Outline

Simple Linear Regression

- Estimating the slope and intercept
- Correlation
- Testing the slope: F-test
- Testing the slope and intercept: t-tests
- Assessing assumptions: Diagnostic plots
- Prediction of new values

Chick mass example

Data collected from 18 nests, superb fairy wrens

Chick mass example

> russ	sell
feed	mass
7.0	5.30
16.5	6.49
3.7	6.20
10.5	7.15
12.9	6.00
18.0	6.97
14.2	6.45
8.5	6.05
17.8	6.27
3.9	5.87
11.0	6.50
11.0	6.40
3.0	6.51
21.5	6.55
15.1	6.94
13.0	5.75
10.3	6.30
30.0	7.48

Relationship between provisioning rate of foster males and chick mass?

Nutritional requirement and body size

Does nutritional requirement depend on body size? How?

Expt: 7 men, 24-hour energy expenditure (kcal) was measured, in conditions of quiet sedentary activity, repeated twice.

Subject #	fat-free mass (kg)	energy expe	enditure (kcal)
1	49.3	1851	1936
2	59.3	2209	1891
3	68.3	2283	2423
4	48.1	1885	1791
5	57.6	1929	1967
6	78.1	2490	2567
7	76.1	2484	2653

Nutritional requirement and body size

Find formula to predict energy expenditure (then nutritional requirement) as a function of body size.

Objectives and Regression line

Objectives:

describe the relationship between feeding rate by foster male(s) (x) and chick mass (y), or between mass (x) and energy expenditure (y)

predict mass of a new chick with foster male(s) providing a given feeding rate, or energy expediture on a new day, given the person's fat-free mass.

Main idea of simple linear regression: fit data with a straight line

$$y = b_0 + b_1 x$$

 b_0 is the intercept and b_1 is the slope. Goal: find b_0 , b_1 for the best fitting line. Least squares approach.

Least squares

Find b_0 , b_1 that minimize the sum of squares

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2$$

 y_i is the observed value, $\hat{y}_i = b_0 + \hat{b}_1 x_i$ is the fitted value.

The best fitting line has

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{\sum_{i=1}^{n} x_{i}y_{i} - \frac{1}{n}(\sum_{i=1}^{n} x_{i})(\sum_{i=1}^{n} y_{i})}{\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n}(\sum_{i=1}^{n} x_{i})^{2}},$$

$$b_{0} = \bar{y} - b_{1}\bar{x}.$$

Chick mass example

$$\sum_{i=1}^{n} x_i = 227.9, \quad \sum x_i^2 = 3658, \quad \sum x_i y_i = 1493.7 \text{ g}, \quad (n = 18)$$

$$\sum y_i = 115.18 \text{ g}, \quad \sum y_i^2 = 741.69 \text{ g}^2, \text{ thus}$$

$$\bar{x} = = 12.67 \text{ feeds/h}, \quad \bar{y} = = 6.40 \text{ g}$$

$$\sum (x_i - \bar{x})^2 = = 772.43$$

$$b_1 = = 0.0458 \text{ g/feed}$$

$$b_0 = = 5.82 \text{ g}$$

Best fitting line y = 5.82 + 0.0458 * x, or: chick mass in g = 5.82 g +0.0458* # feeds/h

Chick mass example

y = chick mass (response), x =# feeds/h (predictor): do not play the same role. The regression equation is **not symmetric**.

y = 5.82 + 0.0458 * x

We can now predict y if we know a new x value. Example:

at x = 20 feeds/h:prediction $\hat{y} =$ = 6.73 g.at x = 0 feeds/h:prediction $\hat{y} =$ = 10.4 g.

Warning: be very cautious about predictions outside the range of original data (3-30 feeds/h here).

Correlation coefficient r

$$r = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2} \sum_{i} (y_{i} - \bar{y})^{2}}} = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{(n - 1) s_{x} s_{y}}$$

Notice that $b_{1} = r \frac{s_{y}}{s_{x}}$, or $r = b_{1} \frac{s_{x}}{s_{y}}$.

r has no dimension *r* always between -1 and 1 symmetric in *X* and *Y*.

measures the strength of the *linear* relationship between *x* and *y*. Does *not* measure non-linear relationships.

R: 1m for Linear Model, and cor for CORrelation

```
> russell = read.table("../data/russell.txt", header=T)
> str(russell)
'data frame': 18 obs. of 2 variables:
 $ feed: num 7 16.5 3.7 10.5 12.9 18 14.2 8.5 17.8 3.9 ...
 $ mass: num 5.3 6.49 6.2 7.15 6 6.97 6.45 6.05 6.27 5.87 ...
> fit = lm(mass~feed, data=russell) # lm = linear model
> fit
Coefficients:
(Intercept)
                   feed
    5.81935 0.04577
> 5.81935 + 0.04577 * 20
[1] 6.73475
> predict(fit, data.frame(feed=c(0,20,100)) )
        1
                  2
                            3
5.819350 6.734813 10.396665
> cor(russell$mass, russell$feed)
[1] 0.5890986
> with(russell, cor(mass,feed) )
[1] 0.5890986
```

How about uncertainty?

What is the uncertainty in the fitted line (intercept and slope), and in predicted mass values?

We got: chick mass in g = 5.82 g + 0.0458 * # feeds/h

Is there real trend? that is, do we have evidence that the slope in the entire population is \neq 0? We observe $b_1 = 0.0458$ from our sample.

or prediction: $\hat{y} = 6.40$ g at 20 feeds/h.

Prediction interval instead of a single number 6.40 g?

Linear Regression model

We consider *y* values as comming from a random variable Y:

The simple linear regression model

$$\mathbf{Y}_i = \beta_0 + \beta_1 \mathbf{x}_i + \mathbf{e}_i$$

where $e_i \sim \text{ iid } \mathcal{N}(0, \sigma_e^2), i = 1, \dots, n$.

Y is called a dependent variable or response variable.x is called an independent variable or covariate.e's are called errors.

Assumptions

$$\mathbf{Y}_i = \beta_0 + \beta_1 \mathbf{x}_i + \mathbf{e}_i$$

- The straight line relationship between y and x is correct: the curve that describes the average trend is straight: not curved.
- 2 Errors e_i are independent.
- Similar Errors e_i have homogeneous variance: $var(e_i) = \sigma_e^2$.
- Errors e_i have normal distribution: $e_i \sim \mathcal{N}(0, \sigma_e^2)$.

 σ_e^2 is sometimes written as σ^2 .

Testing the presence of a trend

$$\mathbf{Y}_i = \beta_0 + \beta_1 \mathbf{x}_i + \mathbf{e}_i$$

If $\beta_1 = 0$, then the model becomes $Y_i = \beta_0 + e_i$: the Y values are independent of the X values, no trend up or down for Y when X increases.

We need a test for the null hypothesis H_0 : $\beta_1 = 0$, meaning no linear association between *X* and *Y*.

Partitionning the variation

Total variation: dfTot = n - 1 and

SSTotal =
$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} y_i \right)^2 = (n-1)s_y^2$$

Variation explained by the trend: dfReg = 1 and

SSReg =
$$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = b_1 \left[\sum_{i=1}^{n} x_i y_i - \frac{1}{n} (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i) \right]$$

= $b_1 \sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y}) = r^2 (n-1) s_y^2$

Residual variation: dfErr = n - 2 and

SSErr =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \bar{y})^2 - \frac{\left(\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})\right)^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

= $(1 - r^2) \sum (y_i - \bar{y})^2 = (1 - r^2) (n - 1) s_y^2$

ANOVA for regression, Coefficient of determination

 ${\tt SSTotal} = {\tt SSReg} + {\tt SSErr}$

Source	df	SS	MS	F
Regression		1.62		8.50
Error		3.04	0.19	_
Total		4.66	_	_

Coefficient of determination r^2 : proportion of the total variation explained by the linear regression. r = correlation coefficient

$$r^2 = \frac{\text{SS Regression}}{\text{SS Total}}$$

34.7% of the variation in chick mass is explained by the variation in #feeds/h by foster males.

ANOVA for regression, Residual variance

Source	df	SS	MS	F
Regression	1	1.62	1.62	8.50
Error	16	3.04	0.19	_
Total	17	4.66	_	_

Residual variation

Estimate σ_e^2 by s_e^2 = MSErr on df = dfErr = n - 2. It is the typical variation of the data points above and below the regression line.

ANOVA for testing absence of trend, H_0 : $b_1 = 0$

Source	df	SS	MS	F
Regression	1	1.62	1.62	8.50
Error	16	3.04	0.19	_
Total	17	4.66	_	_

F-test for the slope

Under the hypothesis of no trend H_0 : $\beta_1 = 0$, the *F* value has an $F_{1,n-2}$ distribution.

f = 8.50, compared to F on df= p-value ≈ 0.01 . Strong evidence against no trend, i.e. against H_0 : $\beta_1 = 0$. Evidence that feeding rate by foster male(s) *positively* influences chick mass ($\beta_1 > 0$).

Relationship p-value for a trend and correlation r

 r^2 might be very high and still F-test fails to reject "no trend" (large p-value).

Example: data set with only 2 points.

Or r^2 might be very low and still the test may detect a trend (very small p-value). It all depends on the sample size.

Example (hypothetical): very large data set on y = people's weight regressed on x = average ice cream consumption per week.

R: 1m for Linear Model and anova for the table

```
> russell
   feed mass
1 7.0 5.30
2 16.5 6.49
3 3.7 6.20
. . . . . . . . .
16 13.0 5.75
17 10.3 6.30
18 30.0 7.48
> fit = lm(mass~feed, data=russell) # lm = linear model
> anova(fit)
                                     # get ANOVA table
Analysis of Variance Table
Response: mass
          Df Sum Sq Mean Sq F value Pr(>F)
feed
         1 1.61837 1.61837 8.5037 0.01010 *
Residuals 16 3.04501 0.19031
```

Does nutritional requirement depend on body size?

Expt: 7 men, 24-hour energy expenditure (kcal) measured twice, in conditions of quiet sedentary activity.

Fat-free mass (kg)

Does nutritional requirement depend on body size?

x = mass, e1, e2= first and second energy expenditure measurements. Using $\bar{x} = 62.4 \text{ kg}, \sum (x_i - \bar{x})^2 = 877.74$, $\bar{e1} = 2161.6 \text{ kcal}, \bar{e2} = 2175.4 \text{ kcal},$ $\sum (e1_i - \bar{e1})^2 = 455855.7, \qquad \sum (x_i - \bar{x})(e1_i - \bar{e1}) = 19282.8,$ $\sum (e2_i - \bar{e2})^2 = 772147.7, \qquad \sum (x_i - \bar{x})(e2_i - \bar{e2}) = 24667.1$

first measurements:

second measurements:

$$b_1 = \frac{19282.8}{\sqrt{877.74}} = 21.97 \text{ kcal/kg}$$
 $b_1 = \frac{24667.1}{\sqrt{877.74}} = 28.10 \text{ kcal/kg}$
 $b_0 = 2161.6 - 21.97 * 62.4$ $b_0 = 2161.6 - 21.97 * 62.4$

1

$$b_0 = 2101.6 - 21.97 * 62.4$$
 $b_0 = 2101.6 - 21.97 * 62.4$
= 790.7 kcal = 421.8 kcal

correlation:

$$r = \frac{19282.8}{\sqrt{877.74 + 455855.7}} = 0.964$$

correlation:

$$r = \frac{24667.1}{\sqrt{877.74*772147.7}} = 0.947$$

Regression lines

graph with R: scatterplot and regression lines

```
fit1 = lm(el \sim mass, data=dat) # fit the regression lines first fit2 = lm(e2 \sim mass, data=dat)
```

next: plot both sets of data, one after the other plot(el~mass, data=dat, pch=15:21, ylim=c(1780,2670), ylab="Energy expenditure (kcal)", xlab="fat free mass (kg)")

points(e2~mass, data=dat, pch=15:21, col=2)

```
# then add the lines, taken from the regression fits above
abline(fit1)
abline(fit2, col=2)
```

```
# adding some text next:
text(x=c(65,75), y=c(2600,2200), col=2:1,
    c("b0=790.7\nb1=21.97\nr2=0.90","b0=421.8\nb1=28.10\nr2=0.93"))
```

R commands and AVOVA table

```
> dat
  Subject mass el e2
1
       1 49.3 1851 1936
2
       2 59 3 2209 1891
3
       3 68.3 2283 2423
4
     4 48.1 1885 1791
5
     5 57 6 1929 1967
б
      6 78.1 2490 2567
7
       7 76.1 2484 2653
> fit1 = lm(e1~mass, data=dat)
> anova(fit1)
Response: el
         Df Sum Sg Mean Sg F value Pr(>F)
         1 423618 423618 65 702 0 0004635 ***
mass
Residuals 5 32238
                   6448
> fit2 = lm(e2 \sim mass, data=dat)
> anova(fit2)
Response: e2
         Df Sum Sg Mean Sg F value Pr(>F)
          1 693219 693219 43.914 0.001178 **
mass
Residuals 5 78929 15786
```

T-test for testing the absence of trend

Slope b_1 is a random variable: varies from experiment to expt.

Standard error of the slope

$$\mathsf{SE}_{b_1} = \frac{s_e}{\sqrt{\sum (x_i - \bar{x})^2}} = \frac{s_e}{\sqrt{n-1} \ s_x}$$

This tells us how close b_1 is from β_1 , typically.

Chicks: We had $s_e = 0.436$ g and $s_x = \sqrt{772.43/(18-1)} = 6.74$ feeds/h. The slope was estimated at $b_1 = .0458$ g/feed. SE of this estimate:

$$SE_{b_1} = .0157$$

T-test for testing the absence of trend

• H_0 : no trend, i.e. horizontal slope: $\beta_1 = 0$.

2 Test statistic:
$$t = \frac{b_1}{SE_{b_1}}$$

Solution Under H_0 , this t-value has a t-distribution with df = n - 2 (was dfErr in the ANOVA table).

$$p-value = \mathbb{P}\{T_{n-2} > t \text{ or } < -t\}.$$

Chicks: $t = \frac{.0458}{.0157} = 2.916$. Against t distribution with df= we get p-value ≈ 0.01 . Strong evidence for $b_1 \neq 0$.

Note that $t^2 = 2.916^2 = 8.503 = f$. **F-test or t-test** for $\beta_1 = 0$: **same p-value, same conclusion.** (Same conclusion also as test of H_0 : r = 0 from Chapter 16, which we don't cover.) Confidence intervals for population slope β_1 A (1 – α) confidence interval for β_1 is $b_1 \pm t_{\alpha/2, n-2} \operatorname{SE}_{b_1}$.

Chicks: for 95% confidence we use multiplier t = 2.11 and get

 $.0458 \pm 2.11 * .0157$

i.e. $.0458\pm.0331$ or (.0125,.0790) g/feed.

Testing the intercept: t-test for H_0 : $\beta_0 = 0$

Standard error of the intercept

 b_0 has a normal distribution around the true β_0 with

$$\mathsf{SE}_{b_0} = s_e \sqrt{rac{1}{n} + rac{ar{x}^2}{\sum (x_i - ar{x})^2}}$$

A (1 – α) confidence interval for β_0 is $b_0 \pm t_{\alpha/2, n-2} \operatorname{SE}_{b_0}$.

Chicks: we had $b_0 = 5.82g$. What is its standard error?

$$SE_{b_0} = 0.436 * \sqrt{\frac{1}{18} + \frac{12.67^2}{772.43}} = .224 \text{ g}$$

For 95% confidence we use multiplier t = 2.11 again: confidence interval for true intercept β_0 :

$$5.82 \pm 2.11 * .224$$

i.e. 5.82 ± 0.473 or (5.34, 6.30) g (intercept at 0 feeds/h).

Testing the intercept: t-test for H_0 : $\beta_0 = 0$

• H_0 : 0 intercept, i.e. $\beta_0 = 0$, i.e. mean 0 at x = 0.

2 Test statistic:
$$t = \frac{b_0}{SE_{b_0}}$$

- Solution Under H_0 , this t-value has a t-distribution with df = n 2 (was dfErr in the ANOVA table). p-value = $\mathbb{P}\{T_{n-2} > t \text{ or } < -t\}$.
- Chicks: t = 26.0 and p-value $\ll .001$ (df =). It makes sense!

Warning: many times this is **not** of interest. Chicks: intercept = average body mass of chicks fed by 2 parents only. Has a clear meaning, but not of real interest. Energy expenditure: intercept = average kcal of men with fat-free body mass of 0. Definitely not of interest.

R functions: 1m (linear model), summary

```
> fit = lm(mass~feed, data=russell)
> summary(fit)
Call:
lm(formula = mass ~ feed, data = russell)
Residuals:
     Min
                10 Median
                                   30
                                           Max
-0.839762 -0.229710 -0.005071 0.268414 0.850032
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.81935 0.22376 26.007 1.61e-14 ***
feed
         0.04577 0.01570 2.916 0.0101 *
_ _ _
Signif. codes: 0'***'0.001'**'0.01'*'0.05'.'0.1' '1
Residual standard error: 0.4362 on 16 degrees of freedom
Multiple R-Squared: 0.347, Adjusted R-squared: 0.3062
```

Multiple R-Squared: 0.347, Adjusted R-squared: 0.306 F-statistic: 8.504 on 1 and 16 DF, p-value: 0.01010

For t-test: summary()

```
> dat
 Subject mass e1 e2
 1 49.3 1851 1936
1
2 2 59.3 2209 1891 > fit1 = lm(e1~mass, data=dat)
3 3 68.3 2283 2423 > fit2 = lm(e2~mass, data=dat)
> summary(fit1)
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 790.73 171.82 4.602 0.005830 **
mass 21.97 2.71 8.106 0.000463 ***
Residual standard error: 80.3 on 5 degrees of freedom
Multiple R-squared: 0.9293, Adjusted R-squared: 0.9151
F-statistic: 65.7 on 1 and 5 DF, p-value: 0.0004635
> summary(fit2)
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 421.803 268.855 1.569 0.17746
mass 28.103 4.241 6.627 0.00118 **
Residual standard error: 125.6 on 5 degrees of freedom
Multiple R-squared: 0.8978, Adjusted R-squared: 0.8773
```

F-statistic: 43.91 on 1 and 5 DF, p-value: 0.001178

Assessing assumptions: Diagnostic plots

Recall the assumptions:

- The straight line relationship is correct.
- 2 Errors e_i are independent.
- Similar Errors e_i have homogeneous variance: $var(e_i) = \sigma_e^2$.
- Summarial distribution: $e_i \sim \mathcal{N}(0, \sigma_e^2)$.

We check these assumptions by examining the residuals

$$r_i = y_i - \hat{y}_i$$

residuals are the deviations from the regression line, or "errors".

Normal quantile plot of the residuals, and residual plot: r_i versus \hat{y}_i .

Residuals: to check assumptions

> 1	russel	11	>	fit	= 1	Lm(ma:	ss~feed	, data=	russell)
	feed	mass								
1	7.0	5.30	>	rus	sell	L\$pred	dicted	= fitte	d(fit)	
2	16.5	6.49		# ge	ets	fitte	ed valu	es from	n fitted	line,
3	3.7	6.20		# ai	nd u	ises	them to	create	new co	lumn
4	10.5	7.15		# na	amec	l 'pre	edicted	' in da	ta 'rus	sell'.
5	12.9	6.00				-				
б	18.0	6.97	>	rus	sell	L\$res:	idual	= resid	luals(fi	t)
7	14.2	6.45		# no	ow c	aettii	ng resi	duals a	ind use	them
				# to	o cr	reate	a new	column	named	
16	13.0	5.75		# re	esid	duals	′ in da	ta 'rus	sell'.	
17	10.3	6.30								
18	30.0	7.48								
> 1	russel	11								
	feed	mass	predic	cted	res	idua	L			
1	7.0	5.30		5.14	-0.	.84				
2	16.5	6.49	6	5.57	-0.	08				
3	3.7	6.20	ſ	5.99	0.	.21				
4	10.5	7.15	(5.30	0.	85				
5	12.9	6.00	(5.41	-0.	41				
6	18 0	6 97	f	5 64	0	33				
7	14 2	6 45	ŕ	5 47	-0	02				
,		5.15		/	5.					
18	30 0	7 4 8		7 1 9	0.	29				
±0	50.0	, . 10			υ.					

Normal quantile plot of the residuals, and residual plot: r_i (y-axis) versus \hat{y}_i (x axis).

Normal quantile plot of residuals: needs to be linear enough to indicate no (or little) departure from normality.

Residual plot: needs to show a **random scatter** with no evident pattern. Patterns may indicate problems such as a curved relationship, or nonhomogeneous variance, or outliers.

Assessing assumptions: Diagnostic plots

R: diagnotic plots of residuals

```
# first fit the regression line to the data,
# will later use the result to get plots.
fit = lm(mass~feed, data=russell)
```

normal quantile plot of residuals to check normality: qqnorm(residuals(fit))

```
# automatically makes 4 plots including the 2 above:
layout( matrix(1:4, nrow=2, ncol=2))
plot(fit)
```

Diagnostic plots for energy expenditure

First and second measurements were fitted separately, but residuals plotted together here.

assumptions of homogeneous variance and normal distribution seem to be met.

Prediction of new values

For a given value x^* of interest, we might want to predict the new value of Y at x^* . We would use

$$\hat{Y} = b_0 + b_1 x^*$$

Suppose new chick is provided with $x^* = 20$ feeds/h by foster males. Then the predicted new chick mass is

$$\hat{y} = 5.82 + 0.0458 * 20 = 6.73 \text{ g}$$

What is the prediction error? Error because

the regression line $y = b_0 + b_1 x$ is not exactly true,

the line only describes the **average** trend, i.e. the **average** y given a known x. There is true variation around the line.

Prediction of a new value

$$\hat{y}_{\text{pred}} = b_0 + b_1 x^*$$

The prediction error is typically:

Standard error $\mathsf{SE}_{\hat{y}_{\mathrm{pred}}} = s_{\mathrm{e}} \sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum (x_i - \bar{x})^2} + 1}$

A $(1 - \alpha)$ prediction interval for the new value is

$$\hat{y}_{\text{pred}} \pm t_{\alpha/2, n-2} \operatorname{SE}_{\hat{y}_{\text{pred}}}$$

Prediction of a new value

Chicks: at $x^* = 20$ feeds/h

$$SE_{\hat{y}_{pred}} = .463$$

A 95% prediction interval for the new value is i.e. (5.75, 7.72) g

How about predicting Y at $x^* = 100$ feeds/h? Caution against extrapolation!

Prediction intervals for new values

dotted lines: 95% prediction intevals for new values.

R: predict

```
> fit = lm(mass~feed, data=russell)
> predict(fit, newdata=data.frame(feed=20) )
      1
6.734813
> predict(fit, newdata=data.frame(feed=20),
              interval="prediction")
      fit lwr
                       upr
1 6.734813 5.753784 7.715842
> predict(fit, newdata=data.frame(feed=c(20,100)),
              interval="prediction")
       fit
                lwr
                          upr
1 6.734813 5.753784 7.715842
2 10.396665 7.339051 13.454278
```

Prediction for energy expenditure

How can we deal with the fact that we have 2 measurements on each subject?

- Use each set of measurements separately. Can we combine them to obtain a single prediction?
- Combine both data sets to a sample size of 14 measurements?

Energy expenditure: averaging the 2 values

>	dat				
	Subject	mass	e1	e2	
1	1	49.3	1851	1936	
2	2	59.3	2209	1891	
3	3	68.3	2283	2423	
4	4	48.1	1885	1791	
5	5	57.6	1929	1967	
б	б	78.1	2490	2567	
7	7	76.1	2484	2653	
>	dat\$ave	= (da	at\$el-	+ dats	\$e2)/2
> >	dat\$ave dat	= (da	at\$el-	+ dat∶	\$e2)/2
> >	dat\$ave dat Subject	= (da mass	at\$el- el	+ dat: e2	\$e2)/2 ave
> > 1	dat\$ave dat Subject 1	= (da mass 49.3	e1 1851	+ dats e2 1936	\$e2)/2 ave 1893.5
> > 1 2	dat\$ave dat Subject 1 2	= (da mass 49.3 59.3	e1 e1 1851 2209	+ dat: e2 1936 1891	\$e2)/2 ave 1893.5 2050.0
> > 1 2 3	dat\$ave dat Subject 1 2 3	= (da mass 49.3 59.3 68.3	e1 e1 1851 2209 2283	+ dats e2 1936 1891 2423	\$e2)/2 ave 1893.5 2050.0 2353.0
> 2 1 2 3 4	dat\$ave dat Subject 1 2 3 4	= (da mass 49.3 59.3 68.3 48.1	el el 1851 2209 2283 1885	+ dat: e2 1936 1891 2423 1791	\$e2)/2 ave 1893.5 2050.0 2353.0 1838.0
> 1 2 3 4 5	dat\$ave dat Subject 1 2 3 4 5	= (da mass 49.3 59.3 68.3 48.1 57.6	el 1851 2209 2283 1885 1929	+ dat: e2 1936 1891 2423 1791 1967	\$e2)/2 ave 1893.5 2050.0 2353.0 1838.0 1948.0
> 1 2 3 4 5 6	dat\$ave dat Subject 1 2 3 4 5 6	= (da mass 49.3 59.3 68.3 48.1 57.6 78.1	el 1851 2209 2283 1885 1929 2490	+ dats e2 1936 1891 2423 1791 1967 2567	\$e2)/2 ave 1893.5 2050.0 2353.0 1838.0 1948.0 2528.5

Regression on the average values

```
> fit.ave = lm(ave~mass, data=dat)
> anova(fit.ave)
         Df Sum Sg Mean Sg F value Pr(>F)
mass 1 550161 550161 131.01 8.916e-05 ***
Residuals 5 20997 4199
> summarv(fit.ave)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 606.264 138.668 4.372 0.00721 **
mass 25.036 2.187 11.446 8.92e-05 ***
Multiple R-squared: 0.9632, Adjusted R-squared: 0.9559
F-statistic: 131 on 1 and 5 DF, p-value: 8.916e-05
> predict(fit.ave, newdata=data.frame(mass=c(65,100)),
         interval="prediction")
  fit lwr upr
1 2234 2055 2412
2 3110 2833 3386
```

Prediction for energy expenditure

R: graph with prediction curves

```
# first create a range of new body mass data:
> xnew = seq(40, 80, by=.5)
> xnew
[1] 40.0 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0
[16] 47.5 48.0 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5
. . .
[76] 77.5 78.0 78.5 79.0 79.5 80.0
# then get the predicted energy expenditure at these mass values:
> ypred = predict(fit.ave,data.frame(mass=xnew),interval="prediction")
> ypred
    fit lwr upr
1 1608 1390 1826
2 1620 1404 1837
3 1633 1418 1848
4 1645 1432 1859
5 1658 1446 1870
. . .
78 2572 2372 2771
79 2584 2383 2785
80 2597 2394 2799
81 2609 2405 2813
```

R: graph with prediction curves

```
# prepare: to save as pdf, and to adjust margin sizes:
pdf("bodysize_energy3.pdf",height=5,width=5)
par(mar=c(3.1,3.1,.2,.2), mgp=c(1.7,.3,0), tck=-.01)
```

```
# plot the averages, then add both measurements:
plot(ave~mass, data=dat,xlab="fat-free mass (kg)",pch=15:21,
        ylab="energy expenditure", xlim=c(40,80),ylim=c(1400,2810))
points(el~mass, data=dat, pch=15:21, col=2)
points(e2~mass, data=dat, pch=15:21, col=3)
# add regression line:
abline(fit.ave)
# add prediction curves:
lines(xnew,ypred[,"lwr"], lty=5)
lines(xnew,ypred[,"upr"], lty=5)
```

```
# add legend to identify the meaning of colors:
legend("topleft",pch=16,col=1:3,legend=c("average","el","e2"),bty="n")
```

close the plotting device to "finish" off the pdf file: dev.off()