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Parasitic Fish

Experiment from example 9.3 (p. 213): fish are placed in a
large tank for a period of time and some are eaten by large
birds of prey. The fish are categorized by their level of parasitic
infection: uninfected, lightly infected, or highly infected.

It is to the parasites advantage to be in a fish that is eaten:
opportunity to infect the bird in the parasites’ next stage of life.
Different proportions of fish eaten observed by category:

Uninfected Lightly Infected Highly Infected Total
Eaten 1 10 37 48
Not eaten 49 35 9 93
Total 50 45 46 141

Proportions of eaten fish:
1/50 = 0.02, 10/45 = 0.222, and 37/46 = 0.804.



Questions

There are 3 conditional probabilities of interest: the probability
of being eaten by a bird given one of the 3 infection level.

How to test if these are the same?

Estimate how different they are?

Real association between infection level and bird
predation?



Motivation

To understand the methods for comparing probabilities in
different populations, we need to develop notions of:

conditional probability, and

independence

Tools to formalize ideas of what we “expect just by chance”.



Elements in a probability model

Experiment: action/process that generates data. Usually has
more than one possible outcomes, is theoretically
repeatable.

Elementary outcome: complete description of a single result
from the experiment. Can be quite complicated,
but cannot be divided further.

Sample space: the entire group of elementary outcomes, S.

Event: a collection of elementary outcomes, i.e. subset of
S.



Elements in a probability model

Example: roll a die once and record the result.

“3” is an elementary outcome;

S = {1, 2, 3, 4, 5, 6};
{2, 4, 6} is the event of getting an even number.

Example: pick a random fish at random from a tank and record
its infection status and its eaten/not eaten fate.

"Uninfected not Eaten" (U, nE) is an elementary outcome;

S = {(U, E), (U, nE), (L, E), (L, nE), (H, E), (H, nE)};
{(U, E), (L, E), (H, E)} is the event of sampling a fish that
will be eaten.



Operations on events
Union “U or V ": elementary outcomes in U, in V , or in
both. Written as U ∪ V .
"Uninfected" or "Eaten" = {(U, E), (U, nE), (L, E), (H, E)}.

Intersection “U and V ": elementary outcomes in both U
and V . Written as U ∩ V .
"Uninfected" and "Eaten" = {(U, E)}.

Complement “not U": all elementary outcomes in S that
are not in U. Written as Ū.
if U = “Uninfected” = {(U, E), (U, nE)},
"not U" = {(L, E), (L, nE), (H, E), (H, nE)} = "Lightly or Highly
infected".

Two events are mutually exclusive if they do not have any
elementary outcomes in common.
Events "Uninfected" and "Eaten" are not mutually exclusive.
Other examples?



Probability model

A probability model consists of a probability assignment to each
of the events in S.

Basic rules an assignment must follow

(i) For any event U, 0 ≤ IP(U) ≤ 1
(ii) IP(S) = 1
(iii) Addition rule: If U and V are mutually exclusive, then

IP(U or V ) = IP(U) + IP(V )

Rules consistent with our intuitive notion of chance.



Example

Theoretical fish tank
Assume these elementary outcome probabilities, which do sum
up to 1:

IP{(U, E)} = 0.05 IP{(L, E)} = 0.20 IP{(H, E)} = 0.25
IP{(U, nE)} = 0.05 IP{(L, nE)} = 0.30 IP{(H, nE)} = 0.15

Following the additivity rule:

IP(Uninfected) = IP{(U, E) or (U, nE)}
= IP{(U, E)}+ IP{(U, nE)} = 0.05 + 0.05 = 0.10

IP(Eaten) = IP{(U, E) or (L, E) or (H, E)}
= IP{(U, E)}+ IP{(L, E)}+ IP{(H, E)} = 0.50

Be careful with the additivity rule:

IP(Uninfected or Eaten) = 0.55 6= IP(Uninfected)+IP(Eaten) =



Derived rules

What if we cannot apply (iii) to compute IP(A or B) because A
and B are not mutually exclusive? From (i)–(iii):

(iv) For any two events U, V ,

IP(U or V ) = IP(U) + IP(V )− IP(U and V )

(iv) is consistent with (iii). Now

IP(Uninfected or Eaten) =

IP(Uninfected) + IP(Eaten)− IP(Uninfected and Eaten)

= 0.10 + 0.50− 0.05 = 0.55



Derived rules

U and “not U" are always mutually exclusive. By (iii),

IP(U) + IP(not U) = IP(S) = 1

Thus the derived rule:

(v) For any event U, IP(not U) = 1− IP(U)

Ex:

IP(Lightly or Highly infected) = IP(not Uninfected)

= 1− IP(Uninfected) = 0.95



Conditional probability
Additional information can alter the probability of an event.
Ex: knowing that the fish is highly infected might alter the
probability of the fish being eaten.

The conditional probability of an event U given V , IP(U|V ), is
the probability of U given (or knowing) that V has occurred:

IP(U|V ) =
IP(U and V )

IP(V )
,

provided that IP(V ) 6= 0.

IP{Eaten | Highly infected} =
IP{(E , H)}
IP{Highly}

=
0.25

0.25 + 0.15

= 0.625 = 62.5%



Independence

Two events U and V are independent if information about one
does not affect the other, that is,

IP(U|V ) = IP(U), or

IP(V |U) = IP(V ), or equivalently,

IP(U and V ) = IP(U)IP(V ).

This gives us the

Multiplication rule
If U and V are independent, then

IP(U and V ) = IP(U)× IP(V )



Independence

Are "Highly infected" and "Eaten" independent in our theoretical
fish tank?
From earlier: IP{E |H} = 0.625 while IP{E} = 0.50.
Answer:

No.

Equivalently, look at IP{H and E} = 0.25 and compare to
IP{H} ∗ IP{E} = (0.25 + 0.15) ∗ 0.50 = 0.20.

Are "Uninfected" and "Eaten" independent? Answer:

Yes.



Independence

If we make the assumption that there is no relationship =
independence between infection status and bird predation, and
if we somehow knew that IP{Highly infected} = 0.40 and
IP{Eaten} = 0.50, then we can use the multiplication rule to
predict IP(Highly infected and Eaten) = 0.40 ∗ 0.50 = 0.20.
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Random Variables - Definition

A random variable (RV) is a variable that depends on the
outcome of a chance situation.

A RV is often denoted by capital letters (e.g. Y ).

Elementary outcome −→ Y value



Example: Y = 1 if eaten, 0 otherwise

Pick 1 fish at random and set Y = 1 if the fish is eaten by a bird
or Y = 0 if the fish is not eaten. 6 elementary outcomes:

elementary probability Y value
outcome

U,E 0.05 1
U,nE 0.05 0
L,E 0.20 1
L,nE 0.30 0
H,E 0.25 1
H,nE 0.15 0

2 values for Y : 0 and 1.
IP{Y = 0} = 50 and IP{Y = 1} = 0.50.



Example: Z = # fish eaten by a bird
Pick 2 fish at random. 6 ∗ 6 = 36 elementary outcomes and 3
values for Z : 0,1 and 2.

elementary outcome Y1 Y2 Z value
for fish1 & fish2

U,E U,E 1 1 2
U,E U,nE 1 0 1
U,E L,E 1 1 2
U,E L,nE 1 0 1
U,E H,E 1 1 2
U,E H,nE 1 0 1
U,nE U,E 0 1 1
U,nE U,nE 0 0 0
U,nE L,E 0 1 1

...
H,nE L,nE 0 0 0
H,nE H,E 1 1 1
H,nE H,nE 0 0 0



Discrete RV and probability distribution

RV’s can be discrete or continuous variables, but not
categorical.

The probability distribution of a discrete RV is described by
the probability of each possible value of the RV

The probability distribution of a continuous RV is
described by a density curve.



Example: Y = Number of fish eaten by birds
Suppose we sample 3 fish independently of each other, and
assume a 60% predation rate.
Use × = eaten, o = not eaten

IP{Y = 3} = IP(×××) = IP(×) ∗ IP(×) ∗ IP(×)

=

0.60 ∗ 0.60 ∗ 0.60

= .216

IP{Y = 2} = IP{× × o or × o × or o ××}
= IP{× × o}+ IP{×o×}+ IP{o ××}
= IP(×)IP(×)IP(o) + IP(×)IP(o)IP(×) + IP(o)IP(×)IP(×)

=

.60 ∗ .60 ∗ .40 + .60 ∗ .40 ∗ .60 + .40 ∗ .60 ∗ .60

= 3 ∗ 0.144 = 0.432

Similarly IP{Y = 1} =

3 ∗ .6 ∗ .4 ∗ .4

= 3 ∗ 0.096 = 0.288
and IP{Y = 0} =

.4 ∗ .4 ∗ .4

= 0.064.



Example: Y = Number of fish eaten by birds

Frequency table for Y :

y 0 1 2 3
p(y) .064 .288 .432 .216

A line graph shows the proba-
bility distribution of Y

better than a histogram to ex-
plicitely display a discrete dis-
tribution.
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Summary measures

The probability distribution of a discrete RV Y gives
complete information about Y and hence complete
information about the population.

Helpful to have some numerical summaries such as the
center/location or spread/variability of the population (as
with sample data).

population (RV) sample (observed data)

mean µY ȳ
variance σ2

Y s2

standard deviation σY s



Expectation of a random variable

Ex: pick 3 random fish, independently. Repeat 1000 times.

With a bird predation rate of 60% we got

y 0 1 2 3
p(y) .064 .288 .432 .216

Roughly, we will find 0 eaten fish 64 times, ...

So we expect to find a total # of destroyed nests of:

0 ∗ 64 +

1 ∗ 288 + 2 ∗ 432 + 3 ∗ 216

= 1800

and the average # of fish eaten by birds per experiment is:

1800/1000 = 1.8

. This is the expected value of Y .



Expectation of a RV

The expectation of a RV Y is the population mean of the
probability distribution of Y . Denoted as IE(Y ) or µY . Can be
thought of as a typical value.

For a discrete RV Y , it is

Expectation

IE(Y ) =
∑

y × IP{Y = y}

summing over all possible values y of the RV Y .

In the fish / bird predation problem:

IE(Y ) = 0 ∗ 0.064 + 1 ∗ 0.288 + 2 ∗ 0.432 + 3 ∗ 0.216 = 1.8 fish



Variance and Standard deviation of a RV

The variance of a RV Y – noted var(Y ) or σ2
Y – measures the

population spread/variability of the distribution of Y . For a
discrete RV Y , it is

Variance

var(Y ) = IE(Y − µY )2 =
∑

(y − µY )2 × IP{Y = y}

summing over all possible values y of the RV Y .
The standard deviation of Y is σY = σ =

√
var(Y ).

σY measures the amount Y typically deviates from µY .

Fish eaten by birds, out of 3 sampled fish:

var(Y ) = (0− 1.8)2 ∗ 0.068 + (1− 1.8)2 ∗ 0.288

+(2− 1.8)2 ∗ 0.432 + (3− 1.8)2 ∗ 0.216

= 0.72

and σY =
√

0.72 = 0.848 fish.



Cumulative distribution function

Answer to "What is the probability that Y is ≤ some y value?"

ex: IP{Y ≤ 2} = 0.068 + 0.288 + 0.432 = 0.784
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Continuous RV: density curve describes probability distribution,
where area = probability. Image: blocks in histogram = ice
cubes, ground into fine dust and spread onto a line.
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