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Hypothesis testing

Philosophy: prove a claim by contradiction.

Analogy: "dependent love" story

Claim: You don’t love me.

Reasonning: If you loved me, you would take the trash out
every week and put your socks away.

Data: Some weeks you don’t take the trash out
or leave your socks where they fall.

Conclusion: You don’t love me.



Ingredients of a significance test
1 Null hypothesis H0 and alternative hypothesis HA.

HA = "you don’t love me", H0 = "you love me"
2 Statistic and null distribution

summary data and what can be predicted under H0

3 Measure evidence against H0: p-value
p-value measures the "compatibility" of data with H0.

4 Make a decision and interpret in the context of the problem:
accept HA is small p-value, fail to reject H0 if large p-value.

adjust belief to HA if data in contradiction with "you love
me", or continue to believe H0 if data consistent with "you
love me"



The radiologists’ missing sons

Male radiologists have long suspected that they tend to have
fewer sons than daughters. Of 87 offspring of ‘highly irradiated’
radiologists, 30 were males. Assume this was a random
sample, and proportion of male offspring is 0.51 in the human
population.

We will try to prove the claim that p 6= 0.51 (HA).

Proof by contradiction: determine what is expected if p = 0.51
(H0) and whether the data is compatible with it.

p-value: measure of compatibility
The p-value is the probability, under H0, of observing a result as
extreme as or more extreme than that observed in the
experiment.



The binomial test

1 H0 : p = 0.51 versus HA : p 6= 0.51
2 Summary statistic: Y = # of sons among 87 offsprings.

Null distribution: if H0 is true, Y ∼

B(87, 0.51).

3 Under H0 we expect to observe about 44.4 sons.
Value actually observed: y = 30 sons.
As extreme as 30 is: 30 or 59 (differ by 14.4 from 44.4)
More extreme: Y < 30 or Y > 59.
p-value = 2 ∗ IP{Y ≤ 30} = 0.00277
Very tedious by hand but easy with R:
> sum(dbinom(0:30,size=87,p=.51))
[1] 0.001386064
> 2 * sum(dbinom(0:30,size=87,p=.51))
[1] 0.002772128

4 Data incompatible with H0: reject H0 and accept HA.
Strong evidence against H0.



Significance tests: yes/no decision

Often the p-value is compared against α = 0.05.
If p-value < 0.05, then we say “Reject H0 at the 5% level" or
“The results are significant at the 5% level"

The α-level needs to be set before seeing the data.
Common α-levels: 1%, 5%, and 10%.

The p-value measures incompatibility of data with H0:
interpreted as evidence against H0. The smaller the p-value,
the greater the evidence. Roughly:

0.10 ≤ p no evidence against H0

0.05 < p < 0.10 weak evidence against H0

0.01 < p < 0.05 moderate evidence against H0

0.001 < p < 0.01 strong evidence against H0

p < 0.001 very strong evidence against H0

H0 is either true or not true. Thus p-value 6= IP{H0 is true}.



Failing to reject H0 is not proving H0

We could repeat the test to

try to prove the claim HA: p 6= 0.35.
We would fail to reject H0: p = 0.35.

(recall data: 30/87 = 0.345 sons)

try to prove the claim HA: p 6= 0.42.
We would fail to reject H0: p = 0.42.

Clearly we cannot accept both "p = 0.35" and "p = 0.42"

Interpretation: the data is compatible with "p = 0.35" as well
as with "p = 0.42". Both are plausible values for p.
But very strong evidence that 0.51 is not the true value.



The binomial test: two-sided test with calculations

New example: 9 radiologists in experiment, 3 sons observed.

1 H0: p = 0.51. Two-sided test: HA = "p 6= 0.51".
2 Statistic: # sons Y . Null distribution: Y ∼ B(9, 0.51).

Expectation: about 4.5 sons.
3 As extreme is 3 or 6 sons. More extreme is "Y < 3 or

Y > 6 sons"

IP{Y ≤ 3|p = 0.51} =

IP{Y = 0}+ · · ·+ IP{Y = 3}

= .001 + .01 + .06 + .15 = .23

so p-value = 2 IP{Y ≤ 3|p = 0.51} = 2× .23 = .47
4 Conclusion: we fail to reject H0, no evidence for HA.



The binomial test: one-sided test, if prior evidence

1 H0: p = 0.51. One-sided test: HA = "p < 0.51".
2 Statistic: # sons Y . Null distribution: Y ∼ B(9, 0.51).

Expectation: about 4.5 sons.
3 For this one-sided test: as or more extreme in the

direction of HA is "Y ≤ 3 sons". So now

p-value = IP{Y ≤ 3|p = 0.51} = .23

4 Conclusion: we fail to reject H0, no evidence for HA.



The binomial test: one-sided test, if prior evidence

1 H0: p = 0.51. One-sided test: HA = "p > 0.51".
2 Statistic: # sons Y . Null distribution: Y ∼ B(9, 0.51).

Expectation: about 4.5 sons.
3 For this one-sided test: as or more extreme in the

direction of HA is "Y ≥ 3 sons". So now

p-value = IP{Y ≥ 3|p = 0.51} = 1− IP{Y ≤ 2}
= 1− (IP{Y = 0}+ IP{Y = 1}+ IP{Y = 2})
= 1− (.001 + 0.015 + 0.063) = .92

4 Conclusion: we fail to reject H0, no evidence for HA at all.



One-sided tests

We only perform one kind of test for a given experiment:
either one-sided: HA: p 6= p0

or two-sided: HA: p > p0, or HA: p < p0.

Most typically : two-sided test.

If a one-sided hypothesis HA is used, it needs to be
formulated prior to seeing the data and based on prior
evidence .

The p-value is smaller with a one-sided test, unless the data
goes in the opposite direction of a one-sided test: evidence for
HA is stronger with a one-sided test. Warning! resist the
temptation!



Binomial test with R: binom.test()

> binom.test(30,87, p=.51)

Exact binomial test

data: 30 and 87
number of successes = 30, number of trials = 87, p-value = 0.002488
alternative hypothesis: true probability of success is not equal to

0.51
95 percent confidence interval:

0.2461396 0.4544136
sample estimates:
probability of success

0.3448276

> binom.test(c(30,57), p=.51)

Exact binomial test

data: c(30, 57)
number of successes = 30, number of trials = 87, p-value = 0.002488
...



binom.test() in R - one-sided tests

> binom.test(30,87, p=0.51, alternative="less")

Exact binomial test
data: 30 and 87
number of successes = 30, number of trials = 87, p-value = 0.001386
alternative hypothesis: true probability of success is less than 0.51
95 percent confidence interval:

0.0000000 0.4374992
sample estimates:
probability of success

0.3448276

> binom.test(30,87, p=0.51, alternative="greater")

Exact binomial test
data: 30 and 87
number of successes = 30, number of trials = 87, p-value = 0.9993
alternative hypothesis: true probability of success is greater than 0.51
95 percent confidence interval:

0.2603165 1.0000000
sample estimates:
probability of success

0.3448276
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Testing a proportion with a z-test

Normal approximation to the binomial
If X ∼ B(n, p) and if n is large enough so that both

np ≥ 5 and n(1− p) ≥ 5

(rule of thumb), then X and the sample proportion p̂ = X/n are
both approximately normally distributed:

X ∼ N (np,
√

np(1− p))

p̂ ∼ N (p,

√
p(1− p)

n
)

approximately

We can use this to avoid the heavy Binomial calculations and
replace with easier Normal calculations:
The null distribution of Y is binomial, but sometimes can be
approximated by a normal dist.



Testing a proportion with a z-test

Back to original data: 87 radiologists, 30 sons.

1 H0 : p = 0.51 versus HA : p 6= 0.51
2 if H0 is really true , # of sons Y ∼ B(87, 0.51), which ≈

some normal distribution, because
np = 87 ∗ 0.51 = 44.37 > 5 and n(1− p) = 42.63 > 5.

µY =

87 ∗ 0.51

= 44.37, σY =

√
87 ∗ .51 ∗ .49

= 4.66.
So Y ∼ N (44.37, 4.66) approximately: null distribution.

3 30 sons observed. As or more extreme: Y ≤ 30 or Y ≥ 59.

p-value = 2 IP{Y ≤ 30|p = 0.51} ≈ 2 IP

{

Z ≤ 30− 44.37
4.66

}
=

2 IP{Z ≤ −3.08}

= 0.002.

4 Accept HA at α = .005 level. Strong evidence against H0.



Testing a proportion with a z-test

Same test, but using the sample proportion: p̂ = 30/87 = 0.345

1 H0 : p = 0.51 versus HA : p 6= 0.51
2 if H0 is really true , sample proportion p̂ is approximately

normally distributed because
np = 87 ∗ 0.51 = 44.37 > 5 and n(1− p) = 42.63 > 5.

mean: p = 0.51, std. dev: σp̂ =

√
.51 ∗ .49/87

= .0536 so

p̂ ∼ N (.51, .0536) approx.

3 p̂ = .345 observed.

p-value = 2 IP{p̂ ≤ .345|p = 0.51} ≈ 2 IP

{

Z ≤ .345− .51
.0536

}
=

2 IP{Z ≤ −3.08}

= 0.002.

4 Accept HA at α = .005 level. Strong evidence against H0.



R commands for z-tests

Using the normal approximation for Y :
> 2* pnorm(30, mean=44.37, sd=4.663)
[1] 0.002058

Using the normal approximation for sample proportion p̂:
> 2* pnorm(30/87, mean=.51, sd=.0536)
[1] 0.002059
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Confidence intervals for proportions

What is the probability of getting the flu if one

has gotten the shot during the Fall,

and is in contact with the virus in the winter?

Experiment: Randomly sample n = 37 persons, get them the
shot in the Fall. Expose them to the virus in December.
Y = # of persons in the experiment who get the disease (the
shot didn’t give them enough protection). We observe y = 5.

p = true value in the population: proportion or probability.

p̂ = Y/n observed value. Here p̂ = 5/30 = 0.17.

Goal: 95% confidence interval for p.



Confidence intervals for proportions

Recall distribution of p̂:

Mean of p̂: µp̂ = p,

Std. dev., or standard error of p̂: SEp̂ =

√
p(1− p)

n
.

If large n (i.e np ≥ 5 and n(1− p) ≥ 5), then approximately
normal distribution.

p̂ lies in p ± 1.96

√
p(1− p)

n
in about 95% of experiments, i.e.

p lies in p̂ ± 1.96

√
p(1− p)

n
in about 95% of experiments.



Wald-type confidence intervals

First idea: plug-in p̂ in place of p and use

p̂ ± 1.96

√
p̂(1− p̂)

n

as a 95% confidence interval.

Flu cases: y = 5 out of n = 30, so p̂ = 5/30 = .17 and√
.17(1−.17)

30 = .07. Wald-type 95% confidence interval:
.17± 1.96 ∗ .07 = .17± .13 i.e. (.033, .300)

BUT: this does not work very well. p lies in p̂ ± 1.96
√

p̂(1−p̂)
n in

84% of the experiments if n = 10 and p = .3,

65% of the experiments if n = 10 and p = .1,

We are over-estimating our confidence.



Agresti-Coull confidence intervals

Instead: We pretend we have 4 more observations (i.e. sample
size is n + 4) and that out of those 4 extra observations, there
are 2 successes and 2 failures (i.e. # successes is Y + 2).

p̃ =
y + 2
n + 4

and SEp̃ =

√
p̃(1− p̃)

n + 4

A 95% confidence interval for p is

p̃ ± 1.96 SEp̃

p lies in p̃ ± 1.96
√

p̃(1−p̃)
n in

95.2% of the experiments if n = 10 and p = .3,

93% of the experiments if n = 10 and p = .1,

We are no more over-estimating our confidence!



Agresti-Coull confidence intervals

Example: n = 30, y = 5 flu cases.

We get p̃ = (5 + 2)/(30 + 4) = .21 and
SEp̃ =

√
.21 ∗ .79/34 = .07.

Our 95% confidence interval is (0.070, .342).



How big should n be?

How many people should I sample so that my margin of error is
at most 1% ?

margin or error = 1.96∗SE, so it means SE at most 0.5%, i.e
SEp̃ ≤ 0.005. But SEp̃ is

SEp̃ =

√
p̃(1− p̃)

n + 4
≤

√
1/4

n + 4

We then need (safe choice)

n =
1

4(Desired SE)2 − 4

Example: for SE at most 0.005, we need n ≥ 10, 000− 4.
That’s why polls are usually done on several thousands people.
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