Outline

Comparing two proportions

- The genotype/phenotype example
- Confidence interval
- Smoking cessation
- 2 The chi-square of independence/association
 - Eye & hair color example
 - The test
 - Assumptions and corrective actions
 - genotype/phenotype association
 - chisq.test
 - Comparison with goodness-of-fit chi-square test

Comparing Two Proportions

Association genotype - phenotype: cross 2 inbred lines of mice, one lean, one naturally obese. Backcross with the lean parent: F2 mice.

genotype at a given locus (one among thousands): LO or LL.

L=A,C,G or T, whatever the lean inbred parent line has. O=A,C,G or T, whatever the obese inbred parent line has. phenotype: either lean or obese.

- $p_{LL} = p_1$: probability of obese phenotype among F2 backcrosses with genotype LL at the locus,
- $p_{LO} = p_2$: probability of obese phenotype among F2 backcrosses with genotype LO at the locus.

Confidence interval for $p_1 - p_2$ (with 2 × 2 tables)

Data: $n_{LO} = 105$, $Y_{LO} = 71$ mice with genotype LO are obese, $n_{LL} = 87$, $Y_{LL} = 45$ with genotype LL are obese.

 $p_1 = \mathbb{P} \{ \bigcirc | \text{ treatment 1 :LO} \} \text{ and } p_2 = \mathbb{P} \{ \bigcirc | \text{ tmt 2: LL} \}$

Next: confidence interval for $p_1 - p_2$, chi-square test for H_0 : $p_1 = p_2$.

textbook: CI for odds ratio. We cover CI for proportions instead.

Confidence interval for $p_1 - p_2$

Same trick we saw before: add 4 fictitious individuals (mice), one in each cell (no favorite cell!) drug 1 drug 2

treatment 1 treatment 2

$$\begin{array}{c} \bigcirc \\ y_1 + 1 \\ y_2 + 1 \\ \hline n_1 - y_1 + 1 \\ n_2 - y_2 + 1 \end{array}$$
total $n_1 + 2 \\ n_2 + 2 \end{array}$

Estimates of p_1 and p_2 are $\tilde{p}_1 = \frac{y_1 + 1}{n_1 + 2}$ $\tilde{p}_2 = \frac{y_2 + 1}{n_2 + 2}$ Estimate of $p_1 - p_2$ is $\tilde{p}_1 - \tilde{p}_2$

Standard error of this estimate:

$$\mathsf{SE}_{\tilde{p}_1-\tilde{p}_2} = \sqrt{\mathsf{S}E_{\tilde{p}_1}^2 + \mathsf{S}E_{\tilde{p}_2}^2} = \sqrt{\frac{\tilde{p}_1(1-\tilde{p}_1)}{n_1+2} + \frac{\tilde{p}_2(1-\tilde{p}_2)}{n_2+2}}$$

Confidence interval for $p_1 - p_2$

95% confidence interval for
$$p_1 - p_2$$
 is

$$ilde{p}_1 - ilde{p}_2 \pm 1.96 * \mathsf{SE}_{ ilde{p}_1 - ilde{p}_2}$$

Other confidence levels: use a z-multiplier from the Z-table. 90% confidence: $z_{.05} = 1.645$ and the interval becomes

$$\tilde{p}_1 - \tilde{p}_2 \pm 1.645 * \text{SE}_{\tilde{p}_1 - \tilde{p}_2}$$

Mice:
$$\tilde{p}_1 = \frac{71+1}{105+2} = .67, \ \tilde{p}_2 = \frac{45+1}{87+2} = .52, \ SE_{\tilde{p}_1 - \tilde{p}_2} = 0.07.$$

95% confidence interval: .156 \pm 1.96 * .07 i.e (.019, .293). 90% confidence interval: (.041, .271).

Conclusion

We are 95% confident that the mice with genotype LO have a probability of obesity between 0.02 and 0.29 higher (i.e. between 2 and 29 percentage points higher) than mice with genotype LL.

0 is not within the 95% interval for $p_{LO} - p_{LL}$, so $p_{LO} - p_{LL} = 0$ is not plausible. We would reject the null hypothesis that $p_{LO} = p_{LL}$ at the level $\alpha = 0.05$.

Genotype LO is associated with an increase of obesity rate (compared to LL)!

Smoking cessation

-	no contact	group counseling	total
\odot quit smoking for 1 year	1	26	27
$\ensuremath{\mathfrak{S}}$ resumed within a year	30	69	99
Total	31	95	126

 $p_1 = \mathbb{P}\{ \textcircled{\odot} | \text{ no contact} \}$ and $p_2 = \mathbb{P}\{ \textcircled{\odot} | \text{ group counseling} \}$

$$\hat{p}_1 = \frac{1}{31} = .032 \quad < \quad \hat{p}_2 = \frac{26}{95} = .274.$$

But for a confidence interval for $p_2 - p_1$ we use $\tilde{p}_1 = \frac{2}{33} = .061$ and $\tilde{p}_2 = \frac{27}{97} = .278$. We get $\tilde{p}_2 - \tilde{p}_1 = .218$, $SE_{\tilde{p}_2 - \tilde{p}_1} = \sqrt{\frac{.061 * .939}{33} + \frac{.278 * .722}{97}} = .062$

95% confidence interval: $.218 \pm 1.960 * .062$ i.e (0.097, 0.338). 90% confidence interval: $.218 \pm 1.645 * .062$ i.e (0.116, 0.319). We are 90% confident that the increase in the probability of quitting smoking provided by group counseling (compared to no contact) is between 11.6% and 31.9 %

The 2 proportions can also be compared using the chi-square test of independence, which can be used for 2x2 or larger tables.

But before: prop.test() to do it in R.

prop.test() in R

```
> prop.test(c(71, 45), c(105, 87))
```

2-sample test for equality of proportions with continuity correction

```
data: c(71, 45) out of c(105, 87)
X-squared = 4.3837, df = 1, p-value = 0.03628
alternative hypothesis: two.sided
95 percent confidence interval:
    0.01046848 0.30742971
sample estimates:
    prop 1    prop 2
0.6761905 0.5172414
```

by default: same CI we get by hand

prop.test() in R

```
> prop.test(c(71, 45), c(105, 87), correct=F)
    2-sample test for equality of proportions without
    continuity correction

data: c(71, 45) out of c(105, 87)
X-squared = 5.0264, df = 1, p-value = 0.02496
alternative hypothesis: two.sided
95 percent confidence interval:
    0.02097751 0.29692068
sample estimates:
    prop 1     prop 2
0.6761905 0.5172414
```

with option correct=F: same X^2 test we get by hand.

Outline

Comparing two proportions

- The genotype/phenotype example
- Confidence interval
- Smoking cessation

2 The chi-square of independence/association

- Eye & hair color example
- The test
- Assumptions and corrective actions
- genotype/phenotype association
- chisq.test
- Comparison with goodness-of-fit chi-square test

Two categorical variables, 2 or more levels each

6,800 German men were sampled.

	Hair color					
		brown	black	fair	red	total
Eye color	brown	438	288	115	16	857
	gray/green	1387	746	946	53	3132
	blue	807	189	1768	47	2811
	total	2632	1223	2829	116	6800

 H_0 : Hair color and eye color are independent

 H_A : Hair and eye color are not independent: are associated.

Null hypothesis of independence

 H_0 can be stated in many ways: The frequencies of **eye** colors do not depend on hair color: \mathbb{P} {blue eyes|brown hair} = \mathbb{P} {blue eyes|black hair} = \mathbb{P} {blue eyes|fair hair} = \mathbb{P} {blue eyes|red hair}

etc. with all other eye colors.

Or:

The frequencies of **hair** colors do not depend on eye color. $\mathbb{P}\{\text{red hair}|\text{brown eyes}\} = \mathbb{P}\{\text{red hair}|\text{gray}/\text{green eyes}\}$ $= \mathbb{P}\{\text{red hair}|\text{blue eyes}\}$

etc. with all other hair colors.

 H_A states that at least **one** of these equalities is not true.

The chi-square test of independence

- *H*₀: the 2 categorical variables are independent.
 H_A: they are associated in some way.
- Summary statistic:

$$X^2 = \sum_{\text{cells}} \frac{(O-E)^2}{E}$$
 where expected values are:
 $E = \frac{\text{Row total * Column total}}{\text{Grand total}}$

Expectation is H_0 is true: $X^2 \sim \chi^2_{df}$ distribution with

df = (# columns - 1)(# rows - 1).

- **3** p-value: $\mathbb{P}\left\{\chi_{df}^2 \geq X^2\right\}$.
- Conclusion: reject independence (H₀) and declare association if p-value< α, fail to reject it p-value> α.

Why these expected values?

$E = \frac{\text{Row total * Column total}}{1}$

Grand total

	Hair color					
	brown	black	fair	red	total	
brown	438	288	115	16	857	
gray/green	1387	746	946	53	3132	
blue	807	189	1768	47	2811	
total	2632	1223	2829	116	6800	

If H_0 is true: $p_{\text{brown eyes}}$, is the same for all hair colors, but we don't know this value. Best guess:

$$\hat{p}_{ ext{brown eyes}} = rac{ ext{total \# brown eyes}}{ ext{total \# men}} = rac{857}{6800} = .126$$

Expected # brown eyes with brown hair:

$$2632 * \hat{p}_{\text{brown eyes}} = 2632 * \frac{857}{6800} = 331.71.$$

Expected # brown eyes with black hair:

$$1223 * \hat{p}_{\text{brown eyes}} = 2632 * \frac{857}{6800} = 154.13.$$

Expected values

Hair color								
		brow	'n	black	fair	red	tota	d
brown	1	43	88	288	115	16	857	7
gray/gre	en	138	87	746	946	53	3132	2
blue		80)7	189	1768	47	281 ⁻	1
total		263	32	1223	2829	116	6800	C
Hair color								
	br	own		black	f	air	red	total
brown	33 ⁻	1.71	1	54.13	356.	54		857
gray/green								3132
blue								2811
total	2	632		1223	28	29	116	6800

Mosaic plots

Observed brown gray/green blue brown Hair color black fair ed

Eye color

Eye color

Mosaic plots: R commands

```
> mat = matrix(c(438,1387,807,288,746,189,115,946,1768,16,53,47),3,4)
> rownames(mat) = c("brown","gray/green","blue")
> colnames(mat) = c("brown","black","fair","red")
> names(dimnames(mat)) = c("Eye color", "Hair color")
> mat
           Hair color
Eye color brown black fair red
          438 288 115 16
 brown
  gray/green 1387 746 946 53
 blue 807 189 1768 47
> expected = apply(mat,1,sum) %*% t(apply(mat,2,sum)) / sum(mat)
> rownames(expected) = c("brown","gray/green","blue")
> names(dimnames(expected)) = c("Eye color","Hair color")
> expected
           Hair color
Eye color
               brown
                       black fair red
           331.7094 154.1340 356.5372 14.61941
 brown
  gray/green 1212.2682 563.2994 1303.0041 53.42824
 blue 1088.0224 505.5666 1169.4587 47.95235
> mosaicplot(mat, col=c("chocolate4","black","wheat","brown"))
```

> mosaicplot(expected, col=c("chocolate4","black","wheat","brown"))

X^2 , degree of freedom and p-value

$$X^{2} = \sum_{\text{all cells}} \frac{(\text{obs} - \text{exp})^{2}}{\text{exp}} = \frac{(438 - 331.71)^{2}}{331.71} + \dots + \frac{(47 - 47.95)^{2}}{47.95}$$

= 34.1 + 116.3 + 163.6 + 0.1 + 25.2 + 59.3 + 97.8 + 0.004
+72.6 + 198.2 + 306.3 + 0.02 = **1073.5**

Degree of freedom: # pieces of information (cells) needed to fill in entire table. Marginals (totals in the margins) are known.

df =

Here df = 6.

p-value: $\mathbb{P}\{\chi_6^2 \ge 1073.5\}$. Table A gives p-value < .0001. Overwhelming evidence that hair and eye color are not independent. They are associated.

The χ^2 distribution

 $X^2 \ge 0$ always $X^2 = 0$ means observed = expected counts: data in perfect agreement with the claim. X^2 close to 0: supports H_0 . X^2 large: supports H_A .

benchmark: $X^2 \leq df$ supports H_0 .

Interpretation

We can now look at the largest contributions to X^2 and see where the association is the strongest. $(O - E)^2/E$ values (sum= $X^2 = 1073.5$):

	Hair color						
	brown	orown black fair					
brown	34.1	116.3	163.6	0.1			
gray/green	25.2	59.3	97.8	.004			
blue	72.6	198.2	306.3	0.02			

Blue eyes/fair hair are associated: blue-eyed people tend to have fair hair more frequently than non blue-eyed people.

On the opposite, blue-eyed people tend to have black hair less frequently than non blue-eyed people, and people with fair hair tend to have brown eyes less frequently than non-fair hair people.

Assumptions

Independence of observations Expected counts \geq 5, for the χ^2 distribution to be a good approximation.

If some cells have small counts, what can be done? Fisher's test (2 \times 2 tables only): but won't cover this. Group cells together.

Ex: eye/hair colors with 10-fold decrease in sample size.

Crouping colle	, F	lair col	or		
Grouping cens	brown	black	fair	red	total
brown	44 (32.9)	29	11	1 (1.37) 85
gray/green	138 (121.0)	75	95	5 (5.06) 313
blue	81 (109.1)	19	177	5 (4.56) 282
total	263	123	283	11	680
	Hair color				
	brown	black		fair/red	total
brown	44 (32.9)	29	12	2 (36.8)	85
gray/green	138 (121.0)	75	100	(135.3)	313
blue	81 (109.1)	19	182	(121.9)	282
total	263	123		294	680

Now expected counts are \geq 5 in all cells. We get df= , X² = 107 and p < .0001.

Mice: genotypes LO and LL and phenotype

Are phenotype and genotype at a given locus independent? associated?

He want to test H_0 : $p_{LO} = p_{LL}$ against H_A : $p_{LO} \neq p_{LL}$.

Equivalently:

 H_0 : genotype and obesity phenotype are **independent**. H_A : genotype at the locus and phenotype are not independent: one genotype tends to be associated with one phenotype.

Test of independence

Observed counts:

=

$$X^2 = \sum_{\text{all cells}} \frac{(\text{obs} - \text{exp})^2}{\text{exp}}$$

Expected counts if independent phenotype & genotype:

	LO		total
\bigcirc	63.44	52.56	116
٢	41.56	34.44	76
total	105	87	192

= 5.026

Validity: Are all expected counts \geq 5?

Test of independence

- Calculate the p-value. If there is independence (success does not depend on drug) then X² has a χ² distribution with df= 1 here.
 p-value=P{χ²_{1 df} ≥ 5.026} Table A: .025 < p-value < .05.
- Conclusion: moderate evidence that the phenotype is associated with the genotype. Genotypes have different obsesity rates (p = 0.025, chi-square test of independence).

Furthermore, we had $\hat{p}_{LO} = .68 > \hat{p}_{LL} = .52$. There is evidence that genotype LO has higher obesity rate.

chisq.test() with R: data already in table

```
> mice = matrix( c(71,34,45,42), 2,2)
> mice
      [,1] [,2]
[1,] 71 45
[2,] 34 42
```

> chisq.test(mice)

Pearson's Chi-squared test with Yates' continuity correction data: mice X-squared = 4.3837, df = 1, p-value = 0.03628

> chisq.test(mice, correct=FALSE)

Pearson's Chi-squared test data: mice X-squared = 5.0264, df = 1, p-value = 0.02496

chisq.test: full data in columns

	phenotype	genotype
1	obese	LO
2	obese	LO
71	obese	LO
72	lean	LO
73	lean	LO
105	lean	LO
106	obese	LL
107	obese	LL
191	lean	LL
192	lean	LL

> mide

> table(mi	.ce\$phenotype, mice\$genotype)
LO) LL
obese 71	45
lean 34	42
> with(mic	e, table(phenotype,genotype);
g	genotype
phenotype	LO LL
obese	71 45
lean	34 42

chisq.test: full data in columns

> chisq.test(table(mice\$phenotype, mice\$genotype))

```
Pearson's Chi-squared test with Yates' continuity correction
```

```
data: table(mice$phenotype, mice$genotype)
X-squared = 4.3837, df = 1, p-value = 0.03628
```

> with(mice, chisq.test(table(phenotype,genotype)))

Pearson's Chi-squared test with Yates' continuity correction

```
data: table(phenotype, genotype)
X-squared = 4.3837, df = 1, p-value = 0.03628
```

chisq.test on eye/hair color

```
> mat = matrix(c(438,1387,807,288,746,189,115,946,
                1768, 16, 53, 47),
              3,4)
> mat
     [,1] [,2] [,3] [,4]
[1,] 438 288 115 16
[2,] 1387 746 946 53
[3,] 807 189 1768 47
> chisq.test(mat)
       Pearson's Chi-squared test
data:
     mat
X-squared = 1073.508, df = 6, p-value < 2.2e-16
```

chisq.test: warning if some E's < 5

- > smallmat

	[,1]	[,2]	[,3]	[,4]
[1,]	44	29	11	1
[2,]	138	75	95	5
[3,]	81	19	177	5

> chisq.test(smallmat)

```
Pearson's Chi-squared test
```

```
data: smallmat
X-squared = 108.2808, df = 6, p-value < 2.2e-16</pre>
```

Warning message: In chisq.test(smallmat) : Chi-squared approximation may be incorrect Chi-square: goodness or fit vs. test of independence

Two "chi-square" tests

Analogies:

Both for categorical data Same definition for the X^2 value (after getting *E* values) Same chi-square distribution to obtain the p-value

Different calculations of expected values:

goodness-of-fit: $E_i = \text{Row total } * p_i$ test of independence: $E_{ij} = \frac{\text{Row total } * \text{Column total}}{\text{Grand total}}$ Different degrees of freedom:

#cells - 1 vs. (#rows - 1)(#columns - 1)

Chi-square: goodness or fit vs. test of independence

Different numbers of variables:

goodness-of-fit: 1 categorical variable test of independence: 2 categorical variables

Different questions, i.e. different H_0 's:

goodness-of-fit: compare proportion in the sample with proportions from a claim.

ex: do seals swim clockwise with p = 0.50?

test of independence: compare proportions for 1 variable across the categories of the other variable.

ex: do sheep survive with more often when vaccinated than not? i.e. $p_{\text{survive}|\text{vaccine}} > p_{\text{survive}|\text{control}}$? ex: are $p_{\text{brown hair}}$'s all the same in all groups of eye color?