Multiple Traits & Microarrays

1. why study multiple traits together?
 – diabetes case study
2. design issues
 – selective phenotyping
3. why are traits correlated?
 – close linkage or pleiotropy?
4. modern high throughput
 – principal components & discriminant analysis
5. graphical models
 – building causal biochemical networks

1. why study multiple traits together?

• avoid reductionist approach to biology
 – address physiological/biochemical mechanisms
 – Schmalhausen (1942); Falconer (1952)
• separate close linkage from pleiotropy
 – 1 locus or 2 linked loci?
• identify epistatic interaction or canalization
 – influence of genetic background
• establish QTL x environment interactions
• decompose genetic correlation among traits
• increase power to detect QTL
Type 2 Diabetes Mellitus

from Unger & Orci FASEB J. (2001) 15:312
studying diabetes in an F2

- segregating cross of inbred lines
 - B6.ob x BTBR.ob → F1 → F2
 - selected mice with ob/ob alleles at leptin gene (chr 6)
 - measured and mapped body weight, insulin, glucose at various ages (Stoehr et al. 2000 *Diabetes*)
 - sacrificed at 14 weeks, tissues preserved
- gene expression data
 - Affymetrix microarrays on parental strains, F1
 - (Nadler et al. 2000 *PNAS*; Ntambi et al. 2002 *PNAS*)
 - RT-PCR for a few mRNA on 108 F2 mice liver tissues
 - (Lan et al. 2003 *Diabetes*; Lan et al. 2003 *Genetics*)
 - Affymetrix microarrays on 60 F2 mice liver tissues
 - design (Jin et al. 2004 *Genetics* tent. accept)
 - analysis (work in prep.)
why map gene expression as a quantitative trait?

- *cis-* or *trans-* action?
 - does gene control its own expression?
 - or is it influenced by one or more other genomic regions?
 - evidence for both modes (Brem et al. 2002 Science)

- simultaneously measure all mRNA in a tissue
 - ~5,000 mRNA active per cell on average
 - ~30,000 genes in genome
 - use genetic recombination as natural experiment

- mechanics of gene expression mapping
 - measure gene expression in intercross (F2) population
 - map expression as quantitative trait (QTL)
 - adjust for multiple testing

LOD map for PDI:
* cis-regulation (Lan et al. 2003)
mapping microarray data

- single gene expression as trait (single QTL)
 - Dumas et al. (2000 *J Hypertens*)

- overview, wish lists
 - Jansen, Nap (2001 *Trends Gen*); Cheung, Spielman (2002); Doerge (2002 *Nat Rev Gen*); Bochner (2003 *Nat Rev Gen*)

- microarray scan via 1 QTL interval mapping
 - Brem et al. (2002 *Science*); Schadt et al. (2003 *Nature*); Yvert et al. (2003 *Nat Gen*)
 - found putative *cis-* and *trans-* acting genes

- multivariate and multiple QTL approach
 - Lan et al. (2003 *Genetics*)
2. design issues for expensive phenotypes
(thanks to CF “Amy” Jin)

• microarray analysis ~ $1000 per mouse
 – can only afford to assay 60 of 108 in panel
 – wish to not lose much power to detect QTL

• selective phenotyping
 – genotype all individuals in panel
 – select subset for phenotyping
 – previous studies can provide guide

selective phenotyping

• emphasize additive effects in F2
 – F2 design: 1QQ:2Qq:1qq
 – best design for additive only: 1QQ:1Qq
 – drop heterozygotes (Qq)
 – reduce sample size by half with no power loss

• emphasize general effects in F2
 – best design: 1QQ:1Qq:1qq
 – drop half of heterozygotes (25% reduction)

• multiple loci
 – same idea but care is needed
 – drop 7/16 of sample for two unlinked loci
is this relevant to large QTL studies?

- why not phenotype entire mapping panel?
 - selectively phenotype subset of 50-67%
 - may capture most effects
 - with little loss of power
- two-stage selective phenotyping?
 - genotype & phenotype subset of 100-300
 - could selectively phenotype using whole genome
 - QTL map to identify key genomic regions
 - selectively phenotype subset using key regions

3. why are traits correlated?

- environmental correlation
 - non-genetic, controllable by design
 - historical correlation (learned behavior)
 - physiological correlation (same body)
- genetic correlation
 - pleiotropy
 - one gene, many functions
 - common biochemical pathway, splicing variants
 - close linkage
 - two tightly linked genes
 - genotypes \(Q \) are collinear
interplay of pleiotropy & correlation

Korol et al. (2001)

3 correlated traits
(Jiang Zeng 1995)

ellipses centered on genotypic value
width for nominal frequency
main axis angle environmental correlation
3 QTL, F2
27 genotypes

note signs of genetic and environmental correlation
pleiotropy or close linkage?

2 traits, 2 qtl/trait
pleiotropy @ 54cM
linkage @ 114,128cM

4. modern high throughput biology

• measuring the molecular dogma of biology
 – DNA → RNA → protein → metabolites
 – measured one at a time only a few years ago
• massive array of measurements on whole systems (“omics”)
 – thousands measured per individual (experimental unit)
 – all (or most) components of system measured simultaneously
 • whole genome of DNA: genes, promoters, etc.
 • all expressed RNA in a tissue or cell
 • all proteins
 • all metabolites
• systems biology: focus on network interconnections
 – chains of behavior in ecological community
 – underlying biochemical pathways
• genetics as one experimental tool
 – perturb system by creating new experimental cross
 – each individual is a unique mosaic
expression
pleiotropy
in yeast genome
(Brem et al. 2002)

coordinated expression in mouse
genome (Schadt et al. 2003)

finding heritable traits
(from Christina Kendziorski)

• reduce 30,000 traits to 300-3,000 heritable traits

• probability a trait is heritable

\[pr(H|Y,Q) = pr(Y|Q,H) \frac{pr(H|Q)}{pr(Y|Q)} \]

Bayes rule

\[pr(Y|Q) = pr(Y|Q,H) pr(H|Q) + pr(Y|Q, \text{not } H) pr(\text{not } H|Q) \]

• phenotype averaged over genotypic mean \(\mu \)

\[pr(Y|Q, \text{not } H) = f_0(Y) = \int f(Y|G) \ pr(G) \ dG \]

if not \(H \)

\[pr(Y|Q, H) = f_1(Y|Q) = \prod_q f_0(Y_q) \]

if heritable

\[Y_q = \{ Y_i | Q_i = q \} = \text{trait values with genotype } Q=q \]
hierarchical model for expression phenotypes
(EB arrays: Christina Kendziorski)

mRNA phenotype models given genotypic mean G_q

expression meta-traits: pleiotropy

- reduce 3,000 heritable traits to 3 meta-traits(!)
- what are expression meta-traits?
 - pleiotropy: a few genes can affect many traits
 - transcription factors, regulators
 - weighted averages: $Z = YW$
 - principle components, discriminant analysis
- infer genetic architecture of meta-traits
 - model selection issues are subtle
 - missing data, non-linear search
 - what is the best criterion for model selection?
 - time consuming process
 - heavy computation load for many traits
 - subjective judgement on what is best
PC for two correlated mRNA

PC across microarray functional groups

Affy chips on 60 mice
~40,000 mRNA

2500+ mRNA show DE
(via EB arrays with marker regression)

1500+ organized in
85 functional groups
2-35 mRNA / group

which are interesting?
examine PC1, PC2

circle size = # unique mRNA
84 PC meta-traits by functional group focus on 2 interesting groups

(a) percent explained by PC 1 & 2
(b) mRNA binding
(c) translation machinery

red lines: peak
for PC meta-trait
black/blue: peaks
for mRNA traits
arrows: cis-action?
interaction plots for DA meta-traits

DA for all pairs of markers:
- separate 9 genotypes based on markers
- (a) same locus pair found with PC meta-traits
- (b) Chr 2 region interesting from biochemistry (Jessica Byers)
- (c) Chr 5 & Chr 9 identified as important for insulin, SCD
comparison of PC and DA meta-traits on 1500+ mRNA traits

genotypes from Chr 4/Chr 15 locus pair (circle=centroid)

PC captures spread without genotype
DA creates best separation by genotype

relating meta-traits to mRNA traits

DA meta-trait standard units

SCD trait log2 expression

Traits NCSU QTL II: Yandell © 2005
DA: a cautionary tale
(184 mRNA with $|\text{cor}| > 0.5$; mouse 13 drives heritability)

building graphical models

- infer genetic architecture of meta-trait
 - $E(Z \mid Q, M) = \mu_q = \beta_0 + \sum_{\{q \text{ in } M\}} \beta_{qk}$
- find mRNA traits correlated with meta-trait
 - $Z \approx YW$ for modest number of traits Y
- extend meta-trait genetic architecture
 - $M =$ genetic architecture for Y
 - expect subset of QTL to affect each mRNA
 - may be additional QTL for some mRNA
posterior for graphical models

• posterior for graph given multivariate trait & architecture
 \(pr(G \mid Y, Q, M) = pr(Y \mid Q, G) \cdot pr(G \mid M) / pr(Y \mid Q) \)
 \(- pr(G \mid M) = \text{prior on valid graphs given architecture} \)

• multivariate phenotype averaged over genotypic mean \(\mu \)
 \(pr(Y \mid Q, G) = \prod_q f_0(Y_q \mid G) \)
 \(f_0(Y_q \mid G) = \int f(Y_q \mid \mu, G) \cdot pr(\mu) \, d\mu \)

• graphical model \(G \) implies correlation structure on \(Y \)

• genotype mean prior assumed independent across traits
 \(pr(\mu) = \prod_t pr(\mu_t) \)

from graphical models to pathways

• build graphical models
 QTL \(\rightarrow \) RNA1 \(\rightarrow \) RNA2
 – class of possible models
 – best model = putative biochemical pathway

• parallel biochemical investigation
 – candidate genes in QTL regions
 – laboratory experiments on pathway components
graphical models (with Elias Chaibub)

\[f(Y | Q, G=g) = f(Y_1 | Q) f(Y_2 | Q, Y_1) \]

- **QTL** → **DNA** → **RNA** → **protein** → unobservable meta-trait

- **QTL** → **D1** → **R1** → **P1** → observable \textit{cis}-action?

- **D2** → **R2** → **P2** → observable \textit{trans}-action

summary

- expression QTL are complicated
 - need to consider multiple interacting QTL
- coherent approach for high-throughput traits
 - identify heritable traits
 - dimension reduction to meta-traits
 - mapping genetic architecture
 - extension via graphical models to networks
- many open questions
 - model selection
 - computation efficiency
 - inference on graphical models