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Big bend lizards tail length
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Big bend lizards tail length

We want to know µ, the mean tail length in the entire Big Bend
population of adult males of that lizard species.

> bigbend
[1] 8.8 9.7 10.8 7.1 6.6 9.9 10.2 8.6 10.4 11.9 7.6 8.0 8.5 9.4 9.4

[16] 7.4 8.3 9.1 9.2 7.9 8.4 11.3 6.2 8.8
> mean(bigbend)
[1] 8.895833
> sd(bigbend)
[1] 1.429953
> length(bigbend)
[1] 24

ȳ = 8.896 cm is our best estimate for µ.
How good is this estimate? How far is µ from 8.896 cm?



Standard error of the mean

We know the standard deviation of Ȳ is σ/
√

n. But we don’t
know σ. Hopefully, the standard deviation of the sample, s, is
close to σ.

SEȳ =
s√
n

is the standard error of the mean.

SEȳ is an estimate of the standard deviation of Ȳ , from expt to
expt: gives us an idea of how far ȳ is from µ typically (in a
typical experiment).

Here: s = 1.43 and n = 24, so SEȳ = 1.43/
√

24 = 0.292



SD of the data and SE of the mean

6 7 8 9 10 11 12
tail length (cm)

●

mean +/− SD : describes variation in data

●

mean +/− SE : describes error in mu

What happens to s (SD) when the sample size increases?

stays about the same: just gets closer to true σ.

What happens to SEȳ when the sample size increases?

becomes smaller and smaller:
ȳ more and more precise.



The t-distribution

If Y1, . . . , Yn have a normal distribution, Ȳ has one too, and

Ȳ − µ

σ/
√

n
∼ N (0, 1) .

Application: Ȳ and µ are no more than 2 σ/
√

n apart in 95%
experiments.

When we replace σ/
√

n by SE= s/
√

n,

Ȳ − µ

SE
=

Ȳ − µ

s/
√

n
∼ t-distribution, n − 1 degrees of freedom.

Application: Ȳ and µ are no more than ?how many? SE apart
in 95% experiments?



The t-distribution
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Mechanics of a confidence interval

1 Choose a confidence level. Typically, 95%. Polls use
90% or 95%.

2 Find the value t such that IP{−t ≤ T ≤ t} = confidence
level. It also means

IP{T ≥ t} = (1− confidence level)/2

use Table C, with degree of freedom df= n − 1.
3 Construct the interval: ȳ ± tSEȳ i.e.

(ȳ − tSEȳ , ȳ + tSEȳ )

4 Conclude:

We are 95% confident that the mean tail length of all adult male
lizards from this Big Bend population is between 8.29 cm and
9.50 cm.



Confidence interval: Big Bend lizards’ tail length
1 Confidence level. We will do both 90% and 95%.
2 Find the value t : such that IP{T ≥ t} = .05 for level 90%

and .025 for level 95%.
Degree of freedom: df=24− 1 = 23.
t-Table gives: t = 1.71 for 90% confidence and t = 2.07 for
95% confidence. With R:
> qt(.950, df=23) > qt(.975, df=23)
[1] 1.713872 [1] 2.068658

3 Interval: We had ȳ = 8.896, s = 1.430 and
SEȳ = 1.43/

√
24 = 0.292.

Radius of interval (bull’s eye): t ∗ SEȳ = 0.500 (90%
confidence) and 0.604 (95% confidence).
The interval is 8.896± 0.500 or 8.896± 0.604, i.e.

(8.396, 9.396) for 90% confidence
(8.292, 9.500) for 95% confidence

4 Conclude.



Degree of freedom: n − 1

Recall that

s2 =
1

n − 1

(
(y1 − ȳ)2 + · · ·+ (yn − ȳ)2

)
Remember example n = 3 and y1 − ȳ = 3, y2 − ȳ = 5. Then no
choice: y3 − ȳ had to be −8.

The last deviation is completely specified by the first n − 1.
The variance is completely specified by n − 1 deviations, or
n − 1 pieces of information.

df = # pieces of information needed for computing s2.

Imagine a sample with a single observation.



R: t.test() for confidence interval from raw data

> bigbend
[1] 8.8 9.7 10.8 7.1 6.6 9.9 10.2 8.6 10.4 11.9 7.6 8.0 8.5 9.4 9.4

[16] 7.4 8.3 9.1 9.2 7.9 8.4 11.3 6.2 8.8

> t.test(bigbend, conf.level = .90)

One Sample t-test
data: bigbend
t = 30.4769, df = 23, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
90 percent confidence interval:

8.395575 9.396092
sample estimates:
mean of x

8.895833

> t.test(bigbend) > t.test(boxcanyon)
... ...
95 percent confidence interval: 95 percent confidence interval:

8.292017 9.499649 9.631525 10.730975

!Warning! do not use 1-sample CIs for comparing 2 samples.



True or False?

95% CI for the mean tail length in Big Bend: 8.29-9.50 cm.

X

With the same data, a 99% confidence interval would be larger.

×

In a second sample of same size (24 lizards), there is a 95%
chance that the new sample mean will be in (8.29, 9.50).

×

The probability is 95% that the sample mean is in (8.29, 9.50).

×

The probability is 95% that the population mean is in (8.29, 9.50).

X

The confidence is 95% that the population mean is in (8.29,
9.50).

×

In the population, 95% of all adult male lizards are in (8.29, 9.50).

×

In the sample, 95% of all adult male lizards are in (8.29, 9.50).



Planning a study: how big should n be?

When planning a study, it is always a question we ask.

How many people am I going to interview?

How many blood samples to I need?

How many plants to I need to grow?

Trade-off between accuracy and cost.
We want just the right number n to reach the conclusion.

We need to set a goal.

Polls: “margin of error” at least as small as 1%.

Lizards: pilot study, expt to be repeated in 10 different
populations. We might want interval length ≤ 0.5 cm for
each.

Or: require SE no greater than a given size: SE ≤ 0.25 cm.



Planning a study: how big should n be?

Solving this problem requires a guess for the population SD.
It usually involves preliminary data.

Lizard tail length: guess is that SD = s = 1.43 mg.
Aim: SE ≤ 0.25 mg.
Then we solve SE = SD /

√
n

n =

(
guessed SD
desired SE

)2

n = (1.43/0.25)2 = 32.72 (no unit). We would sample 33
lizards for the next experiment / location.



Conditions for validity

1 Most importantly: the sampling process needs to be like
random sampling. Independence of observations,
sampled from the target population. At the end, we should
draw conclusions about the adequate population.

If the sampling process is biaised, the confidence interval
will greatly overstate the confidence we should have.

Example: milk yield quality (e.g. Somatic Cell Count). If
sampling biased toward large farms, confidence interval
likely to be unreliable.

2 The observations Y1, . . . , Yn should be from a normal
distribution if n is small, so that Ȳ is approximately normal.

How can we tell?



Detecting non-normality - Normal quantile plot
(section 13.1 in W&S)

Compare spacing among observations with that expected from
normal distribution:

6 7 8 9 10 11 12
tail length, Big Bend sample
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expected from Normal distribution: Z scores



6 7 8 9 10 11 12
tail length, Big Bend sample
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Detecting non-normality - Normal quantile plot
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If the points are close to a line, then we can say the data are
normally distributed.

It is easier to tell with a normal quantile plot than with a
histogram, even for small samples.



Detecting non-normality: qqnorm() - R demo

layout(matrix(1:2,1,2))
skewed.data = rgamma(10, shape=0.5)
hist(skewed.data, col="wheat")
qqnorm(skewed.data)

# non-linearity more pronounced with larger samples:
skewed.data = rgamma(30, shape=0.5)
hist(skewed.data, breaks=10, col="wheat")
qqnorm(skewed.data)

norm.dat = rnorm(10, mean=20) # fake data
hist(norm.dat,col="wheat"); qqnorm(norm.dat)
# repeat to get a sense of how ’linear’ the plot
# typically is for truly normal data

# less variation along the line with larger data sets:
norm.dat = rnorm(30, mean=20) # fake data
hist(norm.dat,col="wheat"); qqnorm(norm.dat)
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Paired vs. Independent samples

Treatments: A and B.

Paired samples: each observation on trt A is naturally
paired with an observation on trt B. Related or same
experimental units are used for both treatments.

Independent samples: no direct relationship between an
observation on trt A and an observation on trt B.

Choice of paired versus independent sample is an important
design issue. Data analysis follows the design.



Examples of two-sample comparisons

Compare tail length in 2 distant populations of the same
lizard species

Compare taste of cheese from cows on two different diets
(organic in the open vs. non-organic, hay/pellets)

Compare cholesterol level of patients before and after a
drug treatment

Baby weight at birth among smoking/non-smoking women



When, why should samples be paired?

Cholesterol example:
1 Cholesterol level of 10 patients before and after a drug

treatment.
2 Cholesterol level of 10 patients before treatment and of

another 10 patients after treatment.

Baby weight example: pairing women according to certain
traits. Effective only if it controls variability.

Paired sample studies usually preferred, because of
increased precision (i.e. reduced variability) in estimating
treatment differences.

If 3 or more treatments, blocking replaces pairing.



Paired samples - Blood pressure example

Question of interest: is there any evidence that a particular
drug has an effect on blood pressure?

Experiment : on 15 middle-aged male hypertension patients.
For each patient, blood pressure is measured at time of
enrollment and again after 6 months of the drug treatment.



Blood pressure (mm Hg)
Subject Before (Y1) After (Y2) Difference (D = Y1 − Y2)

1 90 88 2
2 100 92 8
3 92 82 10
4 96 90 6
5 96 78 18
6 96 86 10
7 92 88 4
8 98 72 26
9 102 84 18

10 94 102 -8
11 94 94 0
12 102 70 32
13 94 94 0
14 88 92 -4
15 104 94 10



µ1 = population mean blood pressure before the drug trt
µ2 = population mean blood pressure after the drug trt
µD = µ1 − µ2 = population mean of the difference

Confidence interval from paired samples
A (1− α) CI for the difference of means µ1 − µ2 = µD is

d̄ − tn−1,α/2
sd√

n
≤ µD ≤ d̄ + tn−1,α/2

sd√
n

Assumptions:

random sample of subjects (independence),

D values have a normal distribution, or large sample size.

Check normal quantile plot of D.

No normality assumption about Y1, or about Y2.

Y1 and Y2 are not independent due to pairing: that’s okay.



Confidence interval for the difference

From the D values of the n = 15 subjects:
d̄ = 8.80 mm Hg, sd = 10.98

t multiplier for 95% confidence: use t-distribution with
df= 15− 1 = 14: t.025,14 = 2.145.

Standard error of the mean: SE= sd/
√

15 = 2.835 mmHg

interval:

8.80− 2.145 ∗ 2.835

≤ µD ≤

8.80 + 2.145 ∗ 2.835

We are 95% confident that the population mean decrease in
blood pressure after 6 months of treatment lies between 2.72
and 14.88 mm Hg (or 8.80± 6.08).



Checking the normality assumption
bpbefore =c(90,100,92,96,96,96,92,98,102,94,94,102,94,88,104)
bpafter = c(88, 92,82,90,78,86,88,72,84,102,94, 70,94,92, 94)
bpdiff = bpbefore - bpafter
qqnorm(bpdiff, main="Normal quantile plot for D values")
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The t-test for paired samples

D = Y1 − Y2 is the blood pressure difference.

Paired samples
Testing µ1 = µ2 or µ1 6= µ2 is equivalent to testing

H0 : µD = 0 vs HA : µD 6= 0.

A one-sample t-test can be used on the differences:

T =
D̄ − 0

SD/
√

n

If H0 is true, T ∼ t-distribution on df= n − 1 = # pairs −1.

Same assumptions as CI:

random sample of n subjects,

normal distribution for D, or large sample size.



The t-test on blood pressure

1 H0: µD = 0 and 2-side test HA: µD 6= 0.

2 If H0 is true, T =
D̄ − 0

SD/
√

n
has a t-distribution on

df =

n − 1 = 14

3 We observed d̄ = 8.80 mm Hg, sd = 10.98 and
SE= 10.98/

√
15 = 2.835.

The observed t-value is

t =

8.80− 0
2.835

= 3.10

As extreme: T = −3.10 or 3.10, more extreme: T > 3.10
or T < −3.10. The p-value is 2IP{T14 df ≥ 3.10}, which is
between 0.002 and 0.01 from Table C.

4 There is strong evidence against H0: the drug is deemed
beneficial.



Statistical significance vs. biological importance

Warning: This t-test of H0: µD = 0 tells us only about statistical
significance.

The confidence interval tells us also about biological
importance: average improvement between 2.72mmHg and
14.88.

If a difference of 5 mm Hg is needed for biological significance,
we could test H0 : µD = 5 vs. HA : µD 6= 5. For this, use
T = D̄−5

SD/
√

n
.

Direct relationship between CI and t-test
0 mmHg outside the 95% CI ↔ "µD = 0" is rejected at α = 0.05.
5 mmHg outside the 95% CI ↔ "µD = 5" is rejected at α = 0.05.



R commands: t.test()

> # first enter the data
> bpbefore =c(90,100,92,96,96,96,...,102,94,88,104)
> bpafter = c(88, 92,82,90,78,86,..., 70,94,92, 94)
>
> # Now do the paired t-test and 95% CI
> t.test( bpbefore - bpafter )

One Sample t-test

data: bpbefore - bpafter
t = 3.1054, df = 14, p-value = 0.00775
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:

2.722083 14.877917
sample estimates:
mean of x

8.8



R commands: t.test()

Or use t.test with both sets of original values (before & after),
and the option paired=TRUE :

> t.test(bpbefore, bpafter, paired=TRUE)

Paired t-test

data: bpbefore and bpafter
t = 3.1054, df = 14, p-value = 0.00775
alternative hypothesis: true difference in means is not
95 percent confidence interval: equal to 0

2.722083 14.877917
sample estimates:
mean of the differences

8.8



What if the normality assumption is not met?

Skin graft : skin from cadavers can provide temporary skin
grafts for severely burned patients. The longer the graft
survives before its inevitable rejection, the more the patient
benefits. Investigate the usefulness of matching graft to patient
w.r.t. HL-A antigen system. Each received 2 grafts: one with
close HL-A compatibility, the other with poor compatibility.
Graft survival times in days:

Patient 1 2 3 4 5 6 7 8 9 10 11

close: Y1 37 19 ≥ 57 93 16 23 20 63 29 ≥ 60 18
poor: Y2 29 13 15 26 11 18 26 43 18 42 19

d: Y1 − Y2 8 6 42+ 67 5 5 −6 20 11 18+ −1

2 incomplete observations: patient 3 died before one graft was
rejected, unspecified reason for patien 10.



Problem: incomplete data & non-normality

Normal quantile plot for
incomplete d values:
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signs of d well determined:
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9 of 11 patients had longer time
with graft of close HL-A
compatibility. Is this difference
(9 vs. 2) significant?



The sign test

Idea: simply look at the signs of differences, i.e. at which
treatment worked best (regardless of how much better) for each
patient.

H0: median of D is 0, i.e.
IP{close HL-A comp. is better} =

IP{poor HL-A comp. is better} = 0.5.

Here a one-sided alternative is appropriate (we already know
about HL-A compatibility):

HA: median of D is positive, i.e.
IP{D > 0} = IP{close HL-A comp. is better} > 0.50.



The sign test: binomial test on # of > 0 differences

Test statistic: Y+ = # of + signs. 9 here, out of 11.

If H0 is true, for each subject there is a 50% chance to
observe +. So

Y+ ∼ B(n, 0.5) if H0 is true

p-value: More extreme than Y+ = 9 (or as extreme as)
means Y− = 9, 10, 11 (one-sided test)

p-value = IP{Y+ ≥ 9} = 0.0327

sum(dbinom(9:11, size=11, prob=.5))

Conclusion: Reject H0. There is moderate evidence that
the skin grafts tend to last longer when the HL-A
compatibility is close than when it is poor.



The sign test: What if there are ties?

Tie: y1 = y2 for some subject. Then d = 0 for this subject. No
sign!!

Exclude all zeros, and decrease the sample size accordingly.

Example: If the differences were
Patient 1 2 3 4 5 6 7 8 9 10 11

close: Y1 37 13 ≥ 57 93 16 23 20 63 29 ≥ 60 18
poor: Y2 29 13 15 26 11 18 26 43 18 42 19

d: Y1 − Y2 8 0 42+ 67 5 5 −6 20 11 18+ −1
sign + 0 + + + + − + + + −

Y− = 2 as before, but Y+ = 8 and n =2 + 8 = 10, not 11.
p-value = IP{Y+ ≥ 8|n = 10} = 0.0547.
sum(dbinom(8:10, size=10, prob=.5))



R: sign(), table() and binom.test()

> y.close = c(37,19,57,93,16,23,20,63,29,60,18)
> y.poor = c(29,13,15,26,11,18,26,43,18,42,19)
> ydiff = y.close - y.poor

> sign(ydiff)
[1] 1 1 1 1 1 1 -1 1 1 1 -1

> table(sign(ydiff))

-1 1
2 9

> binom.test(9, 9+2, alternative="greater")
Exact binomial test

data: 9 and 9 + 2
number of successes = 9, number of trials = 11, p-value = 0.03271
alternative hypothesis: true prob. of success is greater than 0.5
95 percent confidence interval:

0.5299132 1.0000000
sample estimates:
probability of success

0.8181818



Limitations and Wilcoxon signed-rank test
The sign test has

low power: less powerful than the t-test

but does not assume anything other than independence
(random sample). No distribution assumption.

Alternative: the Wilcoxon signed-rank test. Uses the signs
and part of the magnitude information.

More powerful than the sign test, but assumes a symmetric
distribution.

Less powerful than the t-test, but does not assume the
normal distribution

> wilcox.test(y.close, y.poor, paired=T, alternative="greater")
Wilcoxon signed rank test with continuity correction

data: y.close and y.poor
V = 60.5, p-value = 0.008131
alternative hypothesis: true location shift is greater than 0
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