Multiple Traits & Microarrays

1. why study multiple traits together? 2-10
 – diabetes case study

2. design issues 11-13
 – selective phenotyping

3. why are traits correlated? 14-17
 – close linkage or pleiotropy?

4. modern high throughput 18-31
 – principal components & discriminant analysis

5. graphical models 32-36
 – building causal biochemical networks
1. why study multiple traits together?

• avoid reductionist approach to biology
 – address physiological/biochemical mechanisms
 – Schmalhausen (1942); Falconer (1952)

• separate close linkage from pleiotropy
 – 1 locus or 2 linked loci?

• identify epistatic interaction or canalization
 – influence of genetic background

• establish QTL x environment interactions

• decompose genetic correlation among traits

• increase power to detect QTL
Insulin Requirement

Insulin Resistance

Insulin Production

Lean

Obese

Prediabetes

Diabetes

Blood Glucose

Insulin Resistance

Insulin Production

Lean

Obese

decompensation

from Unger & Orci FASEB J. (2001) 15,312
Insulin Resistant Mice

Bill Dove

BTBR strain

insulin resistance alleles

+ ??? → diabetes

obesity

(courtesy AD Attie)

glucose

insulin

Graphs showing glucose and insulin levels over time for different strains.

Traits NCSU QTL II: Yandell © 2005
studying diabetes in an F2

• segregating cross of inbred lines
 – B6.ob x BTBR.ob → F1 → F2
 – selected mice with ob/ob alleles at leptin gene (chr 6)
 – measured and mapped body weight, insulin, glucose at various ages (Stoehr et al. 2000 *Diabetes*)
 – sacrificed at 14 weeks, tissues preserved

• gene expression data
 – Affymetrix microarrays on parental strains, F1
 • (Nadler et al. 2000 *PNAS*; Ntambi et al. 2002 *PNAS*)
 – RT-PCR for a few mRNA on 108 F2 mice liver tissues
 • (Lan et al. 2003 *Diabetes*; Lan et al. 2003 *Genetics*)
 – Affymetrix microarrays on 60 F2 mice liver tissues
 • design (Jin et al. 2004 *Genetics* tent. accept)
 • analysis (work in prep.)
why map gene expression as a quantitative trait?

• *cis*- or *trans*-action?
 – does gene control its own expression?
 – or is it influenced by one or more other genomic regions?
 – evidence for both modes (Brem et al. 2002 Science)

• simultaneously measure all mRNA in a tissue
 – ~5,000 mRNA active per cell on average
 – ~30,000 genes in genome
 – use genetic recombination as natural experiment

• mechanics of gene expression mapping
 – measure gene expression in intercross (F2) population
 – map expression as quantitative trait (QTL)
 – adjust for multiple testing
LOD map for PDI:

cis-regulation (Lan et al. 2003)
mapping microarray data

• single gene expression as trait (single QTL)
 – Dumas et al. (2000 J Hypertens)

• overview, wish lists
 – Jansen, Nap (2001 Trends Gen); Cheung, Spielman (2002); Doerge (2002 Nat Rev Gen); Bochner (2003 Nat Rev Gen)

• microarray scan via 1 QTL interval mapping
 – Brem et al. (2002 Science); Schadt et al. (2003 Nature); Yvert et al. (2003 Nat Gen)
 – found putative cis- and trans- acting genes

• multivariate and multiple QTL approach
 – Lan et al. (2003 Genetics)
2. design issues for expensive phenotypes (thanks to CF “Amy” Jin)

• microarray analysis ~ $1000 per mouse
 – can only afford to assay 60 of 108 in panel
 – wish to not lose much power to detect QTL

• selective phenotyping
 – genotype all individuals in panel
 – select subset for phenotyping
 – previous studies can provide guide
selective phenotyping

• emphasize additive effects in F2
 – F2 design: 1QQ:2Qq:1qq
 – best design for additive only: 1QQ:1Qq
 – drop heterozygotes (Qq)
 – reduce sample size by half with no power loss

• emphasize general effects in F2
 – best design: 1QQ:1Qq:1qq
 – drop half of heterozygotes (25% reduction)

• multiple loci
 – same idea but care is needed
 – drop 7/16 of sample for two unlinked loci
is this relevant to large QTL studies?

• why not phenotype entire mapping panel?
 – selectively phenotype subset of 50-67%
 – may capture most effects
 – with little loss of power

• two-stage selective phenotyping?
 – genotype & phenotype subset of 100-300
 • could selectively phenotype using whole genome
 – QTL map to identify key genomic regions
 – selectively phenotype subset using key regions
3. why are traits correlated?

- environmental correlation
 - non-genetic, controllable by design
 - historical correlation (learned behavior)
 - physiological correlation (same body)

- genetic correlation
 - pleiotropy
 - one gene, many functions
 - common biochemical pathway, splicing variants
 - close linkage
 - two tightly linked genes
 - genotypes \(Q \) are collinear
interplay of pleiotropy & correlation

pleiotropy only

Korol et al. (2001)

correlation only

both
3 correlated traits (Jiang Zeng 1995)

ellipses centered on genotypic value width for nominal frequency
main axis angle environmental correlation
3 QTL, F2
27 genotypes

note signs of genetic and environmental correlation

ρ_P = 0.06, ρ_G = 0.68, ρ_E = -0.2
ρ_P = 0.3, ρ_G = 0.54, ρ_E = 0.2
ρ_P = -0.07, ρ_G = -0.22, ρ_E = 0
pleiotropy or close linkage?

2 traits, 2 qtl/trait
pleiotropy @ 54cM
linkage @ 114, 128cM
4. modern high throughput biology

- measuring the molecular dogma of biology
 - DNA → RNA → protein → metabolites
 - measured one at a time only a few years ago
- massive array of measurements on whole systems ("omics")
 - thousands measured per individual (experimental unit)
 - all (or most) components of system measured simultaneously
 - whole genome of DNA: genes, promoters, etc.
 - all expressed RNA in a tissue or cell
 - all proteins
 - all metabolites
- systems biology: focus on network interconnections
 - chains of behavior in ecological community
 - underlying biochemical pathways
- genetics as one experimental tool
 - perturb system by creating new experimental cross
 - each individual is a unique mosaic
Traits

expression

pleiotropy

in yeast genome

(Brem et al. 2002)

coordinated expression in mouse genome (Schadt et al. 2003)
finding heritable traits
(from Christina Kendziorski)

• reduce 30,000 traits to 300-3,000 heritable traits

• probability a trait is heritable
 \[\text{pr}(H|Y,Q) = \frac{\text{pr}(Y|Q,H) \text{ pr}(H|Q)}{\text{pr}(Y|Q)} \] Bayes rule

\[\text{pr}(Y|Q) = \text{pr}(Y|Q,H) \text{ pr}(H|Q) + \text{pr}(Y|Q, \text{ not } H) \text{ pr(\text{not } H|Q)} \]

• phenotype averaged over genotypic mean \(\mu \)
 \[\text{pr}(Y|Q, \text{ not } H) = f_0(Y) = \int f(Y|G) \text{ pr}(G) \ dG \] if not \(H \)
 \[\text{pr}(Y|Q, H) = f_1(Y|Q) = \prod_q f_0(Y_q) \] if heritable

\[Y_q = \{ Y_i \mid Q_i = q \} = \text{trait values with genotype } Q=q \]
hierarchical model for expression phenotypes
(EB arrays: Christina Kendziorski)

\[Y_{QQ} \sim f(\cdot \mid G_{QQ}) \]
\[Y_{Qq} \sim f(\cdot \mid G_{Qq}) \]
\[Y_{qq} \sim f(\cdot \mid G_{qq}) \]

mRNA phenotype models given genotypic mean \(G_q \)

common prior on \(G_q \) across all mRNA
(use empirical Bayes to estimate prior)
expression meta-traits: pleiotropy

- reduce 3,000 heritable traits to 3 meta-traits(!)
- what are expression meta-traits?
 - pleiotropy: a few genes can affect many traits
 - transcription factors, regulators
 - weighted averages: $Z = YW$
 - principle components, discriminant analysis
- infer genetic architecture of meta-traits
 - model selection issues are subtle
 - missing data, non-linear search
 - what is the best criterion for model selection?
 - time consuming process
 - heavy computation load for many traits
 - subjective judgement on what is best
PC for two correlated mRNA

Traits
PC across microarray functional groups

Affy chips on 60 mice
~40,000 mRNA

2500+ mRNA show DE
(via EB arrays with marker regression)

1500+ organized in 85 functional groups
2-35 mRNA / group

which are interesting?
examine PC1, PC2

circle size = # unique mRNA
84 PC meta-traits by functional group
focus on 2 interesting groups
red lines: peak for PC meta-trait
black/blue: peaks for mRNA traits
arrows: cis-action?
interaction plots for DA meta-traits

DA for all pairs of markers:
- separate 9 genotypes based on markers
- (a) same locus pair found with PC meta-traits
- (b) Chr 2 region interesting from biochemistry (Jessica Byers)
- (c) Chr 5 & Chr 9 identified as important for insulin, SCD
comparison of PC and DA meta-traits on 1500+ mRNA traits

- genotypes from Chr 4/Chr 15 locus pair (circle=centroid)
- PC captures spread without genotype
- DA creates best separation by genotype
relating meta-traits to mRNA traits
DA: a cautionary tale
(184 mRNA with $|\text{cor}| > 0.5$; mouse 13 drives heritability)
building graphical models

• infer genetic architecture of meta-trait
 \[\mathbb{E}(Z | Q, M) = \mu_q = \beta_0 + \sum_{q \in M} \beta_{qk} \]

• find mRNA traits correlated with meta-trait
 \[Z \approx YW \text{ for modest number of traits } Y \]

• extend meta-trait genetic architecture
 \[M = \text{genetic architecture for } Y \]
 \[- \text{ expect subset of QTL to affect each mRNA} \]
 \[- \text{ may be additional QTL for some mRNA} \]
posterior for graphical models

• posterior for graph given multivariate trait & architecture
 \[\text{pr}(G \mid Y, Q, M) = \frac{\text{pr}(Y \mid Q, G) \text{pr}(G \mid M)}{\text{pr}(Y \mid Q)} \]
 \[-\text{pr}(G \mid M) = \text{prior on valid graphs given architecture} \]

• multivariate phenotype averaged over genotypic mean \(\mu \)
 \[\text{pr}(Y \mid Q, G) = f_1(Y \mid Q, G) = \prod_q f_0(Y_q \mid G) \]
 \[f_0(Y_q \mid G) = \int f(Y_q \mid \mu, G) \text{pr}(\mu) \, d\mu \]

• graphical model \(G \) implies correlation structure on \(Y \)

• genotype mean prior assumed independent across traits
 \[\text{pr}(\mu) = \prod_t \text{pr}(\mu_t) \]
from graphical models to pathways

• build graphical models
 QTL \rightarrow RNA1 \rightarrow RNA2
 – class of possible models
 – best model = putative biochemical pathway

• parallel biochemical investigation
 – candidate genes in QTL regions
 – laboratory experiments on pathway components
graphical models (with Elias Chaibub)

\[f_1(Y \mid Q, G=g) = f_1(Y_1 \mid Q) f_1(Y_2 \mid Q, Y_1) \]

observable meta-trait

observable cis-action?

observable trans-action
summary

• expression QTL are complicated
 – need to consider multiple interacting QTL
• coherent approach for high-throughput traits
 – identify heritable traits
 – dimension reduction to meta-traits
 – mapping genetic architecture
 – extension via graphical models to networks
• many open questions
 – model selection
 – computation efficiency
 – inference on graphical models