Outline

@ one-way ANOVA



One-way ANOVA

ANOVA = ANalysis Of VAriance.

to compare the means of any # of treatments (2 or more)

extends the 2 independent samples t-test assuming equal
variances.

Key idea: break up the variation, i.e. sum of squares

> (yi—-y)

into variation explained by differences among treatments and
variation within treatments.

First reconsider the independent two-sample case, then
generalize the idea to independent multiple samples.



Two independent samples: simple example

X: 4, 12, 8 ondrugA,andY: 17, 8, 11 ondrug B.
Summary statistics:
3
X=8, ) (x—X)*=32 sos;=
i=1

3
y=12, ) (vi-y)*=42,s0s;= , sh= =185
i—1

T-test for Ho : 1 = po vS. Ha @ g 75 H2.
t= =114 ondf=
p-value: 2PP{T > 1.14} > 0.10. No evidence against Ho.

Next: ANOVA with same data: partition the variation.



Sums of squares (SS)

Total SS: Total variation. Pretend all obs. form single sample.
Overall mean: =10 and SSTotal is

= 98
on df =

Treatment SS: amount of the total variation explained by
differences between groups. Replace each observation by its
group mean.

X8, 8, 8 and Y: 12, 12, 12

Overall mean: still
and SSTrtis

=24

ondf=1.



Sums of squares (SS)

Error SS: amount of the total variation explained by differences
within each group:

=74
on df = 4.
note: SSError / dfError = = sg.
also:
SSTotal = SSTrt+ SSError ( )
df Total = df Trt+ df Error ( )

Source df SS MS
Trt 1 24 24
Error 4 74 185
Total 5 098 -

An ANOVA table summarizes
the information. Here MS =
Mean Square = SS/df




F-test

o

Ho : 11 = p2 VS Ha t g # 2
If Hy is true, then

MSTrt

= ———— ~ Fdfrn, ofEe
MSError rh di=ror

In the example, the observed f = =1.30.
Compare this to an F-distribution with 1 df numerator and 4
df denominator using Table D. p-value:

P{F14 > 1.30} > 0.10.

No evidence against Hy. Do not reject Hg at the 10% level.

Note: 1.30 = (1.14)? i.e f = t%. This is special to 2 groups:
ANOVA = t-test when only 2 groups.

The p-value is from one tail of the F distribution, even though
Ha is two-sided.



The F distribution

Numerator df=1
Denominator df=4

Numerator df=3
Denominator df=4

Numerator df=10
Denominator df=4

T T T T T
0 1 2 3 4

F value

F-values are always > 0
The F-distributions is located around 1, for all df’s.



Recap

SSTotal: total variation
SSTrt : variation due to treatment differences
SSErr : residual variation, within treatment groups

_ SSTrt/dfTrt
~ SSErr/dfErr

Small difference between group means relative to
variability — f— p-value, and accept Hp.

Large difference between group means relative to
variability — f— p-value, and reject Hp.



Russell et al. (2007) Science 317:941-943

Reduced Egg Investment Can
Conceal Helper Effects in
Cooperatively Breeding Birds

A. F. Russell,l'z*f N. E. Langmore,3 A. Cockburn,3? L. B. Astheimer,” R. M. Kilner®*

Cooperative breeding systems are characterized by nonbreeding helpers that assist breeders in
offspring care. However, the benefits to offspring of being fed by parents and helpers in
cooperatively breeding birds can be difficult to detect. We offer experimental evidence that helper
effects can be obscured by an undocumented maternal tactic. In superb fairy-wrens (Malurus
cyaneus), mothers breeding in the presence of helpers lay smaller eggs of lower nutritional content
that produce lighter chicks, as compared with those laying eggs in the absence of helpers. Helpers
compensate fully for such reductions in investment and allow mothers to benefit through increased
survival to the next breeding season. We suggest that failure to consider maternal egg-investment
strategies can lead to underestimation of the force of selection acting on helping in avian
cooperative breeders.



Russell et al. (2007) Science 317:941-943
Mass (g) of chicks, 6-8 days after hatching.

(@]

Mean chick mass (g)

. laid in groups, reared in pairs.
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Chick mass

Parenting
grp-pr control  pr-grp
6.24 5.53 6.77
4.94 6.74 6.11
5.27 6.61 6.06
5.93 7.50 6.70
5.88 6.59 7.10
6.38 6.01 7.46
6.07 6.54
6.64 5.92
5.93
6.48
5.88
6.75
6.08
sum 47.36 82.55 40.2 170.11
mean 5.92 6.35 6.70 6.30




k independent samples
k treatments, n; observations for treament i.

Trt 1 2 e k
Obs Yz Y1 - Yka

Yiz Y22 - Yk2

Yin, Yon, 0 Ykng
Sum Y. Y2 o Yk | Y-
Mean | V5. VYo -+ VY. | V.

Sum for the i trt: y;. = >3 yj

Mean for the it trt: y;. = y;./n;

Grand sum:y. = 33 S vy = Y v

Grand mean: y.. =y../N where the total # of obs is:

k
N=) nm=ng+np+-+n.
i—1



Partitionning the variability (Sums of Squares)

SS Total = SS Trt + SS Error
df Total = df Trt + df Error
k n; k n; y2
SSTotal =Y > (yj =)0 => > v - N
i=1 j=1 i=1 j=1

ondf Total =N — 1
k

k
SSTrt="> ni(yi. —¥.)? :Z&_ﬁ ondf Trt=k —1
i—1 i

<

k nj
SS Error =Y ) (v — ¥i.)?, also
i=1j=1
= (N = 1)sf + (N2 — 1)s5 + -+~ + (nk — 1)s§
ondfError=N—-k=(n; —1)+---+(ng — 1)



Chick mass: SS and ANOVA table

using y1. =5.92,y, =6.35,y3 =6.70, y. =6.30
and ng=8,n,=13,n3 =6 :
SSTrt = = 2.1563
using s; = 0.5656,s, = 0.5201,s3 = 0.5477 :
SSEmr = = 6.9956
SSTotal = =9.1519
Source df SS MS
Trt: Parenting 2.15 1.08
Error 7.00 0.29
Total 9.15



Chick mass: the F test

Ho: “all population means are equal” vs.
Ha: “not all population means are equal’.

Observed test statistic:

MSTrt

~ MSErr =370

Compare this with F; >4 from Table D: at 5% f; 24 = 3.40,
and at 1% f; o4 = 5.61, so

< p-value <

Reject Hp at level a = 0.05. Moderate evidence that there
is a treatment effect on chick mass, i.e. that jugrpr, ficontrol
and pprgrp are not all equal.



Remark on the F-distribution

The F distribution with degrees of freedom d; and d; is the

distribution of
_X§/d1

X2 /da

when X§ and X§ are independent and

X§ ~ x? distribution with df = d; and
X§, ~ x? distribution with df = d».



The pooled standard deviation

Pooled standard deviation

Source di SS MS

Trt: Parenting 2 2.15 1.08  MS Error = pooled estimate
Error 24 7.00 0.9 Ofvariance sj, so

Total 26 9.15

sp = VMSerror

For the 3 samples we had
Sgrp-pr = -566 gondf=8 -1 =7,
Scontrol = -520gondf=13 -1 =12,
Spr-grp = -548 gon df=6 —1 = 5.
Here we get s, = v/0.292 = 0.540 g: some kind of average.

Sp = better estimate of the common standard variation o within
each group, based on higher df= 24.



Confidence interval based on pooled SD

Sp is useful to get confidence intervals for each treatment mean!

Cl for treatment means based on pooled SD
For the population mean p4 in treatment 1, a 95% Cl is

Vi s VvMSerr
Y1 £ toos aierr ¥ SEy,  Where SEy, = \/r% v

Mean chick mass in the control group:

sample mean y, = 6.35 g, from n, = 13 obs,
SE=s,/v13=0.150¢
dfErr= 24, multiplier t = 2.06 for 95% confidence, so interval:

6.35 £ 2.06 x 0.15 = (6.04,6.67) g.



Assumptions

The F-test:
Ho : py = pp = -+ = pg versus
Ha: Not all ui's are equal.
MSTrt
Under Hp, F = ——— has an F distribution:
0 MSError }—dfTrt,derror

This is assuming:
© Independence of observations between and within
samples. Complete Randomized Design (no blocks!)
© In each treatment, observations come from a normal
distribution or the sample size is large..

© Equal variances. The population standard deviations of the
observations are equal among all treatments:
01 — 02 = "= 0Ok-



Assumptions

How do we determine if those conditions hold in practice?
@ Assess independendence and randomness from the
design
© Look at the normal quantile plots, watch for outliers, look at
the normal quantile plot of residuals.

© Compare the sample standard deviations .
< 3-fold difference between the smallest and largest: okay.
< 2-fold difference is better.



Detecting non-normality: plot of residuals

Yl res. Y2 res. Y3 res.
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Normal quantile plot of residuals

< 1 1st sample residuals < 12d sample residuals
A
o~ A ° o~
° A
= ° o 4 A
o o~
1 A
o
< | < J
I |
-10 -05 00 05 1.0 -10 -05 00 05 10
Theoretical Quantiles Theoretical Quantiles
. .
< 1 3d sample residuals ~ 1 All residuals
A
o o o
. AO .
o 1 . o 1 A° .
. .
o~ o~
I | A
o
<t J < |
I |
. .
-1.0 1.0 -

-0.5 0.0 5
Theoretical Quantiles

5 -0.5 05 1
Theoretical Quantiles




Normal quantile plot of residuals

Take home message: To address the normality assumption,
© Do all the calculations, get the residuals.
© Combine all residuals and do one normal quantile plot.
© Check its linearity.



R commands

First: have all the data in one file, with one column to indicate
the treatment , and one column for the numerical outcome

> chickmass = read.table("chickmass.dat", header=T)

> chickmass
mass parents

1 6.24 grp-pr

2 494 qgrp-pr

8 6.64 grp-pr
9 5.53 control
10 6.74 control
11 6.61 control

26 7.10 pr-grp
27 7.46 pr-grp



R commands; aov and anova

First let R do all the calculations with aov() , save them:

> fit = aov(mass~parents, data=chickmass)
Then ask for the ANOVA table, or residuals, or residual plot:

> anova(fit)
Analysis of Variance Table
Response: mass

Df Sum Sq Mean Sq F value Pr(>F)
parents 2 21563 1.0782 3.6989 0.03979 *
Residuals 24 6.9956 0.2915

> residuals(fit)
1 2 3 4 5 6 7 8 9 10 11 12

0.32 -0.98 -0.65 0.01 -0.04 046 0.15 0.72 -0.82 0.39 0.26 1.15 0.24

14 15 16 17 18 19 20 21 22 23 24 25
-0.34 0.19 -0.43 -0.42 0.13 -0.47 0.40 -0.27 0.07 -0.59 -0.64 0.00 0.40

27
0.76
> ggnorm(residuals(fit))
> plot(fit)



Normal quantile plot of residuals

ggnorm(residuals(fit))

Normal Q-Q Plot
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Looks very nice: normality assumption is met.



Residual plots:

Residuals
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Corrective actions

If data not normally distributed and/or variances too different:
@ try transforming the data. A log (or square-root)
transformation might fix both issues.

@ if not, non-parametric alternative (Kruskal-Wallis test), but
not covered.



Outline

9 Pairwise Comparisons among Means



ANOVA: if we reject Hg, we know that not all treatment means
are the same. Then what?

This may not be informative enough. Now consider particular
comparisons of treatment means. Which pairs of treatments
have significantly different means?



Pairwise comparisons among means

Problem if we went with many standard 2-sample t-tests.
6 t-tests with 4 groups:
group 1 vs. group 2 (5% chance of type | error)
group 1 vs. group 3 (5% chance of type | error)
group 1 vs. group 4 (5% chance of type | error)
group 2 vs. group 3 (5% chance of type | error)
group 2 vs. group 4 (5% chance of type | error)
group 3 vs. group 4 (5% chance of type | error)
If the truth is p1 = pp = us = pa, these errors accumulate: up to
20% chance that at least 1 type | error is made out of these 6

tests.

That's why the F-test in ANOVA is so useful! Ensures a 5%
type | error rate overall. New tool needed for pairwise
comparisons.



Concerns with Multiple Comparisons: HIV vaccine trial

Science 318:1048 (13 November 2007)

AIDS RESEARCH

Did Merck’s Failed HIV

Vaccine Cause Harm?

3,000 subjects enrolled in 2004/2005, “at high-risk of becoming
infected with HIV”. 62% men, 38% women. Control group had

placebo: saltwater injection.

The vaccine had worked on monkeys.



ing from the unexpected failure in September
of the most promising vaccine candidate in
clinical trials, met here last week to explore
an even more alarming finding: The vaccine,
made by Merck and Co., may actually have
increased the risk of HIV infection in some

study participants.

Working with the academic-
based HIV Vaccine Trials Net-
work (HVTN) and the U.S.
National Institutes of Health
(NIH) in Bethesda, Maryland,
Merck researchers stopped the
multicountry study after an
interim analysis revealed that
the vaccine did not work
(Science, 5 October, p. 28).
Now further analysis suggests
that the vaccine may have
helped HIV infect a subset of
participants who at the trial’s
start had high levels of anti-
body to adenovirus 5 (Ad5),
which causes the common cold
and is also a component of the
vaccine. “This is the worst pos-
sible outcome in a vaccine

trial,” said AIDS researcher Eric Hunter of
Emory University in Atlanta, Georgia, one of
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trial results, Merck
researchers and their
partners reported that,
as of 17 October, HIV
had infected 83 people in
the placebo-controlled
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When the researchers subsequently

Ad5 > 200 Units
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P value = 0.029
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Double trouble. The vaccine clearly failed (eft), but in men with high AdS antibodies
(right), it may have increased their risk of infection. (Women were excluded from this
analysis because only one became infected during the study.)

trial. Of these, 49 were vaccinated and
34 received saltwater injections. This differ-

examined the high—

AdS-antibody group,
they were startled
to find 21 infect-
ions in vaccinees
versus nine in the
placebo group.

The statistical
analysis is ambiguous.
Typically, researchers deem a
difference as significant if it
has a 95% probability of not
being due to chance—a P value
of less than 0.05. By these stan-
dards, the finding, with a
P value of 0.029, was signifi-
cant. But Steven Self, HVTN%
head statistician at the Univer-
sity of Washington (UW), Seat-
tle, cautioned that this compar-
ison merits a more stringent
cutoff for significance, between
0.025 and 0.0025, because the
study was not designed to
assess potential harm, nor did
investigators plan to evaluate a

subset of the study population. Still, Self said
this “trend” deserves close examination.



(by the way, notice the wrong interpretation of the p-value...)



Making all pairwise comparisons

Mass of chicks reared by parents with/without helpers: F-test
from ANOVA gave .01 < p-value < .05. Now: compare all pairs
of group means.

7.5 — —

Group grp-pr control pr-grp

Mean(g) | 592 635 6.70 70] i
grp-pr: laid in groups (with helpers), 657 _:_ -
reared in pair (without helpers) .

6.0

control: laid & reared by own parents
(with or without helpers) 557

pr-grp: laid by pair (without helpers), 50 _._

T T T

reared in group (with helpers) grp-pr control pr-grp



The Tukey-Kramer method

Among many methods, we consider Tukey-Kramer:
used most widely,

best for balanced data (n; = n, = --- = ny) but can still be
applied to non-balanced studies,

exact same assumptions as ANOVA.

also known as studentized range , or Q-method, or HSD
for honestly significant difference.



The Tukey-Kramer method

Do all the pairwise tests but compare to the Q-distribution
© Do ANOVA first.

Stop if p-value > 0.05: none of the pairs are significantly
different.

Otherwise, keep s, = v MSerror and its df=dfError.
@ To compare treatment i and j, calculate y; — yj and its
standard error:

SE for the difference between 2 means

1 1
SEVi -y = Sp + FTJ

Yi =i

SE Vi—Vi
Table F for df=dfError and k gI’OLJJpS,

to see if the p-value is < 0.05 or not.

© compare the t-value Tj =

to the Q-distribution in



The Tukey-Kramer method

From ANOVA we had .01 < p-value < .05 and MSerror= 0.29,
i.e. sp = 0.54 g on dfErr= 24.

Group grp-pr control pr-grp

Mean (g) | 5.92 6.35 6.70

n 8 13 6

Table F: critical value: 2.50 for 3 groups, df=24.
To compare grp-pr and control: SE=0.54 % /1 + 1 = 0.243.

Yi—y; SE Tvalue critical significantly
value  different?

grp-pr vs. control | 0.43 0.243 1.77 2.50 No
grp-prvs. pr-grp | 0.78 0.292  2.67 2.50 Yes
control vs. pr-grp | 0.35 0.266 1.32 2.50 No



Conclusion

There is evidence that the average chick mass is higher when
laid in pairs and reared with helpers (pr-grp) than when laid in
groups (parents + helpers) and reared by parents only (grp-pr).

There is not enough evidence of differences in average chick
mass between the control group and the other 2 groups.

Warning: failing to reject Hy is not accepting Ho! We do not
conclude that the control group has the same average chick
mass as both other groups. Contradiction otherwise...



Graphical representations: underlying bars

@ order groups by increasing means,

@ underlie groups whose means are not significantly
different:

Group: grp-pr control pr-grp
Mean: 592 6.35 6.70

Best if sample sizes are close to equal.



Graphical representations: with letters

most widely used, but not as visually convincing.
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Full analysis with R

> chickmass = read.table("../data/chickmass.dat", header=T)
> chickmass
mass parents

1 6.24 grp-pr
2 494 qgrp-pr
3 5.27 grp-pr
4 593 grp-pr
5 5.88 grp-pr
6 6.38 grp-pr

20 6.75 control
21 6.08 control
22 6.77 pr-grp
23 6.11 pr-grp
24 6.06 pr-grp
25 6.70 pr-grp
26 7.10 pr-grp
27 7.46 pr-grp



aov and model.tables

> fit = aov(mass ~ parents, data=chickmass)
> anova(fit)

Df Sum Sq Mean Sq F value Pr(>F)
parents 2 2.1563 1.07816 3.6989 0.03979
Residuals 24 6.9956 0.29148

> model.tables(fit, type="means")
Tables of means

Grand mean
6.30037

parents
control grp-pr pr-grp
6.351 5.919 6.7
rep 13.000 8.000 6.0



TukeyHSD on aov object

> TukeyHSD(fit, ordered=T)

Tukey multiple comparisons of means
95% family-wise confidence level
factor levels have been ordered

diff Iwr upr p adj
control-grp-pr 0.4320192 -0.17383437 1.037873 0.1973407
pr-grp-grp-pr  0.7812500 0.05310459 1.509395 0.0338181
pr-grp-control 0.3492308 -0.31620204 1.014664 0.4031720

outputs:
observed differences y; — Y;
Tukey-Kramer confidence interval for each p; — y;

p-value for testing Ho: 1; = y;. Difference declared
significant if p-value < .05.



Barley root example: step 1 = ANOVA

5 varieties of barley. Weight of roots recorded for n = 7 plants
per variety. Observed group means:

Yi. Yoo Va3 Ya Vs
16.3 19.3 14.7 20.3 18.5

ANOVA table:
Source df SS MS F p-value
Trt 14594 36.48 5.09 <0.01
Error 21474  7.16 -
Total 360.68 - -

Ingredients needed for next step, Tukey-Kramer: k = 5 groups
(varieties), n = 7 in each group, sp = = 2.68, dfErr =



Barley root example, step 2 = Tukey-Kramer
Now compare pairs of varieties: k = 5 groups (varieties), n = 7,
Sp = 2.68, dferr = 30, and Q5730,0A05 =290 at o« = 0.05.

For each comparison ¥; — ¥j, SE=sp /3 + 1 =1.43, so
compare t = (y; — ¥j)/1.43 to the critical value 2.90.

Examples:
Yi—y; SE Tvalue critical significantly
value different?
lvs. 3 1.6 1.43 1.12 2.90 No
5vs.3| 3.8 143 2.66 2.90 No
S5vs. 1 2.2 1.43 1.54 2.90 No
2vs.3| 4.6 1.43  3.22 2.90 Yes

Variety: 3 1 5 2 4
Mean: 14.7 16.3 18.5 19.3 20.3
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