## Outline



#### The chi-square test for proportions

- Can humans generate random numbers?
- The chi-squared statistic
- Case of 2 categories
- How to do it in R

### Testing more than 1 proportion more than success/fail

We saw 2 ways to test a proportion with  $H_0$ :  $p_{success} = p_0$ : binomial test,

or the z-test (if  $np_0$  and  $n(1 - p_0) > 5$ ).

What if more than 2 categories (success/fail)?

Example: online survey in Springs 2005 and 2006. Last question: "Select a number between 0 and 9 at random."

Are humans able to pick numbers at random in an unbiased way, i.e. with same probability for each digit?



## Example with one sample, 10 proportions

|                       | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | total |
|-----------------------|------|------|------|------|------|------|------|------|------|------|-------|
| 2005                  | 3    | 6    | 5    | 17   | 12   | 8    | 9    | 22   | 9    | 10   | 101   |
| 2006                  | 5    | 1    | 29   | 26   | 17   | 15   | 12   | 26   | 13   | 9    | 153   |
| combined              | 8    | 7    | 34   | 43   | 29   | 23   | 21   | 48   | 22   | 19   | 254   |
| sample<br>proportions | .031 | .028 | .134 | .169 | .114 | .091 | .083 | .189 | .087 | .075 |       |

Do humans have a bias, i.e. do not select all digits with the same probability? Do we have evidence against

 $H_0: p_0 = p_1 = p_2 = p_3 = \dots = p_9 = 1/10 = 0.1$ versus  $H_A:$  at least one  $p_i \neq 0.1$  ?

The binomial or z-test can help us with a single question, like  $p_0 = 0.1$  vs.  $p_0 \neq 0.1$ , but cannot handle more complex questions from > 2 categories. The chi-square test can!

### Chi-square test, goodness of fit

|                              | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | total |
|------------------------------|------|------|------|------|------|------|------|------|------|------|-------|
| observed                     | 8    | 7    | 34   | 43   | 29   | 23   | 21   | 48   | 22   | 19   | 254   |
| expected<br>under <i>H</i> 0 | 25.4 | 25.4 | 25.4 | 25.4 | 25.4 | 25.4 | 25.4 | 25.4 | 25.4 | 25.4 | 254   |
| $\frac{(O_i - E_i)^2}{E_i}$  | 11.9 | 13.3 | 2.9  | 12.2 | .5   | .2   | .8   | 20.1 | .5   | 1.6  | 64.0  |

Expected counts:  $E_i = \text{Row total } * p_i = np_i$ Test statistic: measure of similarity

$$X^2 = \sum_{\text{all cells}} \frac{(\text{obs} - \text{exp})^2}{\text{exp}}$$

(use counts, not proportions)

Here:  $x^2$  =

$$= 11.9 + 13.3 + \cdots + 1.6 = 64.0$$

# The $\chi^2$ distribution

 $X^2 = 0$  when data and  $H_0$  in perfect agreement ( $O_i = E_i$ ) If  $H_0$  is true,  $X^2$  close to 0: it has a  $\chi^2$  distribution on 10 - 1 = 9 degree of freedom here.

If  $H_A$  is true,  $X^2$  will be bigger. More extreme = larger



benchmark:  $X^2 \leq df$  supports  $H_0$ .

### Null distribution, p-value and conclusion

Why 9 df? Once 9 of the probabilities are fixed, no freedom for the 10th probability.

degree of freedom for chi-square test, goodness-of-fit with *c* categories, df = c - 1.

p-value =  $\mathbb{P}\{\chi_9^2 \ge 64.0\} = 2.225e - 10 < 0.001$ Use the chi-square table A (p.669-671):

| df |  | 0.05  | .025  | 0.01  | .005  | .001  |
|----|--|-------|-------|-------|-------|-------|
| 1  |  | 3.84  | 5.02  | 6.63  | 7.88  | 10.83 |
| 2  |  | 5.99  | 7.38  | 9.21  | 10.6  | 13.82 |
|    |  |       |       |       |       |       |
| 9  |  | 16.92 | 19.02 | 21.67 | 23.59 | 27.88 |

Conclusion: very strong evidence that humans have a bias when picking a digit at random.

Chi-square test: facts and assumptions

For 2 categories (success/fail) and one proportion:

the chi-square test is equivalent to the z-test

The chi-square distribution is only an approximation to the true null distribution, i.e. the p-value obtained is an approximation to the true p-value.

just like the z-test uses the normal to approximate the binomial.

Assumption, for the validity of the  $\chi^2$  test

*n* is large enough, for all expected counts  $np_i$  to be > 5.

Always double-check.

here: the smallest  $E_i$ 's was 25.4.  $\checkmark$ chisq.test() in R gives a warning if some  $E_i$ 's are < 5. other software of calculators may not...

### Chi-square test, goodness of fit, with 1 proportion

Recall missing sons,  $H_0$ : p = 0.51. Test statistic: male female total 30 Oi 57 87 Ei 44.4 42.6 87

Expected counts:  $E_i = \text{Row total } * p_i = np_i$ 

$$X^2 = \sum_{\text{all cells}} \frac{(\text{obs} - \text{exp})^2}{\text{exp}}$$

Here:  $x^2 =$ 

= 4.65 + 4.84 = 9.50

More extreme is

so p-value =

### Chi-square test, goodness of fit, with 1 proportion

Use the chi-square table (p.669-671) for  $p = \mathbb{P}\{X^2 \ge a\}$ :

| df | <br>0.05  | .025  | 0.01  | .005  | .001  |
|----|-----------|-------|-------|-------|-------|
| 1  | <br>3.84  | 5.02  | 6.63  | 7.88  | 10.83 |
| 2  | <br>5.99  | 7.38  | 9.21  | 10.6  | 13.82 |
| 9  | <br>16.92 | 19.02 | 21.67 | 23.59 | 27.88 |

We get: < p-value < at df=1. Or use R:

```
> pchisq(9.50, df=1, lower.tail=FALSE)
[1] 0.002057
```

Notice that  $x^2 = 9.50 = (-3.082)^2$  where z = -3.082 is what we had from the z-test. Equivalent tests: same p-value.

One-sided alternative for  $\chi^2$  test

Appropriate only with 2 categories.

Here:  $H_A$ :  $p_{son} < 0.51$ .

First check that the data goes in is the same direction as  $H_A$ . if not: p-value > 0.50, accept  $H_0$ . if so: p-value = 1/2 that found from the table.

Here:  $\hat{p}_{son} = 30/87 = 0.34$  goes in the direction of  $H_A$ . p-value =  $1/2 * \mathbb{P} \{ X^2 > 9.498 \} = .001$ . Strong evidence that  $p_{son} < 0.51$  for male radiologists.

```
\chi^2 test in R: chisq.test()
```

```
> dat = c(8,7,34,43,29,23,21,48,22,19)
> x2 = sum((dat-25.4)^2/25.4)
> x^2
[1] 64.0315
> 1 - pchisq(64.0315, df=9)
2.225407e-10
> chisg.test(dat)
        Chi-squared test for given probabilities
data: dat
X-squared = 64.0315, df = 9, p-value = 2.225e-10
> chisq.test( c(30,87-30), p=c(.51,.49) )
        Chi-squared test for given probabilities
data: c(30, 87 - 30)
```

X-squared = 9.4979, df = 1, p-value = 0.002057

### $\chi^2$ test in R: prop.test() for success/fail

```
> prop.test(30,87,0.51)
```

1-sample proportions test with continuity correction

```
data: 30 out of 87, null probability 0.51
X-squared = 8.8485, df = 1, p-value = 0.002933
alternative hypothesis: true p is not equal to 0.51
95 percent confidence interval:
0.2482987 0.4552176
sample estimates:
        σ
0.3448276
> prop.test(30,87,0.51, correct=F)
        1-sample proportions test without continuity correction
data: 30 out of 87, null probability 0.51
X-squared = 9.4979, df = 1, p-value = 0.002057
alternative hypothesis: true p is not equal to 0.51
95 percent confidence interval:
0.2534266 0.4493523
sample estimates:
0.3448276
```

key R commands for proportions: recap

default probability for  $H_0$ , if not specified, is  $p_0 = 0.50$  with 2 categories, or (1/k, ..., 1/k) with *k* categories. default alternative is "two-sided"