
Outline

1 Simple Linear Regression
Estimating the slope and intercept
Correlation
Testing the slope: F-test
Testing the slope and intercept: t-tests
Assessing assumptions: Diagnostic plots
Prediction of new values



Chick mass example

Data collected from 18 nests, superb fairy wrens



Chick mass example
> russell

feed mass
7.0 5.30

16.5 6.49
3.7 6.20

10.5 7.15
12.9 6.00
18.0 6.97
14.2 6.45

8.5 6.05
17.8 6.27

3.9 5.87
11.0 6.50
11.0 6.40

3.0 6.51
21.5 6.55
15.1 6.94
13.0 5.75
10.3 6.30
30.0 7.48

Relationship between provisioning rate of
foster males and chick mass?
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Nutritional requirement and body size

Does nutritional requirement depend on body size? How?

Expt: 7 men, 24-hour energy expenditure (kcal) was measured,
in conditions of quiet sedentary activity, repeated twice.

Subject # fat-free mass (kg) energy expenditure (kcal)
1 49.3 1851 1936
2 59.3 2209 1891
3 68.3 2283 2423
4 48.1 1885 1791
5 57.6 1929 1967
6 78.1 2490 2567
7 76.1 2484 2653



Nutritional requirement and body size
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Find formula to predict energy expenditure (then nutritional
requirement) as a function of body size.



Objectives and Regression line

Objectives:

describe the relationship between feeding rate by foster
male(s) (x) and chick mass (y ), or between mass (x) and
energy expenditure (y )

predict mass of a new chick with foster male(s) providing a
given feeding rate, or energy expediture on a new day,
given the person’s fat-free mass.

Main idea of simple linear regression: fit data with a straight line

y = b0 + b1x

b0 is the intercept and b1 is the slope.

Goal: find b0, b1 for the best fitting line.

Least squares approach.



Least squares

Find b0, b1 that minimize the sum of squares

n∑
i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − (b0 + b1xi))
2

yi is the observed value, ŷi = b0 + b̂1xi is the fitted value.

The best fitting line has

b1 =

n∑
i=1

(xi − x̄)(yi − ȳ)

n∑
i=1

(xi − x̄)2

=

n∑
i=1

xiyi −
1
n

(
n∑

i=1

xi)(
n∑

i=1

yi)

n∑
i=1

x2
i −

1
n

(
n∑

i=1

xi)
2

,

b0 = ȳ − b1x̄ .



Chick mass example
n∑

i=1

xi = 227.9,
∑

x2
i = 3658,

∑
xiyi = 1493.7 g, (n = 18)∑

yi = 115.18 g,
∑

y2
i = 741.69 g2, thus

x̄ =

227.9
18

= 12.67 feeds/h, ȳ =

115.18
18

= 6.40 g∑
(xi − x̄)2 =

3658− 227.92/18

= 772.43

b1 =

1493.7− 227.9 ∗ 115.18/18
772.43

= .0458 g/feed

b0 =

6.40− 0.0458 ∗ 12.67

= 5.82 g

Best fitting line
y = 5.82 + 0.0458 ∗ x , or:

chick mass in g = 5.82 g +0.0458∗ # feeds/h



Chick mass example

y = chick mass (response), x =# feeds/h (predictor): do not
play the same role. The regression equation is not symmetric .

y = 5.82 + 0.0458 ∗ x

We can now predict y if we know a new x value. Example:

at x = 20 feeds/h: prediction ŷ =

5.82 + 0.0458 ∗ 20

= 6.73 g.

at x = 0 feeds/h: prediction ŷ =

5.82 + 0.0458 ∗ 0 = 5.82 g.

at x = 100 feeds/h: prediction ŷ =

5.82 + 0.0458 ∗ 100

= 10.4 g.

Warning: be very cautious about predictions outside the range
of original data (3-30 feeds/h here).



Correlation: examples
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Correlation: examples
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Correlation: examples
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Correlation: examples
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Correlation coefficient r

r =

∑
i (xi − x̄)(yi − ȳ)√∑

i (xi − x̄)2
∑

i (yi − ȳ)2
=

∑
i (xi − x̄)(yi − ȳ)

(n − 1) sx sy

Notice that b1 = r
sy

sx
, or r = b1

sx

sy
.

r has no dimension
r always between -1 and 1
symmetric in X and Y .

measures the strength of the linear relationship between x and
y . Does not measure non-linear relationships.



R: lm for Linear Model, and cor for CORrelation

> russell = read.table("../data/russell.txt", header=T)
> str(russell)
’data.frame’: 18 obs. of 2 variables:

$ feed: num 7 16.5 3.7 10.5 12.9 18 14.2 8.5 17.8 3.9 ...
$ mass: num 5.3 6.49 6.2 7.15 6 6.97 6.45 6.05 6.27 5.87 ...

> fit = lm(mass~feed, data=russell) # lm = linear model
> fit
Coefficients:
(Intercept) feed

5.81935 0.04577

> 5.81935 + 0.04577 * 20
[1] 6.73475

> predict(fit, data.frame(feed=c(0,20,100)) )
1 2 3

5.819350 6.734813 10.396665
> cor(russell$mass, russell$feed)
[1] 0.5890986
> with(russell, cor(mass,feed) )
[1] 0.5890986



How about uncertainty?

What is the uncertainty in the fitted line (intercept and
slope), and in predicted mass values?

We got: chick mass in g = 5.82 g +0.0458∗ # feeds/h

Is there real trend? that is, do we have evidence that the
slope in the entire population is 6= 0? We observe
b1 = 0.0458 from our sample.

or prediction: ŷ = 6.40 g at 20 feeds/h.

Prediction interval instead of a single number 6.40 g?



Linear Regression model

We consider y values as comming from a random variable Y :

The simple linear regression model

Yi = β0 + β1xi + ei

where ei ∼ iid N (0, σ2
e), i = 1, . . . , n.

Y is called a dependent variable or response variable.

x is called an independent variable or covariate.

e’s are called errors.



Assumptions

Yi = β0 + β1xi + ei

1 The straight line relationship between y and x is correct:
the curve that describes the average trend is straight: not
curved.

2 Errors ei are independent.
3 Errors ei have homogeneous variance: var(ei) = σ2

e.
4 Errors ei have normal distribution: ei ∼ N (0, σ2

e).

σ2
e is sometimes written as σ2.



Testing the presence of a trend

Yi = β0 + β1xi + ei

If β1 = 0, then the model becomes Yi = β0 + ei : the Y values
are independent of the X values, no trend up or down for Y
when X increases.

We need a test for the null hypothesis H0 : β1 = 0, meaning no
linear association between X and Y .



Partitionning the variation
Total variation: dfTot = n − 1 and

SSTotal =
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

y2
i −

1
n

(
n∑

i=1

yi

)2

= (n − 1)s2
y

Variation explained by the trend: dfReg = 1 and

SSReg =
n∑

i=1

(ŷi − ȳ)2 = b1

[
n∑

i=1

xiyi −
1
n

(
n∑

i=1

xi)(
n∑

i=1

yi)

]

= b1

n∑
i=1

(xi − x̄)(yi − ȳ) = r2(n − 1)s2
y

Residual variation: dfErr = n − 2 and

SSErr =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − ȳ)2 −
(∑n

i=1(xi − x̄)(yi − ȳ)
)2∑n

i=1(xi − x̄)2

= (1− r2)
∑

(yi − ȳ)2 = (1− r2) (n − 1)s2
y



ANOVA for regression, Coefficient of determination

SSTotal = SSReg + SSErr

Source df SS MS F
Regression

1

1.62

1.62

8.50
Error

16

3.04 0.19 –
Total

17

4.66 – –

Coefficient of determination r2: proportion of the total variation
explained by the linear regression. r = correlation coefficient

r2 =
SS Regression

SS Total

Chicks: we had r = 0.59. Indeed r2 =

1.62
4.66

= .347 = (.59)2.

34.7% of the variation in chick mass is explained by the
variation in #feeds/h by foster males.



ANOVA for regression, Residual variance
Source df SS MS F
Regression 1 1.62 1.62 8.50
Error 16 3.04 0.19 –
Total 17 4.66 – –

Residual variation

Estimate σ2
e by s2

e = MSErr on df = dfErr = n − 2.
It is the typical variation of the data points above and below the
regression line.

Here we get s2
e =

0.19

se = 0.436 g on df=

16
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ANOVA for testing absence of trend, H0: b1 = 0

Source df SS MS F
Regression 1 1.62 1.62 8.50
Error 16 3.04 0.19 –
Total 17 4.66 – –

F-test for the slope
Under the hypothesis of no trend H0: β1 = 0, the F value has
an F1,n−2 distribution.

f = 8.50, compared to F on df=

1, 16,

p-value≈ 0.01.

Strong evidence against no trend, i.e. against H0: β1 = 0.
Evidence that feeding rate by foster male(s) positively
influences chick mass (β1 > 0).



Relationship p-value for a trend and correlation r

r2 might be very high and still F-test fails to reject "no trend"
(large p-value).

Example: data set with only 2 points.

Or r2 might be very low and still the test may detect a trend
(very small p-value). It all depends on the sample size.

Example (hypothetical): very large data set on y = people’s
weight regressed on x = average ice cream consumption per
week.



R: lm for Linear Model and anova for the table

> russell
feed mass

1 7.0 5.30
2 16.5 6.49
3 3.7 6.20
... ...
16 13.0 5.75
17 10.3 6.30
18 30.0 7.48

> fit = lm(mass~feed, data=russell) # lm = linear model
> anova(fit) # get ANOVA table

Analysis of Variance Table

Response: mass
Df Sum Sq Mean Sq F value Pr(>F)

feed 1 1.61837 1.61837 8.5037 0.01010 *
Residuals 16 3.04501 0.19031



Does nutritional requirement depend on body size?

Expt: 7 men, 24-hour energy expenditure (kcal) measured
twice, in conditions of quiet sedentary activity.

fat-free energy expenditure
mass (kg) (kcal)

1 49.3 1851 1936
2 59.3 2209 1891
3 68.3 2283 2423
4 48.1 1885 1791
5 57.6 1929 1967
6 78.1 2490 2567
7 76.1 2484 2653
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Does nutritional requirement depend on body size?

x = mass, e1, e2= first and second energy expenditure
measurements. Using x̄ = 62.4 kg,

∑
(xi − x̄)2 = 877.74,

ē1 = 2161.6 kcal, ē2 = 2175.4 kcal,∑
(e1i − ē1)2 = 455855.7,

∑
(xi − x̄)(e1i − ē1) = 19282.8,∑

(e2i − ē2)2 = 772147.7,
∑

(xi − x̄)(e2i − ē2) = 24667.1

first measurements:

b1 =
19282.8√

877.74
= 21.97 kcal/kg

b0 = 2161.6− 21.97 ∗ 62.4

= 790.7 kcal

correlation:
r = 19282.8√

877.74∗455855.7
= 0.964

second measurements:

b1 =
24667.1√

877.74
= 28.10 kcal/kg

b0 = 2161.6− 21.97 ∗ 62.4

= 421.8 kcal

correlation:
r = 24667.1√

877.74∗772147.7
= 0.947



Regression lines
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graph with R: scatterplot and regression lines

fit1 = lm(e1~mass, data=dat) # fit the regression lines first
fit2 = lm(e2~mass, data=dat)

# next: plot both sets of data, one after the other
plot(e1~mass, data=dat, pch=15:21, ylim=c(1780,2670),

ylab="Energy expenditure (kcal)", xlab="fat free mass (kg)")

points(e2~mass, data=dat, pch=15:21, col=2)

# then add the lines, taken from the regression fits above
abline(fit1)
abline(fit2, col=2)

# adding some text next:
text(x=c(65,75), y=c(2600,2200), col=2:1,

c("b0=790.7\nb1=21.97\nr2=0.90","b0=421.8\nb1=28.10\nr2=0.93"))



R commands and AVOVA table

> dat
Subject mass e1 e2

1 1 49.3 1851 1936
2 2 59.3 2209 1891
3 3 68.3 2283 2423
4 4 48.1 1885 1791
5 5 57.6 1929 1967
6 6 78.1 2490 2567
7 7 76.1 2484 2653

> fit1 = lm(e1~mass, data=dat)
> anova(fit1)
Response: e1

Df Sum Sq Mean Sq F value Pr(>F)
mass 1 423618 423618 65.702 0.0004635 ***
Residuals 5 32238 6448

> fit2 = lm(e2~mass, data=dat)
> anova(fit2)
Response: e2

Df Sum Sq Mean Sq F value Pr(>F)
mass 1 693219 693219 43.914 0.001178 **
Residuals 5 78929 15786



T-test for testing the absence of trend

Slope b1 is a random variable: varies from experiment to expt.

Standard error of the slope

SEb1 =
se√∑

(xi − x̄)2
=

se√
n − 1 sx

This tells us how close b1 is from β1, typically.

Chicks: We had se = 0.436 g and
sx =

√
772.43/(18− 1) = 6.74 feeds/h.

The slope was estimated at b1 = .0458 g/feed. SE of this
estimate:

SEb1 =

0.436√
17 ∗ 6.74

=
0.436√
772.43

= .0157



T-test for testing the absence of trend

1 H0: no trend, i.e. horizontal slope: β1 = 0.

2 Test statistic: t =
b1

SEb1

3 Under H0, this t-value has a t-distribution with df = n − 2
(was dfErr in the ANOVA table).
p-value = IP{Tn−2 > t or < −t}.

Chicks: t =
.0458
.0157

= 2.916. Against t distribution with df=

16,

we get p-value≈ 0.01. Strong evidence for b1 6= 0.

Note that t2 = 2.9162 = 8.503 = f .
F-test or t-test for β1 = 0: same p-value, same conclusion.
(Same conclusion also as test of H0: r = 0 from Chapter 16, which we don’t cover.)



Confidence intervals for population slope β1

A (1− α) confidence interval for β1 is

b1 ± tα/2, n−2 SEb1 .

Chicks: for 95% confidence we use multiplier t = 2.11 and get

.0458± 2.11 ∗ .0157

i.e. .0458± .0331 or (.0125, .0790) g/feed.



Testing the intercept: t-test for H0: β0 = 0
Standard error of the intercept
b0 has a normal distribution around the true β0 with

SEb0 = se

√
1
n

+
x̄2∑

(xi − x̄)2

A (1− α) confidence interval for β0 is b0 ± tα/2, n−2 SEb0 .

Chicks: we had b0 = 5.82g. What is its standard error?

SEb0 = 0.436 ∗
√

1
18

+
12.672

772.43
= .224 g

For 95% confidence we use multiplier t = 2.11 again:
confidence interval for true intercept β0:

5.82± 2.11 ∗ .224

i.e. 5.82± 0.473 or (5.34, 6.30) g (intercept at 0 feeds/h).



Testing the intercept: t-test for H0: β0 = 0

1 H0: 0 intercept, i.e. β0 = 0, i.e. mean 0 at x = 0.

2 Test statistic: t =
b0

SEb0

3 Under H0, this t-value has a t-distribution with df = n − 2
(was dfErr in the ANOVA table).
p-value = IP{Tn−2 > t or < −t}.

Chicks: t =

5.82
0.224

= 26.0 and p-value � .001 (df=

16

). It

makes sense!

Warning: many times this is not of interest.
Chicks: intercept = average body mass of chicks fed by 2
parents only. Has a clear meaning, but not of real interest.
Energy expenditure: intercept = average kcal of men with
fat-free body mass of 0. Definitely not of interest.



R functions: lm (linear model), summary

> fit = lm(mass~feed, data=russell)
> summary(fit)
Call:
lm(formula = mass ~ feed, data = russell)

Residuals:
Min 1Q Median 3Q Max

-0.839762 -0.229710 -0.005071 0.268414 0.850032

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.81935 0.22376 26.007 1.61e-14 ***
feed 0.04577 0.01570 2.916 0.0101 *
---
Signif. codes: 0’ *** ’0.001’ ** ’0.01’ * ’0.05’.’0.1’ ’1

Residual standard error: 0.4362 on 16 degrees of freedom
Multiple R-Squared: 0.347, Adjusted R-squared: 0.3062
F-statistic: 8.504 on 1 and 16 DF, p-value: 0.01010



For t-test: summary()
> dat

Subject mass e1 e2
1 1 49.3 1851 1936
2 2 59.3 2209 1891 > fit1 = lm(e1~mass, data=dat)
3 3 68.3 2283 2423 > fit2 = lm(e2~mass, data=dat)
... ...
> summary(fit1)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 790.73 171.82 4.602 0.005830 **
mass 21.97 2.71 8.106 0.000463 ***

Residual standard error: 80.3 on 5 degrees of freedom
Multiple R-squared: 0.9293, Adjusted R-squared: 0.9151
F-statistic: 65.7 on 1 and 5 DF, p-value: 0.0004635

> summary(fit2)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 421.803 268.855 1.569 0.17746
mass 28.103 4.241 6.627 0.00118 **

Residual standard error: 125.6 on 5 degrees of freedom
Multiple R-squared: 0.8978, Adjusted R-squared: 0.8773
F-statistic: 43.91 on 1 and 5 DF, p-value: 0.001178



Assessing assumptions: Diagnostic plots

Recall the assumptions:
1 The straight line relationship is correct.
2 Errors ei are independent.
3 Errors ei have homogeneous variance: var(ei) = σ2

e.
4 Errors ei have normal distribution: ei ∼ N (0, σ2

e).

We check these assumptions by examining the residuals

ri = yi − ŷi

residuals are the deviations from the regression line, or "errors".

Normal quantile plot of the residuals, and
residual plot: ri versus ŷi .



Residuals: to check assumptions
> russell > fit = lm(mass~feed, data=russell)

feed mass
1 7.0 5.30 > russell$predicted = fitted(fit)
2 16.5 6.49 # gets fitted values from fitted line,
3 3.7 6.20 # and uses them to create new column
4 10.5 7.15 # named ’predicted’ in data ’russell’.
5 12.9 6.00
6 18.0 6.97 > russell$residual = residuals(fit)
7 14.2 6.45 # now getting residuals and use them
... ... # to create a new column named
16 13.0 5.75 # residuals’ in data ’russell’.
17 10.3 6.30
18 30.0 7.48

> russell
feed mass predicted residual

1 7.0 5.30 6.14 -0.84
2 16.5 6.49 6.57 -0.08
3 3.7 6.20 5.99 0.21
4 10.5 7.15 6.30 0.85
5 12.9 6.00 6.41 -0.41
6 18.0 6.97 6.64 0.33
7 14.2 6.45 6.47 -0.02
... ...
18 30.0 7.48 7.19 0.29



Residuals: to check assumptions

Normal quantile plot of the residuals, and
residual plot: ri (y-axis) versus ŷi (x axis).

Normal quantile plot of residuals: needs to be linear enough to
indicate no (or little) departure from normality.

Residual plot: needs to show a random scatter with no evident
pattern. Patterns may indicate problems such as a curved
relationship, or nonhomogeneous variance, or outliers.



Assessing assumptions: Diagnostic plots
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R: diagnotic plots of residuals

# first fit the regression line to the data,
# will later use the result to get plots.
fit = lm(mass~feed, data=russell)

# normal quantile plot of residuals to check normality:
qqnorm(residuals(fit))

# residual plot to check homogeneous variance
# and check absence of curve:
plot(fitted(fit), residuals(fit))
abline(h=0) # adds horizontal line

# automatically makes 4 plots including the 2 above:
layout( matrix(1:4, nrow=2, ncol=2))
plot(fit)



Diagnostic plots for energy expenditure

First and second measurements were fitted separately, but residuals
plotted together here.
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Prediction of new values

For a given value x∗ of interest, we might want to predict the
new value of Y at x∗. We would use

Ŷ = b0 + b1x∗

Suppose new chick is provided with x∗ = 20 feeds/h by foster
males. Then the predicted new chick mass is

ŷ = 5.82 + 0.0458 ∗ 20 = 6.73 g

What is the prediction error? Error because

the regression line y = b0 + b1x is not exactly true,

the line only describes the average trend, i.e. the average
y given a known x . There is true variation around the line.



Prediction of a new value

ŷpred = b0 + b1x∗

The prediction error is typically:

Standard error

SEŷpred
= se

√
1
n

+
(x∗ − x̄)2∑
(xi − x̄)2 + 1

A (1− α) prediction interval for the new value is

ŷpred ± tα/2, n−2 SEŷpred



Prediction of a new value

Chicks: at x∗ = 20 feeds/h

SEŷpred
=

0.436

√
1

18
+

(20− 12.67)2

772.43
+ 1

= .463

A 95% prediction interval for the new value is

6.73± 2.12 ∗ 0.463,

i.e. (5.75, 7.72) g

How about predicting Y at x∗ = 100 feeds/h?
Caution against extrapolation!



Prediction intervals for new values
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R: predict

> fit = lm(mass~feed, data=russell)
> predict(fit, newdata=data.frame(feed=20) )

1
6.734813

> predict(fit, newdata=data.frame(feed=20),
interval="prediction")

fit lwr upr
1 6.734813 5.753784 7.715842

> predict(fit, newdata=data.frame(feed=c(20,100)),
interval="prediction")

fit lwr upr
1 6.734813 5.753784 7.715842
2 10.396665 7.339051 13.454278



Prediction for energy expenditure

How can we deal with the fact that we have 2 measurements on
each subject?

1 Use each set of measurements separately. Can we
combine them to obtain a single prediction?

2 Combine both data sets to a sample size of 14
measurements?

No: problem of independence. Same subjects twice, so
there is dependence among the 14 measurements.
Violates the assumption of the t-tests or ANOVA f-test.

3 Take the average of the 2 values for each subject, then run
one regression on these 7 averages.



Energy expenditure: averaging the 2 values

> dat
Subject mass e1 e2

1 1 49.3 1851 1936
2 2 59.3 2209 1891
3 3 68.3 2283 2423
4 4 48.1 1885 1791
5 5 57.6 1929 1967
6 6 78.1 2490 2567
7 7 76.1 2484 2653

> dat$ave = (dat$e1+ dat$e2)/2
> dat

Subject mass e1 e2 ave
1 1 49.3 1851 1936 1893.5
2 2 59.3 2209 1891 2050.0
3 3 68.3 2283 2423 2353.0
4 4 48.1 1885 1791 1838.0
5 5 57.6 1929 1967 1948.0
6 6 78.1 2490 2567 2528.5
7 7 76.1 2484 2653 2568.5



Regression on the average values

> fit.ave = lm(ave~mass, data=dat)
> anova(fit.ave)

Df Sum Sq Mean Sq F value Pr(>F)
mass 1 550161 550161 131.01 8.916e-05 ***
Residuals 5 20997 4199

> summary(fit.ave)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 606.264 138.668 4.372 0.00721 **
mass 25.036 2.187 11.446 8.92e-05 ***

Multiple R-squared: 0.9632, Adjusted R-squared: 0.9559
F-statistic: 131 on 1 and 5 DF, p-value: 8.916e-05

> predict(fit.ave, newdata=data.frame(mass=c(65,100)),
interval="prediction")

fit lwr upr
1 2234 2055 2412
2 3110 2833 3386



Prediction for energy expenditure
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R: graph with prediction curves

# first create a range of new body mass data:
> xnew = seq(40,80,by=.5)
> xnew

[1] 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0 46.5 47.0
[16] 47.5 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0 54.5
...
[76] 77.5 78.0 78.5 79.0 79.5 80.0

# then get the predicted energy expenditure at these mass values:
> ypred = predict(fit.ave,data.frame(mass=xnew),interval="prediction")
> ypred

fit lwr upr
1 1608 1390 1826
2 1620 1404 1837
3 1633 1418 1848
4 1645 1432 1859
5 1658 1446 1870
...
78 2572 2372 2771
79 2584 2383 2785
80 2597 2394 2799
81 2609 2405 2813



R: graph with prediction curves

# prepare: to save as pdf, and to adjust margin sizes:
pdf("bodysize_energy3.pdf",height=5,width=5)
par(mar=c(3.1,3.1,.2,.2), mgp=c(1.7,.3,0), tck=-.01)

# plot the averages, then add both measurements:
plot(ave~mass, data=dat,xlab="fat-free mass (kg)",pch=15:21,

ylab="energy expenditure", xlim=c(40,80),ylim=c(1400,2810))
points(e1~mass, data=dat, pch=15:21, col=2)
points(e2~mass, data=dat, pch=15:21, col=3)

# add regression line:
abline(fit.ave)

# add prediction curves:
lines(xnew,ypred[,"lwr"], lty=5)
lines(xnew,ypred[,"upr"], lty=5)

# add legend to identify the meaning of colors:
legend("topleft",pch=16,col=1:3,legend=c("average","e1","e2"),bty="n")

# close the plotting device to "finish" off the pdf file:
dev.off()
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