Statistics 371, lecture 3

Cécile Ané

Spring 2012

Outline

- 2 Examples of scientific questions
- 3 Variable categories
- 4 Displaying and summarizing data

Objectives:

Introduction to modern statistical practice.

Understanding of the concepts, along with applications.

How should I collect my data? Which method should I apply to my data? How do I interpret the results?

Basic information

Read the syllabus: it's all in there.

http://www.stat.wisc.edu/courses/st371-ane
Refresh your browser!

https://learnuw.wisc.edu/ for grades and blog.

Instructor & TAs:

Cecile Ane, ane@stat.wisc.edu Dongguy Kim (331, 332, 333), kimd@stat.wisc.edu Yi Liu (334),liuyi@stat.wisc.edu

Text: The Analysis of Biological Data, by Whitlock & Schluter.

Section switching: Come see me at end of lecture.

Homework assignments

Weekly.

Posted on Thursdays, due following Thursday in lecture. If late: penalized except under extenuating circumstances. Solution handouts will be posted. should be well organized and **neat**.

Academic honesty: Talk to each other, discuss homework problems. Great! very stimulating! THEN, when writing up your assignment, do it all by yourself.

Exams and grading

Homework	weekly	15%
First midterm	February 28	15%
Second midterm	April 10	15%
Group project	report due May 1	15%
Final exam	May 18	40%

Second midterm + final exam will be **open book**.

If any **religious conflict** with exam dates: let me know within 1 week.

Grades: on Learn@UW 2-3 days after exams.

Group project

Goal: reduce weight of in-class exams; provide authentic experience.

Analyze real data,

Draw scientific conclusions, write up a report,

Evaluate reports from 2 other groups.

For honors: oral presentation of report.

All details in separate handout.

Computing

Modern statistics: need statistical software. We will use R.

Free, easy to install,

R tutorial on course webpage,

first discussion (this week) will focus on R: installation, reading in data, plotting data. **Bring your laptop**.

Use of R required in assignments, basic knowledge and interpretation of R outputs required in exams.

Ask your questions! Feedback always welcome. Sometimes I will ask you questions. Never trick questions. Use the **discussion forum** / blog on Learn@UW: ask and answer questions. Outline

2 Examples of scientific questions

4 Displaying and summarizing data

Anthrax and vaccine experiment

1881, Pasteur. Reponse of sheep to Anthrax (bacterial disease, affects skin and lungs). All 48 animals were inoculated with a virulent culture.

	vaccinated	control
survived	24	0
died	0	24
% survival	100%	0%

No variation. Scientific conclusion: the vaccine works! categorical data: 2 categories. No numerical value.

What if...

Even without variation, need for statistical analysis to conclude that 24 sheep/group is enough evidence.

Comparing 2 drugs on mice

Success = survival for more than one week.

	drug A	drug B
success	71	45
failure	34	42
total	105	87
% success	67.6%	51.7%

Is this evidence real, or can it be explained by chance? Answer in Chapter 12.

categorical data (success/failure)

2 samples (2 drugs)

Comparing 2 drugs on mice

Think design:

Which mice got drug A, and which got drug B? The ones caught first got B.

The disease is contagious. Consider:

Mice are housed 3 in a cage,

2 Mice are in separate cages with separate food.

Comparing lizards from different locations

Compare tail length of male adults Southwestern earless lizards from 2 different locations: Big Bend (TX) and Box Canyon (NM). Same species, different populations.

Has tail length evolved differently in the 2 populations, perhaps in relation to habitat (rocky vs. thick vegetation)?

Big Bend lizard population

Data: (in cm	What is the average tail length of all male adults		
8.8 10.4	in the entire population of Big Bend lizards?		
9.7 11.9	Answer: interval (8.3cm, 9.5cm), takes variation		
10.8 7.6	& uncertainty into account. Chapter 11.		
7.1 8.0			
6.6 8.5	Sources of variability in the data:		
9.9 9.4	individual lizards themselves		
10.2 9.4	operator making measurement,		
8.6	measurement error		
n = 24 lizar	time of measurement/season		

n = 24 lizards.

Comparing the 2 lizard populations

We wish to compare the means (averages) with respect to variability

Comparing the 2 lizard populations

Think design:

how are lizards selected? representative of the target population, or just slowest moving? same operator for both locations? same habitat? same season?

Chapter 12:

Continuous data

2 samples

Chapter 15 (ANOVA): extend to 3 or more locations.

Nutritional requirement and body size

Does nutritional requirement depend on body size? How?

Expt: 7 men, 24-hour energy expenditure (kcal) was measured, in conditions of quiet sedentary activity, repeated twice.

Subject #	fat-free mass (kg)	energy expenditure (kcal)		
1	49.3	1851	1936	
2	59.3	2209	1891	
3	68.3	2283	2423	
4	48.1	1885	1791	
5	57.6	1929	1967	
6	78.1	2490	2567	
7	76.1	2484	2653	

Nutritional requirement and body size

Find formula to predict energy expenditure then nutritional requirement as a function of body size.

> Regression: Chap. 16-17 2 continous variables

Think design:

Were activity conditions really the same for all men?

7 subjects, 2 measurements on each, or

14 subjects and 1 single measurement on each?

Outline

- Examples of scientific questions
- 3 Variable categories
 - 4 Displaying and summarizing data

A study assigned **50 cows** to **various diets** (based on the amount of an additive in the diet) and examined a number of **outcomes** associated with characteristics of the produced **milk**, amount of dry matter consumed, and weight gain of the cow. **Pre-treatment variables** include initial weight of the cow, number of lactations, and age of the cow. The primary purpose of the study was to examine the effect of the different diets on the outcome variables, controlling for effects of other covariates.

Cow variables

treatment diet: CONTROL, LOW, MEDIUM, or HIGH level mg of additive per kg of feed lactation the number of lactations (pregnancies) age age of cow at beginning of study (months) initial.weight initial weight (pounds) dry mean daily weight of dry matter consumed (kg) milk mean daily amount of milk produced (pounds) fat percentage milk fat (grams of fat per 100g milk) solids % solids in milk (grams of solids per 100g milk) final.weight final weight of cow (pounds) protein % protein in milk (grams of protein per 100g milk)

Subset of cows' data

treatment	level	lactation	age	initial.weight	dry	milk	fat	solids	final.weight	protein
control	0	3	49	1360	15.429	45.552	3.88	8.96	1442	3.67
control	0	3	47	1498	18.799	66.221	3.40	8.44	1565	3.03
control	0	2	36	1265	17.948	63.032	3.44	8.70	1315	3.40
control	0	2	33	1190	18.267	68.421	3.42	8.30	1285	3.37
control	0	2	31	1145	17.253	59.671	3.01	9.04	1182	3.61
control	0	1	22	1035	13.046	44.045	2.97	8.60	1043	3.03
low	0.1	6	89	1369	14.754	57.053	4.60	8.60	1268	3.62
low	0.1	4	74	1656	17.359	69.699	2.91	8.94	1593	3.12
low	0.1	3	45	1466	16.422	71.337	3.55	8.93	1390	3.30
low	0.1	2	34	1316	17.149	68.276	3.08	8.84	1315	3.40
low	0.1	2	36	1164	16.217	74.573	3.45	8.66	1168	3.31
low	0.1	2	41	1272	17.986	66.672	3.43	9.19	1188	3.59
medium	0.2	3	45	1362	19.998	76.604	4.29	8.44	1273	3.41
medium	0.2	3	49	1305	19.713	64.536	3.94	8.82	1305	3.21
medium	0.2	3	48	1268	16.813	71.771	2.89	8.41	1248	3.06
medium	0.2	3	44	1315	15.127	59.323	3.13	8.72	1270	3.26
medium	0.2	2	40	1180	19.549	62.484	3.36	8.51	1285	3.21
medium	0.2	2	35	1190	19.142	70.178	3.92	8.94	1168	3.28
high	0.3	5	81	1458	20.458	71.558	3.69	8.48	1432	3.17
high	0.3	3	49	1515	19.861	56.226	4.96	9.17	1413	3.72
high	0.3	3	48	1310	18.379	49.543	3.78	8.41	1390	3.67
high	0.3	3	46	1215	18.000	55.351	4.22	8.94	1212	3.80
high	0.3	3	49	1346	19.636	64.509	4.16	8.74	1318	3.31
high	0.3	3	46	1428	19.586	74.430	3.92	8.75	1333	3.37

Types of data

Categorical (qualitative)

nominal: Blood type, Gender ordered:

Numerical (quantitative) continuous:

discrete:

Categorization of variables

Categorical or Numerical variables.

Experimental or Observational variables:

experimental: values under control of the researcher. observational: values observed, not set by the researcher.

Response or Explanatory variables:

response: are considered as outcomes; explanatory: are thought potentially to affect outcomes.

Example: Recombination

In the fruit fly *Drosophila melanogaster*, the gene *white* with alleles w^+ and *w* determines eye color (red or white) and the gene *miniature* with alleles m^+ and *m* determines wing size (normal or miniature). Both genes are located on the X chromosome, so female flies have two alleles for each gene while male flies have only one.

During meiosis (formation of gametes) in the female fly, if the X chromosome pair do not exchange segments, the resulting eggs will contain two alleles, each from the same X chromosome. However, if the strands of DNA cross-over during meiosis then some progeny may inherit alleles from different X chromosomes. This process is known as recombination. There is biological interest in determining the proportion of recombinants. Genes that have a positive probability of recombination are said to be genetically linked.

Recombination (cont.)

In a pioneering 1922 experiment to examine genetic linkage between the *white* and *miniature* genes, a researcher crossed wm^+/w^+m females with wm^+/Y male flies and looked at the traits of the male offspring. (Males inherit the Y chromosome from the father and the X from the mother.)

In the absence of recombination, we would expect half the male progeny to have the wm^+ haplotype and have white eyes and normal-sized wings while the other half would have the w^+m haplotype and have red eyes and miniature wings. This is not what happened.

Cross

Recombination (cont.)

The phenotypes of the male offspring were as follows:

	Wing Size				
Eye color	normal	miniature			
red	114	202			
white	226	102			

There were 114 + 102 = 216 recombinants out of 644 total male offspring, a proportion of $216/644 \doteq 0.335$ or 33.5%.

Completely linked genes have a recombination probability of 0, unlinked genes have a recombination probability of 0.5. The *white* and *miniature* genes in fruit flies are incompletely linked. Measuring recombination probabilities is an important tool in constructing genetic maps, diagrams of chromosomes that show the positions of genes.

Outline

- Examples of scientific questions
- 3 Variable categories

Bar plots: for categorical data

Blood type, 2005 survey

Space betweem bars: separate, discrete nature of categories.

Mosaic plots: 2 categorical variables

Bar and Mosaic plots: 2 categorical variables

```
> recomb = matrix( c(114,226,202,102), 2, 2)
> colnames(recomb) = c("normal","miniature")
> rownames(recomb) = c("red"."white")
> recomb
      normal miniature
red
        114
                   202
         226
                   102
white
> t(recomb)
          red white
                226
normal
         114
miniature 202
                102
> barplot(recomb, beside=TRUE, legend.text = rownames(recomb), col=c("red", "white"))
> barplot(recomb, beside=FALSE, col=c("red","white"))
> mosaicplot(t(recomb), col=c("red", "white"), dir=c("h", "v"))
> mosaicplot(t(recomb), col=c("red", "white"))
```

Mosaic plots: area \leftrightarrow frequency (# flies), coordinates (height) \leftrightarrow proportions.

Rug plots and Histograms: for numerical data

Rug/dot plots: display exact values. Points can be 'jittered' to avoid overlap.

Histogram: not unique. shows **frequency** (height=#) or **density** (area=proportion)

Measure of location: Sample mean

> cows\$milk

[1] 45.552 66.221 63.032 68.421 59.671 44.045 55.153 46.957 63.948 65
[11] 57.603 63.254 57.053 69.699 71.337 68.276 74.573 66.672 72.237 58
[21] 48.063 60.412 45.128 53.759 52.799 76.604 64.536 71.771 59.323 62
[31] 70.178 48.013 60.140 56.506 40.245 45.791 59.373 54.281 71.558 56
[41] 49.543 55.351 64.509 74.430 68.030 46.888 53.164 53.096 50.471 66
> mean(cows\$milk)
[1] 59.54314

Milk yield data: 45.552, 66.221, ..., 66.619. $y_1 = 45.552$, $y_2 = 66.221$, ..., $y_{50} = 66.619$.

$$ar{y} = (45.552 + 66.221 + \dots + 66.619)/50$$

= $(y_1 + y_2 + \dots + y_{50})/50 = 59.5$ lbs/day

Sample mean

$$\bar{y} = \frac{1}{n} (y_1 + y_2 + \dots + y_n) = \frac{1}{n} \sum_{i=1}^n y_i$$

Measures of location: Sample median

Median = typical value. Half of observations are below, half are above.

Sort the data: 40.245 44.045 ... 76.604.

Find the middle value. If sample size *n* is odd, no problem. If *n* is even, there are 2 middle values (here 25^{th} and 26^{th}). The median is their average.

> sort(cows\$milk)
[1] 40.245 44.045 45.128 45.552 45.791 46.888 46.957 48.013 48.063 49.543
[11] 50.471 52.799 53.096 53.164 53.759 54.281 55.153 55.351 56.226 56.506
[21] 57.053 57.603 58.168 59.323 59.373 59.671 60.140 60.412 62.484 63.032
[31] 63.254 63.948 64.509 64.536 65.994 66.221 66.619 66.672 68.030 68.276
[41] 68.421 69.699 70.178 71.337 71.558 71.771 72.237 74.430 74.573 76.604
> median(cows\$milk)
[1] 59.522

Examples: data	median	mean \bar{y}
3, 7, 9, 11, 22		10.4
2, 6, 7, 12, 13, 16, 17, 20		11.625
2, 6, 7, 12, 13, 16, 17, 200		34.125

Mean and the median are usually close, unless the data are not symmetrical.

Mean \bar{y} = balance point.

Measures of location: Quantiles and percentiles

25% **percentile** = 0.25 **quantile** = value such that 1/4 observations are below and 3/4 are above. Example: 6 9 11 17 19 23 26 26 p quantile: value such that (about) a proportion p of observations are below and about 1 - p are above. Median is a special case (p = 0.5)

First quartile Q_1 : median of those values below the median **Third quartile** Q_3 : median of those values above the median

Example:

Measures of spread

Range: maximum - minimum, **IQR**: Inter Quartile Range = $Q_3 - Q_1$

> min(cows\$milk) [1] 40.245 > max(cows\$milk) # range = 76.604 - 40.245 [1] 76.604 # = 36.359 lbs/day > IOR(cows\$milk) [1] 13.54575 > summary(cows\$milk) Min. 1st Qu. Median Mean 3rd Qu. Max. 40.24 53.11 59.52 59.54 66.66 76.60 > quantile(cows\$milk) 0% 25% 50% 75% 100% 40.24500 53.11300 59.52200 66.65875 76.60400 > quantile(cows\$milk, p=0.10) 10% 46.7783

Numerical summaries

> summary(cows)

treat	ment	lev	rel	lacta	tion	ag	e	initial.	weight
control	:12	Min.	:0.00	Min.	:1.00	Min.	:21.00	Min.	: 900
high	:12	lst Qu.	:0.10	lst Qu.	:1.00	lst Qu.	:26.25	lst Qu.	:1119
low	:13	Median	:0.15	Median	:2.00	Median	:37.00	Median	:1266
medium	:13	Mean	:0.15	Mean	:2.38	Mean	:42.16	Mean	:1258
		3rd Qu.	:0.20	3rd Qu.	:3.00	3rd Qu.	:49.00	3rd Qu.	:1369
		Max.	:0.30	Max.	:6.00	Max.	:95.00	Max.	:1656

dry	milk	fat	solids
Min. :11.42	Min. :40.24	Min. :2.650	Min. :7.810
1st Qu.:14.56	1st Qu.:53.11	1st Qu.:3.265	1st Qu.:8.465
Median :16.69	Median :59.52	Median :3.455	Median :8.740
Mean :16.43	Mean :59.54	Mean :3.577	Mean :8.691
3rd Qu.:18.22	3rd Qu.:66.66	3rd Qu.:3.908	3rd Qu.:8.928
Max. :20.46	Max. :76.60	Max. :4.960	Max. :9.190

final.	weight	prot	ein
Min.	: 968	Min.	:2.860
lst Qu.	:1126	1st Qu.	:3.172
Median	:1234	Median	:3.310
Mean	:1244	Mean	:3.328
3rd Qu.	:1348	3rd Qu.	:3.458
Max.	:1593	Max.	:3.800

Boxplot: for numerical data

Boxplots often better than histograms for comparing samples: easier to align.

```
> summary(cows$fat)
Min. lst Qu. Median Mean 3rd Qu. Max.
2.650 3.265 3.455 3.577 3.908 4.960
> boxplot(cows$fat, horizontal=T)
> boxplot(fat ~ treatment, data=cows, horizontal=T)
```

Outlier display in boxplots

Fences: Observations outside fences are drawn individually. Whiskers do not go beyond fences. Typically, fence = 1.5 IQR

Milk fat example: IQR = 0.67. Fences are 1.5 * 0.67 = 1.005 below Q_1 and above Q_3 . Upper fence: 3.908 + 1.005 = 4.913. Here largest values were:

```
> sort(cows$fat)
[1] 2.65 2.89 2.91 2.97 2.99 2.99 3.01 3.08 3.13 3.13
...
[46] 4.27 4.29 4.52 4.60 4.96
```

so the whisker extends through 4.60, but 4.96 is displayed as a separate point.

Measures of spread: Variance

Deviation from the mean: $y_i - \bar{y}$. Milk fat: cow in first row has deviation 3.88 - 3.577 = +0.303, cow in second row has deviation 3.40 - 3.577 = -0.177. **Variance**: $s^2 \ge 0$ always!

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2 = \frac{1}{n-1} \left((y_1 - \bar{y})^2 + \dots + (y_n - \bar{y})^2 \right)$$

Equivalent formula:

$$s^2 = \frac{1}{n-1} \left(\sum_{i=1}^n y_i^2 - n \bar{y}^2 \right)$$

For milk fat percent, we get

$$s^2 = \frac{1}{49}(0.303^2 + (-0.177)^2 + ...) = 0.2347$$
 (%²)

Measures of spread: Standard deviation

Standard deviation: $s = \sqrt{\text{variance}} = \sqrt{s^2}$ is now in original units. *s* is the typical deviation. Here, s = 0.484 (in % of milk weight)

```
> m=mean(cows$fat)
                      > (cows$fat < m+s) & (cows$fat > m-s)
                       [1]
                            TRUE
                                  TRUE
                                        TRUE
                                              TRUE FALSE FALSE FALSE
> m
[1] 3,5772
                      [13] FALSE FALSE
                                        TRUE FALSE
                                                    TRUE
                                                          TRUE
                                                                 TRUE
                                                                     F
> var(cows$fat)
                      [25] TRUE FALSE TRUE FALSE TRUE
                                                          TRUE
                                                                 TRUE
[1] 0.2346736
                      [37]
                            TRUE
                                  TRUE
                                        TRUE FALSE TRUE FALSE FALSE
> s=sd(cows$fat)
                   [49]
                            TRUE FALSE
                      > sum(cows$fat < m+s & cows$fat > m-s)
> S
[1] 0.4844312
                      [1] 35
```

The empirical rule: for most "mound-shaped" distributions,

about 68% of observations lie within 1 standard deviation
of the mean,(fat%: 35/50=70%)about 95% lie within 2 s.d. of the mean
about 99% lie within 3 s.d. of the mean(fat%: 48/50=96%)

Scatter-plot: 2 numerical variables

Here 3 variables displayed on each plot.

Scatter-plot: 2 numerical variables

```
lavout(matrix(1:2,1,2))
par(mar=c(2.5,3.1,.1,.5), mqp=c(1.5,.5,0))
plot(milk~initial.weight, data=cows, pch=16,
     xlab="Initial weight (lbs)", ylab="Milk yield (lbs/day)",
     col=grav(1-as.numeric(treatment)/4) )
legend("topleft",pch=16,col=gray(1-(4:1)/4),
       legend=levels(cows$treatment)[4:1])
plot(lactation~age, data=cows, pch=16,
     xlab="Age (months)", ylab="Lactation (# pregnancies)",
     col=gray(1-as.numeric(treatment)/4) )
legend("topleft", pch=16, col=gray(1-(4:1)/4),
       legend=levels(cows$treatment)[4:1])
```