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One-way ANOVA

ANOVA = ANalysis Of VAriance.

to compare the means of any # of treatments (2 or more)

extends the 2 independent samples t-test assuming equal
variances.

Key idea: break up the variation, i.e. sum of squares∑
(yi − ȳ)2

into variation explained by differences among treatments and
variation within treatments.

First reconsider the independent two-sample case, then
generalize the idea to independent multiple samples.



Two independent samples: simple example

X: 4, 12, 8 on drug A, and Y: 17, 8, 11 on drug B.

Summary statistics:

x̄ = 8,

3∑
i=1

(xi − x̄)2 = 32, so s2
x =

ȳ = 12,

3∑
i=1

(yi−ȳ)2 = 42, so s2
y = , s2

p = = 18.5

T-test for H0 : µ1 = µ2 vs. HA : µ1 6= µ2:

t = = 1.14 on df =

p-value: 2 IP{T ≥ 1.14} > 0.10. No evidence against H0.

Next: ANOVA with same data: partition the variation.



Sums of squares (SS)
Total SS: Total variation. Pretend all obs. form single sample.
Overall mean: = 10 and SSTotal is

= 98

on df =

Treatment SS: amount of the total variation explained by
differences between groups. Replace each observation by its
group mean.

X: 8, 8, 8 and Y: 12, 12, 12

Overall mean: still
and SSTrt is

= 24

on df = 1.



Sums of squares (SS)

Error SS: amount of the total variation explained by differences
within each group:

= 74

on df = 4.

note: SSError / dfError = = s2
p.

also:

SSTotal = SSTrt + SSError ( )

df Total = df Trt + df Error ( )

An ANOVA table summarizes
the information. Here MS =
Mean Square = SS/df

Source df SS MS
Trt 1 24 24
Error 4 74 18.5
Total 5 98 –



F-test

1 H0 : µ1 = µ2 vs HA : µ1 6= µ2

2 If H0 is true, then

F =
MSTrt

MSError
∼ FdfTrt, dfError

3 In the example, the observed f = = 1.30.
Compare this to an F-distribution with 1 df numerator and 4
df denominator using Table D. p-value:
IP

{
F1,4 ≥ 1.30

}
> 0.10.

4 No evidence against H0. Do not reject H0 at the 10% level.

Note: 1.30 = (1.14)2 i.e f = t2. This is special to 2 groups:
ANOVA = t-test when only 2 groups.

The p-value is from one tail of the F distribution, even though
HA is two-sided.



The F distribution

0 1 2 3 4

F value

  Numerator df=1
Denominator df=4

  Numerator df=3
Denominator df=4

  Numerator df=10
Denominator df=4

F-values are always ≥ 0

The F-distributions is located around 1, for all df’s.



Recap

SSTotal: total variation
SSTrt : variation due to treatment differences
SSErr : residual variation, within treatment groups

F =
SSTrt/dfTrt
SSErr/dfErr

Small difference between group means relative to
variability →

small

f →

large

p-value, and accept H0.

Large difference between group means relative to
variability →

large

f →

small

p-value, and reject H0.



Russell et al. (2007) Science 317:941-943



Russell et al. (2007) Science 317:941-943
Mass (g) of chicks, 6-8 days after hatching.
grp-pr : laid in groups, reared in pairs.
control : laid and reared by their own parents (and helpers)
pr-grp : laid in paired, reared in groups

grp−pr control pr−grp
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Chick mass Parenting
grp-pr control pr-grp

6.24 5.53 6.77
4.94 6.74 6.11
5.27 6.61 6.06
5.93 7.50 6.70
5.88 6.59 7.10
6.38 6.01 7.46
6.07 6.54
6.64 5.92

5.93
6.48
5.88
6.75
6.08

sum 47.36 82.55 40.2 170.11
mean 5.92 6.35 6.70 6.30



k independent samples
k treatments, ni observations for treament i .

Trt 1 2 · · · k
Obs y11 y21 · · · yk1

y12 y22 · · · yk2
...

...
...

y1n1 y2n2 · · · yknk

Sum y1· y2· · · · yk · y··
Mean ȳ1· ȳ2· · · · ȳk · ȳ··

Sum for the i th trt: yi· =
∑ni

j=1 yij

Mean for the i th trt: ȳi· = yi·/ni

Grand sum: y·· =
∑k

i=1
∑ni

j=1 yij =
∑k

i=1 yi·
Grand mean: ȳ·· = y··/N where the total # of obs is:

N =
k∑

i=1

ni = n1 + n2 + · · ·+ nk .



Partitionning the variability (Sums of Squares)

SS Total = SS Trt + SS Error
df Total = df Trt + df Error

SS Total =
k∑

i=1

ni∑
j=1

(yij − ȳ··)2 =
k∑

i=1

ni∑
j=1

y2
ij −

y2
··

N

on df Total = N − 1

SS Trt =
k∑

i=1

ni(ȳi· − ȳ··)2 =
k∑

i=1

y2
i·

ni
− y2

··
N

on df Trt = k − 1

SS Error =
k∑

i=1

ni∑
j=1

(yij − ȳi·)
2, also

= (n1 − 1)s2
1 + (n2 − 1)s2

2 + · · ·+ (nk − 1)s2
k

on df Error = N − k = (n1 − 1) + · · ·+ (nk − 1)



Chick mass: SS and ANOVA table

using ȳ1. = 5.92, ȳ2. = 6.35, ȳ3. = 6.70, ȳ.. = 6.30

and n1 = 8, n2 = 13, n3 = 6 :

SSTrt = = 2.1563

using s1 = 0.5656, s2 = 0.5201, s3 = 0.5477 :

SSErr = = 6.9956

SSTotal = = 9.1519

Source df SS MS
Trt: Parenting

2

2.15 1.08
Error

24

7.00 0.29
Total

26

9.15



Chick mass: the F test

H0: “all population means are equal” vs.
HA: “not all population means are equal”.

Observed test statistic:

f =
MSTrt
MSErr

=

1.08
0.29

= 3.70

Compare this with F2,24 from Table D: at 5% f2,24 = 3.40,
and at 1% f2,24 = 5.61, so

.01

< p-value <

.05

Reject H0 at level α = 0.05. Moderate evidence that there
is a treatment effect on chick mass, i.e. that µgr-pr, µcontrol

and µpr-grp are not all equal.



Remark on the F-distribution

The F distribution with degrees of freedom d1 and d2 is the
distribution of

F =
X 2

d1
/d1

X 2
d2

/d2

when X 2
d1

and X 2
d2

are independent and

X 2
d1
∼ χ2 distribution with df = d1 and

X 2
d2
∼ χ2 distribution with df = d2.



The pooled standard deviation

Source df SS MS
Trt: Parenting 2 2.15 1.08
Error 24 7.00 0.29
Total 26 9.15

Pooled standard deviation
MS Error = pooled estimate
of variance s2

p, so

sp =
√

MSerror

For the 3 samples we had

sgrp-pr = .566 g on df= 8− 1 = 7,

scontrol = .520 g on df= 13− 1 = 12,

spr-grp = .548 g on df= 6− 1 = 5.

Here we get sp =
√

0.292 = 0.540 g: some kind of average.

sp = better estimate of the common standard variation σ within
each group, based on higher df= 24.



Confidence interval based on pooled SD

sp is useful to get confidence intervals for each treatment mean!

CI for treatment means based on pooled SD
For the population mean µ1 in treatment 1, a 95% CI is

ȳ1 ± t.025,dfErr ∗ SEȳ1 where SEȳ1 =
sp√
n1

=

√
MSerr√

n1

Mean chick mass in the control group:

sample mean ȳ2. = 6.35 g, from n2 = 13 obs,
SE= sp/

√
13 = 0.150 g

dfErr= 24, multiplier t = 2.06 for 95% confidence, so interval:

6.35± 2.06 ∗ 0.15 = (6.04, 6.67) g.



Assumptions

The F-test:

H0 : µ1 = µ2 = · · · = µk versus

HA: Not all µi ’s are equal.

Under H0, F =
MSTrt

MSError
has an F distribution: FdfTrt, dfError

This is assuming:
1 Independence of observations between and within

samples. Complete Randomized Design (no blocks!)
2 In each treatment, observations come from a normal

distribution or the sample size is large .
3 Equal variances. The population standard deviations of the

observations are equal among all treatments:
σ1 = σ2 = · · · = σk .



Assumptions

How do we determine if those conditions hold in practice?
1 Assess independendence and randomness from the

design
2 Look at the normal quantile plots, watch for outliers, look at

the normal quantile plot of residuals.
3 Compare the sample standard deviations .
≤ 3-fold difference between the smallest and largest: okay.
≤ 2-fold difference is better.



Detecting non-normality: plot of residuals

Residuals
deviations from
sample means
rij = yij − ȳi·

Y1 res. Y2 res. Y3 res.
3 -3 10 -2.5 12 -5
6 0 12 -0.5 16 -1
7 1 13 0.5 17 0
8 2 15 2.5 18 1

22 5
ȳ1· = 6 12.5 17
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Normal quantile plot of residuals
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Normal quantile plot of residuals

Take home message: To address the normality assumption,
1 Do all the calculations, get the residuals.
2 Combine all residuals and do one normal quantile plot.
3 Check its linearity.



R commands

First: have all the data in one file, with one column to indicate
the treatment , and one column for the numerical outcome

> chickmass = read.table("chickmass.dat", header=T)

> chickmass
mass parents

1 6.24 grp-pr
2 4.94 grp-pr
...
8 6.64 grp-pr
9 5.53 control
10 6.74 control
11 6.61 control
...
26 7.10 pr-grp
27 7.46 pr-grp



R commands: aov and anova

First let R do all the calculations with aov() , save them:

> fit = aov(mass~parents, data=chickmass)

Then ask for the ANOVA table, or residuals, or residual plot:

> anova(fit)
Analysis of Variance Table
Response: mass

Df Sum Sq Mean Sq F value Pr(>F)
parents 2 2.1563 1.0782 3.6989 0.03979 *
Residuals 24 6.9956 0.2915

> residuals(fit)
1 2 3 4 5 6 7 8 9 10 11 12 13

0.32 -0.98 -0.65 0.01 -0.04 0.46 0.15 0.72 -0.82 0.39 0.26 1.15 0.24
14 15 16 17 18 19 20 21 22 23 24 25 26

-0.34 0.19 -0.43 -0.42 0.13 -0.47 0.40 -0.27 0.07 -0.59 -0.64 0.00 0.40
27

0.76
> qqnorm(residuals(fit))
> plot(fit)



Normal quantile plot of residuals

qqnorm(residuals(fit))
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Residual plots: plot(fit)
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Corrective actions

If data not normally distributed and/or variances too different:

1 try transforming the data. A log (or square-root)
transformation might fix both issues.

2 if not, non-parametric alternative (Kruskal-Wallis test), but
not covered.
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ANOVA: if we reject H0, we know that not all treatment means
are the same. Then what?

This may not be informative enough. Now consider particular
comparisons of treatment means. Which pairs of treatments
have significantly different means?



Pairwise comparisons among means

Problem if we went with many standard 2-sample t-tests.
6 t-tests with 4 groups:

group 1 vs. group 2 (5% chance of type I error)
group 1 vs. group 3 (5% chance of type I error)
group 1 vs. group 4 (5% chance of type I error)
group 2 vs. group 3 (5% chance of type I error)
group 2 vs. group 4 (5% chance of type I error)
group 3 vs. group 4 (5% chance of type I error)

If the truth is µ1 = µ2 = µ3 = µ4, these errors accumulate: up to
20% chance that at least 1 type I error is made out of these 6
tests.

That’s why the F-test in ANOVA is so useful! Ensures a 5%
type I error rate overall. New tool needed for pairwise
comparisons.



Concerns with Multiple Comparisons: HIV vaccine trial

Science 318:1048 (13 November 2007)

3,000 subjects enrolled in 2004/2005, “at high-risk of becoming
infected with HIV”. 62% men, 38% women. Control group had
placebo: saltwater injection.

The vaccine had worked on monkeys.





(by the way, notice the wrong interpretation of the p-value...)



Making all pairwise comparisons

Mass of chicks reared by parents with/without helpers: F-test
from ANOVA gave .01 < p-value < .05. Now: compare all pairs
of group means.

Group grp-pr control pr-grp
Mean (g) 5.92 6.35 6.70

grp-pr: laid in groups (with helpers),
reared in pair (without helpers)

control: laid & reared by own parents
(with or without helpers)

pr-grp: laid by pair (without helpers),
reared in group (with helpers) grp−pr control pr−grp
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The Tukey-Kramer method

Among many methods, we consider Tukey-Kramer:

used most widely,

best for balanced data (n1 = n2 = · · · = nk ) but can still be
applied to non-balanced studies,

exact same assumptions as ANOVA.

also known as studentized range , or Q-method, or HSD
for honestly significant difference.



The Tukey-Kramer method

Do all the pairwise tests but compare to the Q-distribution
1 Do ANOVA first.

Stop if p-value > 0.05: none of the pairs are significantly
different.
Otherwise, keep sp =

√
MSerror and its df=dfError.

2 To compare treatment i and j , calculate ȳi − ȳj and its
standard error:

SE for the difference between 2 means

SEȳi−ȳj = sp

√
1
ni

+
1
nj

3 compare the t-value Tij =
ȳi − ȳj

SEȳi−ȳj

to the Q-distribution in

Table F for df=dfError and k groups,
to see if the p-value is < 0.05 or not.



The Tukey-Kramer method

From ANOVA we had .01 < p-value < .05 and MSerror= 0.29,
i.e. sp = 0.54 g on dfErr= 24.
Group grp-pr control pr-grp
Mean (g) 5.92 6.35 6.70
n 8 13 6

Table F: critical value: 2.50 for 3 groups, df=24.

To compare grp-pr and control: SE= 0.54 ∗
√

1
8 + 1

13 = 0.243.

ȳi − ȳj SE T value critical significantly
value different?

grp-pr vs. control 0.43 0.243 1.77 2.50 No
grp-pr vs. pr-grp 0.78 0.292 2.67 2.50 Yes
control vs. pr-grp 0.35 0.266 1.32 2.50 No



Conclusion

There is evidence that the average chick mass is higher when
laid in pairs and reared with helpers (pr-grp) than when laid in
groups (parents + helpers) and reared by parents only (grp-pr).

There is not enough evidence of differences in average chick
mass between the control group and the other 2 groups.

Warning: failing to reject H0 is not accepting H0! We do not
conclude that the control group has the same average chick
mass as both other groups. Contradiction otherwise...



Graphical representations: underlying bars

1 order groups by increasing means,
2 underlie groups whose means are not significantly

different:

Group: grp-pr control pr-grp
Mean: 5.92 6.35 6.70

-------------
--------------

Best if sample sizes are close to equal.



Graphical representations: with letters

most widely used, but not as visually convincing.
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Bars showing standard errors. Prefer graph on the left: shows
both the full data (including sample size) and the conclusion.



Full analysis with R

> chickmass = read.table("../data/chickmass.dat", header=T)
> chickmass

mass parents
1 6.24 grp-pr
2 4.94 grp-pr
3 5.27 grp-pr
4 5.93 grp-pr
5 5.88 grp-pr
6 6.38 grp-pr
... ...
20 6.75 control
21 6.08 control
22 6.77 pr-grp
23 6.11 pr-grp
24 6.06 pr-grp
25 6.70 pr-grp
26 7.10 pr-grp
27 7.46 pr-grp



aov and model.tables

> fit = aov(mass ~ parents, data=chickmass)
> anova(fit)

Df Sum Sq Mean Sq F value Pr(>F)
parents 2 2.1563 1.07816 3.6989 0.03979 *
Residuals 24 6.9956 0.29148

> model.tables(fit, type="means")
Tables of means

Grand mean
6.30037

parents
control grp-pr pr-grp

6.351 5.919 6.7
rep 13.000 8.000 6.0



TukeyHSD on aov object

> TukeyHSD(fit, ordered=T)

Tukey multiple comparisons of means
95% family-wise confidence level
factor levels have been ordered

diff lwr upr p adj
control-grp-pr 0.4320192 -0.17383437 1.037873 0.1973407
pr-grp-grp-pr 0.7812500 0.05310459 1.509395 0.0338181
pr-grp-control 0.3492308 -0.31620204 1.014664 0.4031720

outputs:

observed differences ȳi − ȳj

Tukey-Kramer confidence interval for each µi − µj

p-value for testing H0: µi = µj . Difference declared
significant if p-value < .05.



Barley root example: step 1 = ANOVA

5 varieties of barley. Weight of roots recorded for n = 7 plants
per variety. Observed group means:

ȳ1· ȳ2· ȳ3· ȳ4· ȳ5·
16.3 19.3 14.7 20.3 18.5

ANOVA table:

Source df SS MS F p-value
Trt

4

145.94 36.48 5.09 < 0.01
Error

30

214.74 7.16 –
Total

34

360.68 – –

Ingredients needed for next step, Tukey-Kramer: k = 5 groups
(varieties), n = 7 in each group, sp =

√
7.16

= 2.68, dfErr =

30.



Barley root example, step 2 = Tukey-Kramer

Now compare pairs of varieties: k = 5 groups (varieties), n = 7,
sp = 2.68, dfErr = 30, and Q5,30,0.05 = 2.90 at α = 0.05.

For each comparison ȳi − ȳj , SE= sp

√
1
7 + 1

7 = 1.43, so
compare t = (ȳi − ȳj)/1.43 to the critical value 2.90.
Examples:

ȳi − ȳj SE T value critical significantly
value different?

1 vs. 3 1.6 1.43 1.12 2.90 No
5 vs. 3 3.8 1.43 2.66 2.90 No
5 vs. 1 2.2 1.43 1.54 2.90 No
2 vs. 3 4.6 1.43 3.22 2.90 Yes

Variety: 3 1 5 2 4
Mean: 14.7 16.3 18.5 19.3 20.3

--------------
-------------------
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