(Y_1 \mid Q) \cdot f_1(Y_2 \mid Q, Y_1) \]

observable

trans-action

unobservable

meta-trait

cis-action?

observable

QTL

DNA

RNA

protein

QTL

D1

R1

P1

D2

R2

P2

summary

• expression QTL are complicated
 – need to consider multiple interacting QTL
• coherent approach for high-throughput traits
 – identify heritable traits
 – dimension reduction to meta-traits
 – mapping genetic architecture
 – extension via graphical models to networks
• many open questions
 – model selection
 – computation efficiency
 – inference on graphical models