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1 Sampling distributions
Random Samples
3 key facts
Normal approximation to the binomial



Random samples

Y1, . . . , Yn form a random sample if they are independent and
have a common distribution.

The sample must be representative of the targeted
population for the Y ′s common distribution to be unbiased
and undistorted.

From a sample, we can calculate a sample statistic such as
the sample mean Ȳ .

Ȳ is random too! It can differ from sample to sample.

The distribution of Ȳ is called a sampling distribution .



Discrete data: Sampling distribution of a proportion

Number of fruit flies with miniature wings: if allele m is not
detrimental then p should be 0.5.
Sample of n = 10 male offsprings, count the number Y with
miniature wings, calculate the sample proportion p̂ = Y/n.

We would like p̂ to be close to the “true” value p.

p is fixed and unknown; p̂ is random and observed.

Distribution of p̂ = its sampling distribution.

If we assume p = 0.50, from the binomial:

y 0 1 2 3 4 5 6 7 8 9 10
phat 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
prob 0.001 0.01 0.044 0.117 0.205 0.246 0.205 0.117 0.044 0.01 0.001



Discrete data: Sampling distribution of a proportion
p: fixed and unknown, p̂: observed but random.
How close is p̂ from p? How often is p̂ is within 0.10 of p?
Translate into a binomial question. If true p = 0.5:

When n = 10:
IP{0.40 ≤ p̂ ≤ 0.60} = IP{0.40 ≤ Y/10 ≤ 0.60}

= IP{4 ≤ Y ≤ 6}
= IP{Y = 4}+ IP{Y = 5}+ IP{Y = 6}
= 0.66

When n = 20:
IP{0.40 ≤ p̂ ≤ 0.60} = IP{0.40 ≤ Y/20 ≤ 0.60}

= IP{8 ≤ Y ≤ 12}
= IP{Y = 8}+ · · ·+ IP{Y = 12}
= 0.74

Conclusion: sample size of 20 better than sample size of 10 !



Continuous data: Sampling distribution of the mean

Example: weight of seeds of some variety of beans.
Sample size n = 4

Experimenter # Observations sample mean ȳ
1 462 368 607 483 ȳ = 480
2 346 535 650 451 ȳ = 495.5
3 579 677 636 529 ȳ = 605.25

µ = population mean of all seeds: of interest but unknown.
Ȳ : observed but random.

How do we know the distribution of Ȳ ? How close to µ?
We will see 3 key facts.



Key fact # 1

If Y1, . . . , Yn is a random sample, and if the Yi ’s have mean µ
and standard deviation σ, then

Ȳ has mean µȲ = µ and variance var(Ȳ ) = σ2/n, i.e. standard
deviation

σȲ =
σ√
n

Seed weight example: Assume beans have mean µ = 500 mg
and σ = 120 mg. In a sample of size n = 4, the sample mean
Ȳ has mean µȲ = 500 mg and standard deviation
σȲ = 120/

√
4 = 60 mg.

Standard error of an estimate = standard deviation of its
sampling distribution. Measures precision of the estimate.

Standard error of the mean = σ/
√

n



Key fact # 2
If Y1, . . . , Yn is a random sample, and if the Yi ’s are all from
N (µ, σ), then Ȳ also has a normal distribution.

Ȳ ∼ N (µ,
σ√
n

)

Actually, Y1 + · · ·+ Yn = n Ȳ is ∼ N too.
Seed weight example: 100 experimenters do the same expt.
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Key fact # 3

Central limit theorem
If Y1, . . . , Yn is a random sample from (almost) any distribution,
then as n gets large, Ȳ is approximately normally distributed.

Note: Y1 + · · ·+ Yn has a normal distribution approximately, too.

How big must n be?

Usually, n = 30 is big enough, unless the distribution is strongly
skewed.

Remarkable result! It explains why the normal distribution is so
common, so “normal”. It is what we get when we average over
lots of pieces. Ex: human height. Results from ...



Ex: beans are filtered, discarded if too small.

0 200 400 600 800 1000

n = 1

300 400 500 600 700

n = 5

350 400 450 500 550 600 650

n = 10

450 500 550

n = 30



Example: Mixture of 2 bean varieties.
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Number of DNA mutations

Between human and chimp genes: Y =# nucleotide differences
across stretch of 100 base pairs has mean 2 bp and SD 1.4 bp.
Distribution skewed

right.

Take mean Ȳ of a random sample of 150 stretches of 100-bp.
Probability that Ȳ ≤ 1.6 bp?

Ȳ has mean 2 bp

Ȳ has standard deviation 1.4/
√

150 = 0.114 bp

Ȳ ’s distribution is approximately normal, because the
sample size is large (n = 150).

IP
{

Ȳ ≤ .50
}

=

IP

{
Ȳ − 2
0.114

≤ 1.6− 2
0.114

}

' IP{Z ≤ −3.50} = 0.00023



The normal approximation to the binomial
X = # of children with side effects (mild fever) after vaccine A,
out of n = 200 children.
If probability of side effect p = 0.05, then X ∼ B(200, 0.05).

What is IP{p̂ ≤ 0.075} =?? i.e. IP{X ≤ 15}?

Direct calculation:

IP{X = 0}+ IP{X = 1}+ · · ·+ IP{X = 15} =(
200

0

)
.050.95200 + · · ·+

(
200
15

)
.0515.95185

Heavy!

Or use fact 3: the binomial is close to a normal distribution,
if n large. Pretend X is normally distributed!

(why use fact 3?)
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We can use fact 3 because X = Y1 + · · ·+ Y200 where

Y1 =

{
1 if child #1 has fever
0 otherwise

, · · · , Y200 =

{
1 if child #200 has fever
0 otherwise.

Normal approximation to the binomial
If X ∼ B(n, p) and if n is large enough so that both

np ≥ 5 and n(1− p) ≥ 5

(rule of thumb), then X and the sample proportion p̂ = X/n are
both approximately normally distributed:

X ∼ N (np,
√

np(1− p))

p̂ ∼ N (p,

√
p(1− p)

n
)

approximately



The normal approximation to the binomial
n = 200 children, p = 0.05 of mild fever, IP{p̂ ≤ 0.075} =? i.e.
IP{X ≤ 15} =?

Mean of X : µ = np = 10, std dev: σ =
√

np(1− p) = 3.08.

Is n large enough? np = 10 and n(1− p) = 190 both ≥ 5.

so X ≈ N (10, 3.08).

IP{X ≤ 15} = IP

{
X − 10

3.08
≤ 15− 10

3.08

}
' IP{Z ≤ 1.62} = 0.9474

True value:

> dbinom(0:15, size=200, prob=0.05)
[1] 0.000 0.000 0.002 0.007 0.017 0.036 0.061 0.090 0.114

[10] 0.128 0.128 0.117 0.097 0.074 0.052 0.034
> sum( dbinom(0:15, size=200, prob=0.05))
[1] 0.9556444

> xvalues = 0:30 # how to plot the binomial distribution
> yvalues = dbinom(0:30, size=200, prob=0.05)
> plot(xvalues, yvalues, type="h")



Recap

Continuous data:
Y1, . . . , Yn Ȳ

mean µ µ
std deviation σ σ/

√
n

Normal dist Not necessarily yes if n large
approximately? (∼ 30 works in most cases)

Binary (success/failure) data:
Y p̂

mean np p
std deviation

√
np(1− p)

√
p(1− p)/n

Normal dist yes if np > 5 yes if np > 5
approximately? and n(1− p) > 5 and n(1− p) > 5
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