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3.1 INTRODUCTION

In the absence of gene flow between ancestral species, a phylogenetic tree faithfully rep-
resents species relationships. Even so, gene trees can truly differ from the species tree due
to incomplete lineage sorting (ILS), as explained in previous chapters. Other processes
can also cause discordance among gene trees (Maddison 1997; Wendel and Doyle 1998},
On the one hand, some processes cause difficult identification of true orthology or difficuit
inference of gene trees. On the other hand, processes involving gene flow—such as hori-
zontal gene transfer, hybridization, hybrid speciation, or introgression—constitute an
integral part of the species genealogy. In some cases, extensive gene flow may challenge
the concept of a single species tree. For example, if the genetic material of an ancestral
hybrid species is composed of exactly 50% from one parental species and 50% from the
other parental species, then any single bifurcating tree cannot represent the actual history
of these species. In unicellular and prokaryotic groups, organisms can engage in extensive
lateral transfer, making it unclear that a single tree can faithfully represent the species
genealogical relationships (Doolittle and Bapteste 2007; but see Galtier and Daubin 2008).
The concept of concordance factors (CFs) was introduced by Baum (2007) to capture the
variability of gene genealogies. Even though a single tree may not represent the history
of a set of taxa, the gencalogy at each site along the genome follows an actual tree.
Bayesian concordance analysis (BCA) considers this plurality of trees, and uses CFs to
measure the propertion of the genome that has a given clade (Ané et al. 2007). CFs might
be used to describe an ancestral hybrid speciation event, for instance, by providing the
proportion of genetic material that the ancestral species inherited from each of its two
parents. One way to summarize information provided by CFs of many conflicting clades
is to build a “dominant history” from the clades with the highest CFs. Baum (2007) argued
that regardless of the processes that caused gene trees to disagree, clades supported by a
plurality of the genome can be used as a representative of the dominant species history.
In the ideal case, the species history is truly treelike, and ILS within the species tree is the
only reason why gene trees disagree. In this case, it is desirable that the dominant history
reconstructed from CFs matches the actual species tree. A much more complicated
scenario is when horizontal gene transfers have a substantial role in the evolutionary
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history of the organisms. Galtier and Daubin (2008) argued that both the vertical signal
(speciation/extinction) and the horizontal signal (lateral genetic transfer) should be recon-
structed. Tt is desirable in this case that the dominant history reconstructed from CFs
matches the vertical phylogenetic signal, and that the horizontal phylogenetic signal be
recovered from the CFs of clades that are not in the dominant history.

In this chapter, [ explain how BCA can be vsed to reconstruct the dominant history—
or the vertical phylogenetic signal—of a set of taxa, even if the processes that caused
gene tree discordance are unknown. I also explain how to get new insights into which
processes may have caused discordance among gene trees. All concepts are illustrated
with real examples. Section 3.2 provides some background on the concordance approach
implemented in the program BUCKy (Bayesian Untangling of Concordance Knots).
Section 3.3 discusses the interpretation of CFs as genomic support, and how it differs from
standard measures of statistical support that are usually obtained on gene trees. Section
3.4 demonstrates how credibility intervals around CFs can be used to get statistical support
for particular branching patterns in the concordance tree. Section 3.5 illustrates the use of
CFs to test the hypothesis that all discordance is due to ILS as modeled by the coalescent
process, and Section 3.6 links concordance trees and species trees, Finally, Section 3.7
considers a challenge posed by genome-wide alignments: that of finding loci within which
all sites share the same tree topology. A fast method is proposed to find homogeneous loci
for later use by gene tree/species tree (GT/ST) inference methods.

3.2 BCA: BACKGROUND

BCA takes in a set of sequence alignments, such as a set of different genes, to reconstruct
the dominant tree for the taxa under study. This dominant tree 1s built from the clades that
are inferred to be true for a high proportion of genes in the genome. BCA assumes that
all sites within a given alignment have tracked the same tree topelogy but recognizes
that different alignments may have tracked different trees. A Bayesian framework is used
to integrate out the different sources of uncertainty. If two different genes give very high
support for two different trees for instance, BCA will recognize that the discordance
between the two gene trees is likely due to a true difference between the underlying gene
trees, not to a lack of phylogenetic information. In this regard, BCA is similar to BEST
(Bayesian Estimation of Species Trees), the coalescent-based Bayesian method for species
tree reconstruction (Liu 2008). Both methods vse the same likelihood for a set of aligned
sequences given a set of gene trees.

3.2.1 Sharing of Information across Gene Trees

BCA and BEST differ in the prior distribution they assign to a set of gene trees. BEST
uses the distribution obtained from the coalescent process along a species trees so that two
estimated gene trees influence each other even if these gene trees differ. In order to allow
for any process of gene tree discordance, BCA uses a Diirichlet prior distribution on gene
tree topologies (Ané et al. 2007). This prior distribution captures the expectation that many
genes agree with the species tree—and therefore with each other. One parameter, o, is
required to specify the strength of our expectation that different genes share the same
topology. This parameter is similar to an a priori level of discordance because the Dirichlet
prior assigns a probability (1+0/T)/(o+1) ~1/(ce+1) that two randomly selected genes
share the same tree, where T is the total number of possible gene tree topologies. At one
extreme, the choice o = 0 corresponds to a 1.0 prior probability that two randomly chosen
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genes share the same tree. It corresponds to the prior assumption that all genes in the
genome have the same topology. With this choice, information from all alignments is
combined as in a concatenation approach to infer a single tree, At the other extreme, the
choice of ¢4 = infinity corresponds to the smallest prior probability that two genes share
the same topology (1/T), just as if gene trees were independent. This extreme choice cor-
responds to a consensus approach where gene trees are estimated separately and do not
influence each other. With intermediate levels of o, BCA clusters genes into a number of
sets. Genes in different clusters are inferred to have different genes, and their gene tree
estimates do not influence each other. Genes that are placed in the same cluster are inferred
to share the same tree topology. Sequences from all genes in the same cluster are thus
combined to obtain a more accurate estimate of their common tree topology. Uncertainty
in gene clustering is accounted for and integrated out.

3.2.2 How to Choose the A Priori Level of Discordance ¢

BCA was implemented in BUCKy (Larget 2008). A default prior level of discordance
« = 1 was chosen, which corresponds to a prior probability of 0.5 + 1/27) ~ 0.5 that two
randomly chosen genes share the same topology. If this prior probability seems too large
or too low a priori in a particular system, the & value can be adjusted by the user accord-
ingly. An interactive Web site* is available to users who want to adjust ¢ to match their
prior expectation. This Web site takes in an o value, a number of taxa, and a number of
genes. It then plots the prior distribution for the number of distinct tree topologies repre-
sented in the set of sampled genes. As Galtier and Daubin (2008) demonstrate, the a priori
probability that two genes share the same topology should decrease with the number of
taxa, even under the coalescent process along a treelike species history. Therefore, the
adequate prior level o is expected to increase with increased taxon sampling. For this
reason, it was desirable that the interactive Web site be able to visualize the effect of taxon
number on the prior distribution of gene trees.

3.2.3 The Choice of an Infinite o in BCA

The prior level o = infinity amounts to assuming independent gene trees, and provides an
interesting case. It is a conservative choice, in that estimation error in one gene tree does
not affect the estimation of other gene trees. Undetected paralogy might cause such errors.
The use of inadequate evolutionary models can also cause systematic errors, such that an
incorrect gene tree may receive very high support. The conservative choice o = infinity
will prevent errors in one gene to affect other genes. However, this conservativeness comes
at a cost because phylogenetic information is not shared across genes. Mathematically, it
is easy to show that the CFs of clades estimated with ¢ = infinity will just be the average
posterior probabilities of clades, averaged over all genes in the sample. Therefore, the
concordance tree estimated with ¢ = infinity will match the consensus tree built from the
individually estimated gene trees. BCA wiil further provide credibility intervals around
CFs, which the consensus approach does not. However, discordance is expected to be
overestimated with an infinite &« because it is confounded with uncertainty in gene tree
reconstruction. When a finite @ is chosen, genes with low phylogenetic information can
be clustered with other genes. The pooled phylogenetic information across genes in the
same cluster allows tree uncertainty to decrease, and no longer be confounded with true
discordance among gene trees.

* hitp://bigfork.botany. wisc.edu/concordance/
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3.2.4 A Nonparametric Prior Distribution on Gene Trees

The Dirichlet prior distribution used in BCA is nonparametric in the sense that there is no
limitation to the number of clusters of genes, each cluster representing a group of genes
that have the same topology. In the current implementation of BCA, the topologies of
different clusters are given a uniform prior over all topologies and are assumed to be
independent. This prior assumption can account for any kind of horizontal gene transfer
or hybridization or both, or even for any kind of undetected paralogy in an outlier gene.
However, the assumption that truly different gene trees are independent does not reflect
the expectation that different gene trees might still share many clades in common. Future
work will use a different prior distribution, in which gene trees from different clusters will
be able to influence each other,

3.3 GENOMIC SUPPORT VERSUS
STATISTICAL SUPPORT

We illustrate here the concept of a CF as a measure of genomic support, in contrast to the
usual measures of statistical support that are commonly used to annotate phylogenetic
trees. Bootstrap support and posterior probabilities of clades are calculated on a 0-1 or
0-100% scale, just like CFs. However, these measures mean very different things.
Bootstrap values and posterior probabilities aim to measure how confident we are that a
particular clade truly is in the one tree that is assumed to drive the evolution of the gene(s).
In contrast, CFs measure how much of the genome (or how many of the sampled genes)
truly have a particular clade in their tree. It is possible for a clade in the species tree to be
true in only 60% of the genes and for two other conflicting clades to be true for 20% of
the genes each. For the clade in the species tree, we would like to be able to make two
statemnents: a statement about genomic support (60% of genes truly have this clade) and
a statement about statistical support (1.0 posterior probability that this clade is in the
species tree). BCA aims to provide both genomic support and statistical support at once.
We illustrate the different kinds of support with a set of 30,066 alignments from
human, chimpanzee, gorilla, orangutan, and rhesus, which were assembled and analyzed
by Ebersberger et al. (2007). In their paper, Ebersberger et al. (2007) focused on the
genomic support for the human-chimpanzee clade. They estimated that 77% of our genome
shares immediate genetic ancestry with the chimpanzee genome. They also provided a
statement of statistical support based on the number of alignments that were included in
their analysis: the percentage of our genome sharing immediate ancestry with the chim-
panzee was estimated with high precision, as its standard error was 0.4% and its 95%
confidence interval was (76.2%, 77.8%). Because the lower limit of this confidence inter-
val is above 50%, we are confident that the human—chimpanzee sister relationship is truly
in the species tree. Actually, the 99.99% confidence interval for the human-chimp CF
would still be well above 50%, Therefore, the study by Ebersberger et al. (2007} provides
both the genomic support (77% of the genome has human-chimp sister to each other) and
the statistical support (almost 100% confidence that human-chimp are sisters in the species
tree). The 77% CF and the ~100% confidence level are by no means contradictory.
Because Ebersberger et al. (2007) ignored uncertainty in the reconstruction of indi-
vidual gene trees, we reanalyzed their data with BCA. BCA does not assume any clock,
and therefore all 30,066 alignments were included in our analysis. Only a subset of 11,945
highly informative clocklike alignments was used by Ebersberger et al. (2007). Like in
their original study, each locus was analyzed under the HKY (Hasegawa, Kishino, Yano,
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Hasegawa et al. 1985) substitution model with rate variation across sites and four rate
categories. Because there are only five taxa and for computational speed, each locus was
analyzed in MrBayes (Ronquist and Huelsenbeck 2003) with 110,000 generations per run.
This individual locus analysis constituted the first step of BCA. Default values were used
except for the prior distribution of branch lengths (exponential distribution with prior mean
0.02). Twenty-six alignments were excluded because of corrupted data files.

The complete samples provided by MrBayes were then used in the second step of
BCA. Three prior levels of discordance were used: o0 = 0.1, 1, and infinity. These three
values were chosen to encompass a very wide array of prior discordance levels. Infinity
is the most extreme value, corresponding to a consensus approach where gene trees are
assumed to be independent. The default level o = 1 represents a moderate level of discor-
dance on five taxa because it corresponds to a 0.53 probability that two randomly sampled
genes share the same topology a priori. At the other extreme, the value of oo = 0.1 provides
a very low level of discordance. Indeed, it corresponds to a 0.997 probability that two
randomiy sampled genes share the same topology a priori. With the two finite levels of o
(1 and 0.1), sequences from compatible gene trees will influence each other so as to provide
more accurate estimations of their common tree topologies. For this second step, four
independent runs, three chains, and 110,000 generations were used in the program BUCKYy
(Larget 2008} version 1.3.0. The first step of BCA took about 4.1 days using three 3.0 GHz
central processing units (CPUs) for a total of about 12.5 days of CPU time, while the
second step completed in 5.5h on a single CPU.

Figure 3.1 summarizes the results with o = 1, showing both measures of support.
The human-chimp clade and the human-chimp-gorilla clade received support from more
than half of the genome with 1.0 posterior probability with all three prior choices. Therefore,
these two clades are dominant and the species tree shown in Figure 3.2 receives a 1.0
posterior probability. Still, significant discordance among loci is detected: 12.2% and
11.2% of loci in the genome are estimated to have tracked the chimp-gorilla and the
human-gorilla clades, using o = 1. The same results were obtained with o = 0.1, These
estimates are very similar to those in Ebersberger et al. (2007). Note that their estimate
was obtained with one-third of all loci only, from fragments whose tree was supported
with >95% posterior probability and that were consistent with a molecular clock. As they
argued, their consensus approach would mistakenly interpret gene tree uncertainty as gene
tree discordance if low-informative loci were used. Here, BCA was run on all 30,040 loci,
and it is remarkable that the estimated concordance has not dropped, even though about
19,000 lower-quality alignments were included for this analysis. This consistency can be

0.760 Human % Chimpanzee
0992 |0.753,0.767) (0.117,0.128) Gorilla

Chimpanzee
(0.990,0.993) Gorilla % Human
r Orangutan (0.111,0.121} Gorilla
Rhesus

Figure 3.1 Bayesian concordance analysis of the great ape data (30,040 alignments from
Ebersberger et al. 2007) with o = 1. Genome-wide concordance factors of clades (above
branches) measure genomic support. Statistical support is provided by 95% credibility intervals
for concordance factors (below branches). (Leff) Concordance tree, 1.0 posterior probability.
(Right) Concordance factors of conflicting clades. The concordance factors of the chimp-gorilia
and human-gorilla clades are not significantly different (their credibility intervals overlap) as
expected when incomplete lineage sorting is the only cause of gene tree discordance.
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Figure 3.2 Estimated concordance factor (proportion of the genome) for the human-chimpanzee
(HC). chimp-gorilla (CG) and human-gorilla (HG) clades, with their 95% confidence/credibility
intervals, from Ebersberger et al. (2007) (/eft) and from concordance analysis with ot = 1 (center
and right). The concordance analysis infers that about 76-77% of the human genome is sister to
chimpanzee, with a 1.0 posterior probability that the HC clade is in the species tree: the
credibility interval for this clade’s concordance factor does not overlap with credibility intervals
for the concordance factor of other conflicting clades.

explained by a sufficient number of highly informative loci to influence the number of
clusters, the common topology for each cluster of genes, and the proportion of genes in
each cluster. The uncertainty from low-quality loci is not confounded with discordance
because these loci are combined with highly informative loci in clusters with robustly
estimated trees.

To apply a consensus approach to the full set of 30,040 loci and obtain credibility
intervals for CFs, the highest a priori level of discordance can be used in BCA (o infinite:
no sharing of information across genes). With this value, gene trees are assumed to be
independent so that information is not shared across alignments, just like in a consensus
approach. Given the high number of low-informative alignments in the data set, the con-
sensus prior level o = infinity is expected to overestimate discordance. Not surprisingly,
a much higher proportion of the genome is inferred to have tracked a tree different from
the species tree with this choice of o. The CF of clades with high genomic support is
underestimated: 0.545 (0.542, 0.549) for human-chimp and 0.848 (0.846, 0.851) for the
human-chimp-gorilla clade. As expected, the CF of clades with low genomic support is
overestimated: 0.200 (0.197, 0.203) for chimp-gorilla and 0.197 (0.194, 0.201) for human-
gorilla. However, this discordance-biased analysis still infers a higher CF for the human-
chimp and for the human-chimp-gorilla clades than for any other clades. Therefore, the
species tree is still inferred with a 1.0 posterior probability with o infinite.

Statistical support such as bootstrap vatues, posterior probabilities, and standard
errors for CF all reflect the amount of sampling error. Therefore, they heavily depend on
the amount of data: the larger the sample size, the lower the sampling error. For instance,
if the same gene or same set of genes is replicated several times, bootstrap values and
posterior probabilities for clades in the estimated tree will increase up to 100% or 1.0.
Standard errors and confidence intervals will shrink to a width of zero as more and more
(identical) data sets are used. In contrast, genomic support is not expected to change with
the amount of data: estimated CFs are expected to remain stable as more and more genes
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are sampled. To illustrate this contrasting behavior of the two kinds of support, we ran-
domly sampled 100 alignments from the great apes data set and analyzed them with BCA.
Figure 3.2 shows that the resuiting estimated CFs are similar to those obtained using the
full set of 30,066 alignments. However, their precision is a lot lower than from the full
data set. Statistical support was indeed expected to decrease with a reduced amount of
data, Even though CFs are estimated with a lot of uncertainty, the correct concordance
tree is still inferred with a 1.0 posterior probability from these 100 alignments.

3.4 COMPARING CFs OF CONTRADICTING CLADES
FOR RECONSTRUCTING THE DOMINANT HISTORY

The primary concordance tree summarizes phylogenetic relationships that are true for large
proportions of the genome. Among a set of contradicting clades, one would like to find
the clade that is supported by more of the genome than any of the other clades. This
dominant ctade, which is more representative of the species relationships than any of the
conflicting clades, is more worthy of being represented in the concordance tree. Because
CFs are inferred with some estimation error, however, it may not always be possible to
determine with certainty that a higher proportion of genes supports one clade than another
conflicting clade. A fast comparison of CFs can be made on the basis of their credibility
intervals, so as to determine if one CF is significantly higher than another one, or if instead
there is insufficient data to make the comparison. Very simply, if the two CFs have non-
overlapping 99% credibility intervals, then we can infer with high credibility (over 98%)
that one of the two clades indeed has a higher CF than the other clade. In order to obtain
an exact posterior probability that one particular clade has a higher CF than another clade,
it would simply suffice to count the proportion of Markov chain Monte Carlo (MCMC)
samples that satisfy this relationship, from the output of the program BUCKy. Comparing
credibility intervals of individual CFs is a much easier and faster alternative.

In the great ape data set, most of the discordance is located within the human-chimp-
gorilla clade. It is easy to determine that the human-chimp clade is dominant here because
its CF is above 50% with 1.0 posterior probability. In such a case, any conflicting clade
must receive support from less than 50% of the genome. When the level of discordance
is higher however, the CF of the dominant clade may be closer to or lower than 50%. We
provide such an example below, where we compare credibility intervals of CFs in order
to determine which clade is dominant with statistical significance.

Rodriguez et al. (2009) investigated the evolution of wild tomatoes and wild potatoes
{Solanum) using multiple markers which were randomly selected from a set of 2869 single-
copy orthologs (conserved orthologous sets II, or COSII; Wu et al. 2006). Figure 3.3 shows
the concordance analysis of 12 of these loci across nine wild potato species and two close
outgroups (Solanum etuberosum and Solanum palustre). In this wild potato phylogeny,
most clades have CFs above 0.50 with over 95% posterior probability. However, the CF
of the Solanum brevicaule-Solanum verrucosum clade includes 0.50 (0.474, 0.924): it is
not unlikely that less than 50% of the genome have this clade. In order to determine if
this clade is dominant, we examined the CFs of the two conflicting clades (Fig. 3.4).
Solanum raphanifolium-S. brevicaule has a CF within (0.029, 0.425), while S. raphanifo-
lium-S. verrucosum has a CF within (0, (.14} with 95% credibility. Because of the lack
of overlap (Fig. 3.4), we can conclude that the S. brevicaule-S. verrucosum clade is domi-
nant, and we can place this clade in the concordance tree with high posterior probability.
A similar comparison between the CFs of the three possible placements of the main wild
potato clades reveals a lack of resolution (Fig. 3.5). Given the amount of discordance
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Figure 3.3 Concordance analysis (¢t = 1) from 12 loci on wild potatoes (Solanum; Rodriguez
et al. 2009). Above branches: genome-wide concordance factor estimates. Bold values indicate
clades that are dominant with high credibility. Asterisks indicate clades with concordance factor
above 50%, with over (.95 posterior probability.
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Figure 3.4 Comparing the concordance factors of three conflicting clades: Solanum brevicaule-
Solanum verrucosum (BV), Solanum raphanifolium-Solanum brevicaule (RB), and 5.
raphanifolium-5S. verrucosum (RV). Estimated genome-wide concordance factors (o) and their
95% credibility intervals (—).
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Figure 3.5 Estimated genome-wide concordance factors (0) and their 95% credibility intervals
{—) for the three resolutions of the main potato clades shown in Figure 3.3. All three credibility
intervals overlap, showing uncertainty about which resolution has the highest concordance factor,

among genes regarding the placement of these three groups, there is insufficient data at

this time to determine which of the three resolutions is supported by the largest proportion

of the genome. A parametric coalescent-based approach such as STEM (Species Tree
Estimation using Maximum likelihood, Kubatko et al. 2009) or BEST (Liu et al. 2008)
might have greater power to determine the species tree resolution at this node, at the cost :
of assuming that all discordance is due to ILS.
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3.5 TESTING THE HYPOTHESIS THAT
ALL DISCORDANCE IS DUE TO ILS

The most parsimonious, null model for explaining gene tree discordance is that of 1L.S only.
Mathematically, the coalescent model for ILS predicts exact relationships between the CFs
of clades that do not belong in the species tree. also called minor clades. On a four-taxon
unrooted tree or a three-taxen rooted tree for instance, there are three possible gene trees,
or three possible clades. Under the coalescent model, the clade in the species tree is true
for the largest proportion of genes, while a minority of genes follows each of the other two
clades. The coalescent model predicts that these two minor clades have equal CFs. If ¢ is
the length of the internal branch in coalescent units (number of generations/effective
poputation size) then the CF for this branch in the species tree is CF = | — 2/3 exp(-r), while
the CFs of the two competing splits are equal, and equal to CF = 1/3exp(-f). The exact
values of these CFs depend on the branch length ¢ in the species tree, but the equality
between the CFs of the two minor clades can be tested even if ¢ is unknown. More
generally, the ILS hypothesis along a branch predicts that the two minor resolutions of
that branch have equal CFs.

With its nonparametric assumptions, BCA can be used to test the hypothesis that
ILS is the sole discordance mechanism. For any given lineage, we can reject the ILS
hypothesis if we can determine that the two minor resolutions of that branch have CFs
that differ with statistical significance. With BCA, a simple way to assess statistical sig-
nificance is to compare the credibility intervals for the CFs of the two minor resolutions.
If the credibility intervals do not overlap, then we can be confident that the two CFs differ.
On the other hand, if the credibility intervals of the conflicting clades’ CFs overlap, the
data do not provide evidence that these CFs differ, and no evidence against the ILS
hypothesis.

We illustrate this test on a set of 18 COSII markers sequenced and analyzed by
Rodriguez et al. (2009). We report here their concordance analysis on six wild tomato
species, four tomato outgroup species (two species from section Juglandifolia and two
species from section Lycopersicoides), and two further outgroups (Selanum dulcamara
and Datura inoxia). Significant discordance was found at the placement of the close out-
groups of the core wild tomatoes. The two species of section Juglandifolia formed a clade
with a high CF and high statistical support, as did the two species from section
Lycopersicoides, as well as the two further outgroups (S. dulcamara and D. jnoxia) and
the core tomato group. However, there was significant discordance between the three pos-
sible placements of the four groups mentioned above: the sister group to the core tomatoes
was section Lycopersicoides for about half of the loci, and section Juglandifolia for the
other half of the loci. The third placement. with sections Lycopersicoides and Juglandifolia
sister to each other, received no support from any locus. Figure 3.6 shows the estimated
genome-wide CFs for each of these three resolutions, along with their 95% credibility
intervals. This analysis used a prior level of discordance o = 1, and the conclusion was
identical with a higher o = 10.

This pattern of discordance is incompatible with the assumption of ILS as solely
responsible for gene tree discordance. Because the credibility interval for the most minor
history (the two tomato outgroups sister to each other) does not overlap with the credibility
interval of any of the other two CFs, we can reject the null ILS hypothesis. Instead, this
pattern of discordance is compatible with the hypothesis that the ancestral lineage leading
to the core tomato group is a hybrid between the ancestral lineages of sections
Lycopersicoides and Juglandifolia. Under this hypothesis, the CFs of the two major clades
are expected to be about equal. Because the data included only 18 loci, the CFs of these
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Figure 3.6 Estimated genome-wide concordance factors (o) and their 95% credibility intervals
{—) for the three placements of the tomato outgroups relative to the core tomato group. A further
outgroup is not shown. This pattern of discordance is incompatible with the incomplete lineage
sorting hypothesis, which would predict that the two minor resolutions have equal concordance
factors.

two major placements have quite wide credibility intervals. The pattern observed here
could also be compatible with section Juglandifolia being sister to the core tomatoes and
gene flow between the ancestral lineage of core tomatoes and the ancestral lineage of
section Lycopersicoides. Collection of sequence data across more loci would be needed
to determine which evolutionary process has shaped the gene tree discordance at the base
of the core tomato group.

From the great ape data, an estimated 12.2% and 11.2% of the genome have tracked
the chimp-gorilla and the human-gorilla clades (Fig. 3.1), using o = | and ot = 0.1 as well.
The overlapping and narrow credibility intervals for these two CFs provide evidence that
the chimp-gorilla and the human-gorilla clades have very similar, if not equal CFs. This
is in complete agreement with the hypothesis that ILS is the only source of gene tree
discordance along the ancestral human-chimp-gorilla lineages.

An alternative, more computationally intensive test of the ILS hypothesis would be
to determine if the pattern of gene tree proportions found nonparametrically by BCA can
be predicted from a species tree under the coalescent. The program COAL (Degnan and
Salter 2005) calculates the gene tree proportions predicted by the coalescent on a user-
defined species tree. At this time, however, there is no program that takes the proportions
of a set of unrooted gene topologies as input, and estimates the most likely species tree
under the coalescent hypothesis. Nevertheless, 1 estimated the species tree branch lengths
based on the simple relationship p = 2/3¢”™, where ¢ is the internal branch length (in
coalescent units) of a four-taxon asymmetric rooted tree and p is the proportion of gene
trees that are truly discordant with the species topology. Proportions p were estimated
nonparametrically from BCA for various four-taxon sets, and branch lengths 7 were
then calculated with ¢+ = —log (3p/2). The prior choice (& =1 and o = 0.1) and alternative
choices of four-taxon sets had almost no impact of the estimated branch lengths. Figure
3.7 shows the estimated species tree with branch lengths in coalescent units. Coalescent
gene tree probabilities were then obtained with COAL, which were used to calculate
the CFs predicted by the coalescent model. The data were consistent with this model,
as all the predicted CFs were within the credibility intervals obtained from BCA (o =1
and oo = (0.1).
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Figure 3.7 Great ape species tree (leff) with estimated branch lengths ¢ in coalescent units, and
conflicting splits (right). The concordance factors predicted by the coalescent model (CF) are
within the credibility intervals shown in Figure 3.1.
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Figure 3.8 Two hypothetical species trees, each giving rise to one anomalous gene tree. Tree 2
(right) is in the too-greedy zone (fig. 3.3 in Degnan et al. 2009), while tree 1 (l¢ft) is not.
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3.6 SPECIES TREE RECONSTRUCTION FROM CFs

Under the coalescent, there is a perfect relationship between the frequencies of gene trees
and the species tree with branch lengths in coalescent units {Degnan and Salter 2005). In
that case, if CFs are known with precision, one should also be able to reconstruct the
species tree with high certainty. BUCKy currently uses a “greedy” majority-rule consensus
method to reconstruct a primary concordance tree. This tree includes all clades with CF
above 50% as well as all clades whose CF is below 50% so long as they are not contra-
dicted by a clade with higher CF already in the tree. Degnan et al. (2009} recently showed
that such a greedy method might yield an incorrect species tree when internal branches of
the species tree are short and when there are anomalous gene trees (AGTs; Degnan and
Rosenberg 2006). They identified a “too-greedy” zone, that is, a set of species tree topolo-
gies and branch lengths where the greedy consensus method returns an inconsistent species
tree, even if fed correct CFs. I illustrate this below.

The two hypothetical species trees in Figure 3.8 share the same topology
((((H,C),G),0).R). Their branch lengths, in coalescent units, differ along the branch ances-
tral to the HCG clade. Under the coalescent model, both of these species trees give rise
to one AGT (fig. 3.3 in Degnan et al. 2009). Indeed, the coalescent process predicts that
the proportion of genes with unrooted topology ((H,C).{G,0),R) is higher than the propor-
tion of genes having the species unrooted topology (14.4% vs. 13.2% for tree 1, and 15.0%
vs, 11.1% for tree 2, calculated with COAL).

For these two species trees under the coalescent model, the CFs of various clades
are shown in Table 3.1. The greedy consensus approach uses these proportions to recon-
struct a tree from the clades with the highest CFs until no more clades can be included in
the tree, as indicated with bold numbers. If these CFs are inferred perfectly, tree 1 is cor-
rectly reconstructed by this method but tree 2 is not: the split GOHCR is preferred over
the split HCG|OR.

Degnan et al. (2009) further showed that the quartet-based consensus method is able
to consistently recover the true species tree from CFs of quartets under the coalescent model.
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TABLE 3.1. Concordance Factors of Splits on the Full Taxon Set
HCGOR, Given the Two Species Trees in Figure 3.8 under the
Coalescent Model

Splits, Full Taxon Set Tree 1 (%) Tree 2 (%)
HC|GOR 38.7 36.8
HCG|OR 25.1 20.7
GO}HCR 21.2 23.6
HGICOR 205 18.7
CGHOR 20.5 18.7

Splits with bold values are included in the species tree reconstructed by the greedy
consensus method.

TABLE 3.2. Concordance Factors of Splits on the Four-Taxon

Set CGOR

Quartet Resolutions Tree 1 (%) Tree 2 (%)
CG|OR 39.7 34.6
GOlCR 30.2 327
CRlOG 30.2 327

The split in the true species tree is necessarily supported by the highest proportion
of genes under the coalescent model. Bold values indicate which quartets are
included in the species tree teconstructed by the quartet-based consensus method.

With the two previous examples, the GO split was reconstructed by the greedy consensus
approach on tree 2, but it is not supported from any four-taxon set. For example, the correct
four-taxon split CG|OR is preferred over GO|CR based on their concordance (Table 3.2).

The work by Degnan et al. (2009) has important implications for BCA. Even though
the estimation of CFs by BUCKy may be accurate, the primary concordance tree built
with the currently implemented greedy method may differ from the species tree under ILS.
However, this inconsistent behavior can easily be fixed by using a quartet-based method.
This method builds four-taxon unrooted trees based on the resolution that is supported by
the highest proportion of genes, and then combines the selected quartets into a full tree.
If CFs are estimated correctly, then all selected quartets will be consistent with the species
tree even in cases when the greedy consensus approach is misleading (Degnan et al. 2009).
A future version of BUCKy will implement this quartet-based method for species tree
estimation. Note that Ewing et al. (2008) use a similar reconstruction method.

The results by Degnan et al. (2009) prove that concordance trees equal species trees
when the coalescent model is correct. Their results also suggest that the best way to sum-
marize gene tree variability into a single bifurcating tree is to use the quartet-based tree
reconstruction from CFs. When gene flow, horizontal gene transfers, or hybridization
events are prevalent, it is unclear that a single species tree may represent the actual history
of the taxa (Galtier and Daubin 2008). A single concordance tree may reflect the vertical
phylogenetic signal, but a species nefwork might provide a more accurate description of
species relationships, with nodes of different types. Speciation nodes may depict the verti-
cal phylogenetic signal, and hybridization nodes may provide the horizontal signal (Baroni
et al. 2005; Huson and Bryant 2006; Moret et al. 2004). Hybridization nodes need not be
constrained to indicate an exact fifty-fifty chance to choose either of the two parents,
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however. More realistic probability models could be developed in the future to represent
various kinds of gene flow under a species network {e.g., Jin et al. 2006; Meng and
Kubatko 2009), Such network representation is used by Holland et al. (2008), where gene
trees embedded in the network are called “principal trees” (see also Than et al. 2008).
When a network, rather than a tree, is representative of the species history, it is unclear
how the primary concordance tree or primary concordance network should be built from
estimated CFs, and there is room for more research in this area.

3.7 THE CHALLENGE OF DETERMINING LOCI
ON WHOLE-GENOME ALIGNMENTS

3.7.1 The Assumption of Homogeneous,
Unlinked Loci for GT/ST Reconstruction

To date, almost all methods for GT/ST estimation from multiple loci make the very practi-
cal assumption that all sites within a locus share the same tree topology. In other words,
each locus is conveniently assumed to have tracked a single topology. or be “topologically
homogenous.” This is a very restrictive assumption, however, when dealing with very long
or whole-genome alignments (Posada and Crandall 2002). Whole genomes can now be
sequenced and aligned (Darling et al. 2004; White et al. 2010; Yang et al. 2007). These
very long alignments do not come up with predefined loci, unfortunately. If genealogical
variation is expected, then it is necessary to locate regions that are topologically homoge-
neous before using the current methods for estimating species trees and studying gene tree
variation. A second problem is that adjacent loci contain spatial dependence, and that
current GT/ST methods assume unlinked loci with independent trees given the species
tree. This issue of ignoring spatial dependence may not be too severe if this dependence
tapers off quickly as we consider more and more distant loci. However, the robustness of
current GT/ST methods to violation of the unlinked locus assumption is unknown at this
time and is outside the scope of this chapter.

Given a very long alignment, methods like STEM (Kubatko et al. 2009), BEST (Liu
et al. 2008), BCA (Ané et al. 2007), or deep coalescence parsimony (Maddison 1997,
Maddison and Knowles 2006; Oliver 2008; Page 1998) cannot be applied without first
partitioning this long alignment into a number of hypothetically topologically homoge-
neous loct. Ideally, of course, the inference of loci and the inference of trees should be
performed simultaneousiy, so that the uncertainty of the partition can be considered for
inference of locus trees and of the species tree. A number of Bayesian or hidden Markov
chain methods have been developed to simultanecusly infer recombination breakpoints
and the phylogeny at each site of an alignment (e.g., Bloomquist et al. 2009; Husmeier
and McGuire 2003; Minin et al. 2005; Suchard et al. 2003; Webb et al. 2009). These
methods do not seek to infer the species tree or dominant history, however. We report
here on a fast phylogenetic method that has been applied for studying genealogical vari-
ability and reconstructing the dominant history of house mice (White et al. 2010).

3.7.2 Detecting Recombination Breakpoints
for GT/ST Reconstruction

A fast and easy way to partition a long alignment is to define equal-length loci. Yang et al.
(2007) used 100-kb intervals, for instance. Ideally, the choice of the fragment length should
strike a compromise between a high probability that each given fragment is topelogically
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homogeneous (using shorter fragments) and a high phylogenetic informativeness of
individual fragments (using longer fragments). In this section, we focus instead on data-
driven methods for defining fragments, which rely on the detection of recombination.

There is a confusingly large number of methods for detecting the presence of recom-
bination or the location of recombination points. Posada and Crandall (2001) offer areview
and comparison of 14 of these metheds, and a more recent nonexhaustive list is maintained
by Jun Fan and David Robertson.” Posada et al. (2002) identify five categories of methods:
similarity methods, distance methods, phylogenetic methods, compatibility methods, and
substitution distribution methods. The number of available methods is partly explained by
a number of different goals and different meanings of “recombination breakpoint.”
Recombination is achieved via meiosis in eukaryotic organisms, and via processes such
as homologous recombination, conjugation, transformation, or transduction in prokary-
otes. Some detection methods use sequence data from multiple individuals in a single
species to estimate the population recombination parameter p = 4N,r, where r is the
recombination rate per site and per generation and N, is the effective population size. This
parameter p considers all recombination events, even though some events do not change
the tree topology on either side of the recombination location, and some events do not
change the tree branch lengths, as measured in number of generations between coalescent
events (Hein et al. 2005). Other methods aim at detecting only those recombination events
that actually changed part of the tree: branch lengths and/or topology.

For the purpose of reconstructing gene trees and species trees from sequence data,
recombination events that did not change the tree topology nor its branch lengths are of
no interest. This means that the set of imporiant recombination breakpoints is highly
taxon-dependent. Consider for instance an original alignment that contains only one
sequence from a particular species. Assume that two extra individuals from that species
are further sequenced, so that the original alignment is expanded into a larger alignment
containing all three sequenced individuals from that species. In this situation, all recent
recombination events that affected the refationship between the three individuals need to
be detected for the analysis of the larger alignment. On the other hand, these recombina-
tion points should be ignored for the analysis of the original alignment since these recom-
bination events did not affect the tree that contains a single individual from the particular
species.

Moreover, I argue that it is most important to detect recombination events that affect
the tree topology, whereas it is of lesser importance to detect recombination events that
only affect branch lengths. Indeed, branch lengths inferred from standard model-based
phylogenetic methods represent an average number of substitutions per site, which is the
product of substitution rate and of divergence times. These gene tree branch lengths are
known to be highly variable: even if divergence times can be assumed to be homogencous
within one locus, substitution rates are known to be highly variable across sites and across
lineages (Pagel and Meade 2008; Whelan 2008; Zhou et al. 2007). Therefore, phylogenetic
reconstruction methods must account for varying branch lengths within a single homoge-
neous alignment, whether this is due to substitution rate variability or to divergence time
variability from recombination. Not surprisingly, many methods for detecting recombina-
tion are sensitive to mutational “hot spots” and other substitution rate heterogeneity if
changes in branch lengths are detected as recombination (Grassly and Holmes 1997;
Husmeier 2005; McGuire and Wright 2000). For these reasons, methods based on topo-
logical changes and insensitive to branch lengths seem most appropriate for the purpose
of defining loci for later use by methods for estimating species trees.

1 http://www.bioinf.manchester.ac.uk!recombinationlprograms.shtml
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3.7.3 A Minimum Description Length (MDL)
Information Criterion

I propose to partition chromosome-wide alignments vsing a fast MDL approach (Ané and
Sanderson 2005). MDL is a widely used tool for model selection. It aims to find an appro-
priate balance between a good fit to the data and a parsimonious model, just like the
commonly used AIC and BIC criteria (Akatke 1974; Schwarz 1978). Here, each partition
constitutes a model, including a particular choice for the number of loci and breakpoint
locations. Like AIC or BIC, MDL aims to maximize the fit of the partition to the data
while penalizing the partition’s complexity. The founding principle of MDL is an informa-
tion theoretic principle, which permits a direct comparison between the complexity of the
data and the complexity of the model. The model complexity is measured by the length
of the smallest code that can describe the model, and its fit to the data is measured by the
length of the smallest code that can describe the data given the model. Using a practical
compression algorithm, Ané and Sanderson (2005) showed that the joint complexity of a
partition and alignment, or its description length, can be measured as a function of the
number of fragments in the partition, and the sum of parsimony scores of each fragment.
We consider here a similar criterion:

DL=L+...+L, +Ak
fit penalty.

where & is the number of fragments in the partition, L; is the parsimony score of the i
fragment and 1 is a penalty parameter that penalizes each fragment. The total parsimony
score L; + ... + L, of the alignment measures the fit of the model, which here consists of
the partition and the & trees. Because the parsimony score is proportional to the negative
log-likelihood of the alignment under a no-common mechanism model (Tuffley and Steel
1997), the DL criterion takes the form of a penalized likelihood, just like AIC and BIC.
These criteria differ in how they penalize each parameter in the model: AIC uses a constant
penalty. BIC uses a penalty that grows with the size n of the data (log n). With MDL,, Ané
and Sanderson {2005) showed that the appropriate penalty A for each fragment of the
partition grows with the number of taxa (A -Ntax), as does the complexity of the tree for
each fragment. In order to search for the partition with the best, minimum DL, we use
dynamic programming (program avatlable upon request). A more detailed exposition of
MDL will be published elsewhere.

The MDI. criterion was used to determine the dominant history of the three closely
related species of house mice: Mus musculus, Mus castaneus, and Mus domesticus. White
et al. (2010) obtained whole-genome alignments based on Perlegen Sciences Single
Nucleotide Polymorphism (SNP) data (Frazer et al. 2007) and on the complete genome
sequences of the C57BL/6J strain (Mouse Genome Sequencing Consortium 2002) and of
Rattus norvegicus as an outgroup (Rat Genome Sequencing Project Consortium 2004),
The X chromosome and all 19 autosomes were analyzed, representing a 1.8 billion site
alignment across four taxa. MDL was first applied to identify putatively homogeneous
loci. BCA was then used on these loci to infer the proportion of each chromosome sup-
porting each topology. Using a penalty of A =3 in MDL, the genome was partitioned into
a total of 14,081 fragments of variable sizes. With a lower penalty of A = 0.9, about twice
as many fragments were identified but the resulting estimated CFs were very similar to
those obtained with the higher penalty. White et al. (2010) identified a primary history
placing M. musculus and M. castaneus as sister species in 39% of loci. They also uncov-
ered a pattern of discordance that is inconsistent with the coalescent model, as the two
minor histories had significantly different CFs, with higher genomic support for the M.
castaneus-M. domesticus group than for the M. musculus-M. domesticus group.
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3.7.4 Comparisons with Other Partitioning Criteria

The MDL approach proposed here has limitations: uncertainty in the number of loci and
in breakpoint locations is not assessed and thus ignored in the subsequent GT/ST analysis.
One advantage to using a parsimony-based measure of fit, rather than a model-based
likelihood, is the computational speed and the corresponding ability to handle very long
alignments. RecPars (Hein 1993) is a similar parsimony-based approach, which also seeks
a balance between low parsimony scores and few recombination breakpoints. However,
it is not clear how the cost of recombination should compare with the cost of substitutions
in RecPars, and the algorithm does not scale well with long alignments or large numbers
of taxa. Similarly, the program Recco (Maydt and Lengauer 2006) needs a user-defined
ratio to weigh the costs of recombination and mutation, and the parsimony-based method
RECOMP (Ruths and Nakhleh 2006) needs a user-defined threshold to define breakpoints.
MDIL. provides a way to place the cost of recombination and of homoplasy on an equal
footing, that of information complexity. Munshaw and Kepler (2008) also use the MDL
principle for detecting recombination breakpoints. Their measure of fit counts different
types of substitutions and is related to the parsimony score when the number of steps is
small compared with the number of sites. Their method constrains the trees on either side
of each breakpoint to differ by a single recombinant node, whereas our MDL criterion
does not restrict the fragment topologies in any way. For a given number of taxa, the MDL
criterion is very similar to AIC, as both penalize each fragment with a fixed penalty.

GARD (Genetic Algorithm for Recombination Detection), developed by Kosakovsky
Pond et al. (2006), uses AIC with a likelihood fit based on a simple model of molecular
evolution, which may be sensitive to substitution rate variability. The penalty term in
GARD penalizes each branch length parameter of the tree at each fragment, but it does
not penalize the complexity of each tree topology as MDL does.

More recently, a number of methods have used probabilistic models for the number
and location of recombination breakpoints to account for their uncertainty, using Bayesian
inference or hidden Markov models (HMM) (Bloomquist et al. 2009; Husmeier and
McGuire 2003; Minin et al. 2005; Suchard et al. 2003). Due to their computational com-
plexity, these methods are either limited to four or five taxa, or they need to be guided by
a known phylogenetic tree on parental, nonrecombining sequences. Webb et al. (2009)
increase the number of taxa that can be handled by combining an HMM with a Bayesian
framework for the state space of this HMM. While these approaches do not seek species
tree reconstruction, future developments seem particularly promising for the integrated
inference of recombination breakpoints with species tree reconstruction,

The wealth of data provided by chromosome-wide alignments contains ample infor-
mation regarding the dominant history and the genealogical variability along the genome.
However, current GT/ST methods cannot handle this kind of data directly. Coupling
computationally efficient methods such as MDL with BCA or STEM provides a first step
toward analyzing chromosome-wide alignments for species tree inference.
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