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Independent samples

Compare mycorrhizal colo-
nization in soil from high-
sinigrin black mustard com-
munities (11 rep) and low-
sinigrin black mustard

Is there evidence of an effect
of black mustard (high/low sin-
igrin) on fungus colonization?



Mycorrhizal colonization example

Data: mycorrhizal colonization (% of root section), in
high-sinigrin (hi) and low-sinigrin (lo) communities.

community hi (Y1) lo (Y2)
1 4.43 11.07
2 2.18 7.89
3 6.64 7.89
4 4.41 8.12
5 3.70 8.11
6 4.79 10.79
7 3.38 10.30
8 8.37 7.21
9 2.94 5.77

10 6.92 10.47
11 7.24 8.09

No pairing: observations can
be permuted within each trt
(column).

% fungus colonization

low
sinigrin

high
sinigrin

2 3 4 5 6 7 8 9 10 11

ȳ1 = 5, s1 = 2.0
ȳ2 = 8.7, s2 = 1.7



Mycorrhizal colonization

µ1 = the population mean fungus colonization in
communities assigned to high-sinigrin black mustard,
µ2 = the population mean fungus colonization with
low-sinigrin.

We want a confidence interval for µ1 − µ2, or test
H0 : µ1 = µ2 versus HA : µ1 6= µ2.
µ1 = µ2 means µ1 − µ2 = 0.

Main idea: use Ȳ1 − Ȳ2.

if Ȳ1 − Ȳ2 is close to 0, we will favor

H0

if Ȳ1 − Ȳ2 is far from 0, we will favor

HA

Here ȳ1 − ȳ2 = 5− 8.7 = −3.7 (% root section difference).



Assumptions

1 Independent random samples Y1 and Y2: independence
within a trt and between two trts

apart from the fact that all outcomes from the same sample
share the same mean and variance.

2 Normality: the first sample Y11, Y12, . . . , Y1n1 is from
N (µ1, σ

2
1),

second sample Y21, Y22, . . . , Y2n2 is from N (µ2, σ
2
2).

3 Equal variances: σ2
1 = σ2

2 = σ2.

No need to have equal sample size.



Under these assumptions, we can pool the 2 samples to
estimate their common variance:

Pooled estimated of σ2

S2
p =

sum of all deviations2

n1 − 1 + n2 − 1
=

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

weighted average of S2
1 and S2

2 , weighted by the df’s.

Standard error of Ȳ1 − Ȳ2

SEpooled= Sp

√
1
n1

+
1
n2



Confidence interval for µ1 − µ2

CI assuming equal variances

A (1− α) confidence interval for µ1 − µ2 is

Ȳ1 − Ȳ2 ± tdf,α/2 ∗ SEpooled

where df= n1 + n2 − 2, and recall SEpooled= sp

√
1
n1

+ 1
n2

.

Black mustard: we had ȳ1 − ȳ2 = 5− 8.7 = −3.7 (in % root
section), s1 = 2.0 and s2 = 1.7, with n1 = n2 = 11.

Pooled estimate of σ: sp =

√
10∗2.02+10∗1.72

10+10

= 1.856

Standard error of Ȳ1 − Ȳ2:

sp ∗
√

1
11 + 1

11

= .791
df=

22− 2 = 20

so t-multiplier: t = 2.086 for 95% confidence.

Interval: −3.7± 2.086 ∗ 0.791 = (−5.35,−2.05)



The two-sample t-test

1 Hypotheses: H0 : µ1 = µ2 versus HA : µ1 6= µ2

2 Test statistic:

T =
Ȳ1 − Ȳ2 − 0

SEȲ1−Ȳ2, pooled

If H0 is really true then T ∼ t-distribution with df= n1 + n2 − 2

3 Get p-value: we had ȳ1 − ȳ2 = 5− 8.7 = −3.7 (in % root
section),
Pooled standard error of Ȳ1 − Ȳ2: SE= .791
t-value: t =

− 3.7/.791

= −4.67
df=

22− 2 = 20

, so p-value: 2IP{T20 < −4.67} < .001

4 We

reject

H0. Or: There is

very strong

evidence that fungus colonization is affected by the type of
black mustard community.



The test and the CI are consistent

0 is outside the (1− α) confidence interval for µ1 − µ2

⇔

µ1 − µ2 = 0 is rejected at level α, i.e. p-value for this test is < α.

fungus colonization: p-value was < 0.001.

95% CI for µ1 − µ2: [−5.35,−2.05] % of root sections,
99% CI (check at home): [−5.95,−1.45]
99.9% CI : [−6.74,−0.65]



R command: t.test()

> # enter the data:
> lo = c(11.07,7.89,7.89,8.12,...,7.21,5.77,10.47,8.09)
> hi = c( 4.43,2.18,6.64,4.41,...,8.37,2.94, 6.92,7.24)
>
> # do the test:
> t.test(hi, lo, var.equal=T, conf.level=.99)

Two Sample t-test

data: hi and lo
t = -4.6786, df = 20, p-value = 0.0001444
alternative hypothesis: true difference in means is not equal to 0
99 percent confidence interval:

-5.951651 -1.450167
sample estimates:
mean of x mean of y

5.000000 8.700909



Another example

Compare fungus colonization in high-sinigrin and in
heterospecific communities (mixed species, no black mustard).

●

heterospecific high sinigrin low sinigrin
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ȳhet = 7.0, shet = 2.1, nhet = 33
ȳhi = 5.0, shi = 2.0, nhi = 11
ȳlo = 8.7, slo = 1.7, nlo = 11.

Test µhi = µhet.



Welch T-test allowing unequal variances

> liz
tail.length location

1 8.8 bigbend
2 9.7 bigbend
3 10.8 bigbend
...
38 10.3 boxcanyon
39 9.5 boxcanyon
40 11.4 boxcanyon
> with(liz, tapply(tail.length, location, mean))

bigbend boxcanyon
8.8958 10.1812

> with(liz, tapply(tail.length, location, sd))
bigbend boxcanyon

1.4299 1.0316 Big Bend Box Canyon
n 24 16
mean 8.90 10.18
sd 1.43 1.03

ȳ1 − ȳ2 = −1.28, but how big could that be by chance alone?



Standard Error for ȳ1− ȳ2, not requiring equal variance

SE’s don’t add up, but variances do:

SEȳ1−ȳ2 =
√

SE2
ȳ1

+ SE2
ȳ2

that is:

SEȳ1−ȳ2 =

√
S2

1

n1
+

S2
2

n2



Welch t-test: not requiring equal variances

Test of H0: µ1 = µ2, no variance requirement

Same test statistic: T =
Ȳ1 − Ȳ2

SEȳ1−ȳ2

but SEȲ1−Ȳ2
=

√
S2

1

n1
+

S2
2

n2
.

The p-value is obtained by comparing the value of T with a
t-distribution with adjusted degree of freedom

df =
(v1 + v2)

2

v2
1

n1−1 +
v2

2
n2−1

where v1 = SE2
1 = S2

1/n1 and v2 = SE2
2 = S2

2/n2.

df will not necessarily be an integer, but round it down.
df always ≤ n1 +n2−2 and ≥ the minimum of n1−1 and n2−1.



Lizard tail lengths

ȳ1 − ȳ2 = −1.28 cm longer tails in Big Bend lizards than Box
Canyon lizards.
v1 = 1.432/24 = .0852, v2 = 1.032/16 = .0665, then

SEȳ1−ȳ2 =
√

.0852 + .0665 = 0.389 cm, and

df= 37.7 (> smallest of 23 and 15, and ≥ 23 + 15 = 38)

t = −1.28/0.389 = −3.30

Table C with df= 37: .001 < p-value < .01 with a two-sided test.

There is strong evidence that the 2 lizard populations have
different mean tail lengths.



Welch confidence interval

CI for µ1 − µ2 allowing unequal variances

A (1− α) confidence interval for µ1 − µ2 is

ȳ1 − ȳ2 ± t ∗ SEȳ1−ȳ2

where t = tdf,α/2 and df is the adjusted degree of freedom ,
and

SEȳ1−ȳ2 =

√
s2

1

n1
+

s2
2

n2
.

For lizard tails and 90% confidence we get t = t37.7,.05 = 1.686
and interval:

−1.28± 1.686 ∗ 0.389

i.e. [-1.94, -0.63] more cm on average for Big Bend lizards than
Box Canyon lizards, i.e. [0.63, 1.94] more cm for Box Canyon
lizards on average.



There are many ways to use t.test()

> bigbend
[1] 8.8 9.7 10.8 7.1 6.6 9.9 10.2 8.6 10.4 11.9 7.6 8.0 ...

[16] 7.4 8.3 9.1 9.2 7.9 8.4 11.3 6.2 8.8
> boxcanyon

[1] 10.7 8.8 9.9 10.9 10.4 11.1 12.0 9.5 10.9 8.1 9.0 9.8 ...
[16] 11.4

> t.test(bigbend, boxcanyon)

Welch Two Sample t-test

data: bigbend and boxcanyon
t = -3.3001, df = 37.699, p-value = 0.002119
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-2.0741421 -0.4966912
sample estimates:
mean of x mean of y

8.895833 10.181250

> t.test(bigbend, boxcanyon, var.equal=T)
... t = -3.0933, df = 38, p-value = 0.003701
... 95 percent confidence interval: -2.1266512 -0.4441821



> liz
tail.length location

1 8.8 bigbend
2 9.7 bigbend
...
39 9.5 boxcanyon
40 11.4 boxcanyon

> t.test(tail.length ~ location, data=liz)

Welch Two Sample t-test

data: tail.length by location
t = -3.3001, df = 37.699, p-value = 0.002119
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-2.0741421 -0.4966912
sample estimates:

mean in group bigbend mean in group boxcanyon
8.895833 10.181250



Which t-test should I use?

Assumptions (Welch t-test, not requiring equal variances)
1 Independence, within and among samples,
2 Each sample comes from a Normal distribution or is large

enough.

If software allows: Welch t-test by default.

On exams: either (unless indicated otherwise), but assess the
equal variance assumption if using standard t-test: Definitely
use the Welch t-test if

the sample SDs differ by 3-fold or more

or the sample sizes are very different.
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Experimental study:
Compare 2 drugs and
determine which is more
effective in controlling some
form of cancer:

take a # of patients
available,

randomly assign them to
drug type.

The experimenter controls the
randomization to experimental
conditions (who gets what),
although there can be other
factors (age, weight, etc.) that
affect the outcome.

Observational study:
on the effect of asbestos on
causing some form of cancer.

Take a group of people
with this type of cancer,
see what proportion had
exposure to asbestos.

Look at a control group
without cancer, see what
proportion had exposure.

No random assignment of
individuals to treatment.
How is the control group
selected? Difficult!



Experimental versus Observational studies

In general, observational studies are more difficult to carry out,
analyze and interpret.

Babies and Smoking Example.
Pregnant women (smoking and control: non-smoking) were
followed with their babies. There was strong statistical evidence
that the mean birth weight of smoker’s babies is lower than
mean birth weight of non-smokers babies.



Association is not causation - Confounded effects

We can conclude that smoking and light babies are associated .
We cannot conclude that smoking causes lower weight.

Ice cream and drowning deaths: There is strong evidence
that the average # of drowing deaths is higher on days when ice
cream sales are higher than on days when ice cream sales are
lower.

Association ice cream sales ↔ # drowing deaths
No causal relationship!

Possible confounder:

temperature



Association is not causation - Confounded effects

We can conclude that smoking and light babies are associated .
We cannot conclude that smoking causes lower weight.

Possible effects of smoking could be confounded with many
other explanations:

Woman’s weight,

nutritional habits,

age, activity, etc.

To turn association into causation, need to compare 2 groups
(smoking/non smoking) very similar with respect to all other
things.



Second study:

A large # of variables were measured. A complex
statistical method that simultaneously estimates the effects
of several explanatory variables (weight, activity, nutritional
habits, race, etc.) found that even after making
adjustments for these other factors, smoking still had an
effect on birth weight.

(Did these people think about all explanatory variables?)

Third study:

found differences in the placenta between smokers and
non-smokers, and some of the differences were associated
with chemicals found in cigarettes. Also found that having
smokers not smoke for 3 hours caused a change in blood
flow to the placenta.



Fourth study:

159 women smoked during the 1st pregnancy but not
during 2nd pregnancy. Matched with 159 other women who
had smoked during both pregnancies and for whom other
explanatory variables (age, etc.) were similar. Found that
those who quit smoking had heavier 2nd babies than those
who continued to smoke.

It takes all this to address confounding and establish causal
relationship!



Experimental studies more powerful than observational studies:

to show causation,

if the units are randomized

to avoid confounding effects.

(more on randomization later)



Importance of blinding

Blind experiment: The experimental subject does not know
what treatment he/she is receiving.
Double-blind: the physician, or the person making the
measurements does not know the treatment.

One gets excited about a new treatment (researchers and
physicians especially!), and may give better care to patients
receiving the new treatment, either consciously or not.

Blinding is extremely important!



Importance of control groups

College students volunteered in experiment to test a vaccine for
preventing the common cold.

Mean # of colds
n previous year current year

Vaccine 201 5.6 1.7

Placebo 203 5.2 1.6

Placebo effect is strong! The drop in the vaccine group
might be due to the placebo effect only.

The # of colds were based on students’ memories
(previous year) or active count (current year). Can it make
a difference?



Missing data should not be ignored

A study compares 2 drugs. Some patients died over the course
of the study. No data about their blood components.
If they died because of the treatment they received, it would not
be appropriate to drop them from the analysis.

Some patients dropped from the study. For these patients,
partial data is available.
If they dropped because they thought the treatment was not
working, it is not appropriate to exclude them from the analysis.

In general, ignoring missing data can bias the conclusions.



Completely randomized design (CRD)
Consider 2 treatments (A and B), a greenhouse bench, and 6
available pots.

Allocate 3 A’s and 3 B’s, at
random:
1-3 receive A, 4-6 receives B.
Then randomly assign numbers to
pots.

> sample(1:6)
[1] 1 3 4 6 5 2

Here number of pots known in advance.

In medical studies, very often, we don’t know how many
patients will accept to enter the study. Each time a patients
comes up, we can toss a coin. Heads: A, Tail: B. We might
not get as many A’s as B’s at the end of the study.

Or: randomize (toss a coin) every other patient.



Why must we randomize?

To avoid bias , known or unknown.

Randomization will avoid confounding with other variables.
Age, gender, weight, sunlight, temperature, etc., will tend to be
equally balanced in the 2 groups.

There are many different ways to randomize. Be creative!



Randomized complete block design (RCBD)

wall

light

Light is known to affect outcome, even if we don’t care!
Pots divided into blocks, such that conditions are similar within
a block.

Randomize within each block:
A
B

or
B
A

.

Toss a coin only once for each block → reduction of
randomization.



Randomized complete block design (RCBD)

Medical study: individuals are grouped into blocks, or strata.

men

men women

women

young young

old old

A, B
B, A

B, A

B, A

B, A
A, B
B

B, A
A, B
A

Randomize within blocks: ensure about the same number of
men and women, and about the same number of old and young
subjects in all treatment. No bias toward younger people in
group A, or toward one gender in group A.



When should we block?

We use blocking if it helps remove variability.

We should use blocks when
Homogeneity within blocks: outcome expected to be similar
within blocks,
Major variability expected between blocks.

Example: Pairing. Study of effect of coffee on pulse rate.

before coffee

after coffee

a

1 block = 1 subject

5 sujects total

With pairing, variability within “columns” is much reduced.



Nesting

Bioremediation of contaminated soil. We wish to compare 2
treatments on a lead compound. We have 6 “large” areas. We
assign treatments by CRD.

Only 1 treatment can be assigned to each area, but 4
measures (soil cores) on lead compound are taken from each
area: makes 24 measures.



Nesting
treatment A treatment B

Area 1 Area2 Area 3 Area 4 Area 5 Area 6
y11 y21 y31 y41 y51 y61

y12 y22 y32 y42 y52 y62

y13 y23 y33 y43 y53 y63

y14 y24 y34 y44 y54 y64

ȳ1 ȳ2 ȳ3 ȳ4 ȳ5 ȳ6

Is it reasonable to group all “A” observations (left), group all B
observations (right), and perform a 2-independent sample t-test
to compare the 2 groups?

No! The 4 readings on each plot are expected to be similar to
each other. Readings are nested within plots.

1 Use a more complex model and analysis,
2 Or: reduce data to plot means, and do a 2-sample t-test on

these data.
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