Outline

Analysis of categorical data

- Goodness or fit: fit of data to a claim
- Test of independence
- Assumptions (and applicability) of the method Merging cells

Goodness or fit test

Example:

- A form of contamination in ground water is fecal coliforms. Officials claim that 20% wells are contaminated. Evaluate the claim.
- You randomly select 100 wells. 27 are contaminated.

Question: How do these data fit with the claim?

Hypotheses:

- H_0 : claim is true, proportion p = .20 of contaminated wells.
- $H_A: p \neq .20.$

Test: evaluate the fit between claim and data.

Goodness or fit test

Observed counts:

Expected counts under claim H_0 :

contam.	clear	total	contam.	clear	total
27	73	100	20	80	100

Build the table with expected counts: keep same total, use proportion(s) from the claim H_0 .

Expected counts: $E_i = \text{Row total } * p_i = np_i$ Test statistic:

$$X^2 = \sum_{\text{all cells}} \frac{(\text{obs} - \text{exp})^2}{\text{exp}}$$
 (use counts, not proportions)

- If H_0 is true, X^2 tends to be small: it has a χ^2 distribution on 1 degree of freedom. df = # cells -1 in general.
- If H_A is true, X^2 will be bigger. More extreme = larger

The χ^2 distribution

- $X^2 \ge 0$ always
- $X^2 = 0$ when observed = expected counts: data in perfect agreement with the claim. X^2 close to 0: supports H_0 .
- X^2 large: supports H_A .

benchmark: $X^2 \leq df$ supports H_0 .

Goodness or fit test

• Here
$$X^2 = \frac{(27-20)^2}{20} + \frac{(73-80)^2}{80} = 3.0625$$

Use Table B to bracket the p-value: .05
 Or use R:

• There is only weak evidence that the claim p = .20 is false.

Same conclusion as with a *z* test. (remember?) We get $X^2 = z^2$ and exact same p-value.

Goodness or fit test: Assumptions

- Random sampling!
- The χ² distribution comes from the Normal approximation to the binomial. A large sample size is needed for this approximation to be good enough. What is large enough? Recall it meant *np* ≥ 5 and *n*(1 − *p*) ≥ 5 before.

We need

expected counts \geq 5 in all cells

for the chi-square distribution to be a good approximation to the exact distribution of X^2 , and for the p-value to be correct. Or:

Expected counts \geq 1 in all cells and \geq 5 in at least 80% of the cells (less conservative).

A genetic example

Under a genetic model, a cross of white and yellow summer squash will yield a progeny with colors white, yellow and green with probabilities 12/16, 3/16 and 1/16. Expected ratios are 12:3:1.

We have a total of 200 plants. Observations:

white	yelow	green	total
153	39	8	200

 H_0 : genetic model is true, i.e. $p_{\text{white}} = 12/16$ and $p_{\text{yellow}} = 3/16$. H_A : the genetic model is not true (many different possibilities!)

A genetic example Observed:

Expected under genetic model:

white	yelow	green	total	white	yelow	green	total
153	39	8	200	150	37.5	12.5	200

Expected counts: np_i in cell *i*. Here n = total # plants.**Degree of freedom:** # pieces of information needed to fill in the table (total is known from the design of the experiment) Here df= 2.

Test statistic and p-value:

$$X^{2} = \frac{(153 - 150)^{2}}{150} + \frac{(39 - 37.5)^{2}}{37.5} + \frac{(8 - 12.5)^{2}}{12.5} = 1.74$$

With table: p > .20. With R:

> mycounts = c(153, 39, 8)

> chisq.test(mycounts, p=c(12/16, 3/16, 1/16))
 Chi-squared test for given probabilities
data: mycounts
X-squared = 1.74, df = 2, p-value = 0.4190

Validity: expected counts (150, 37.5 and 12.5) are all \geq 5. Good!

Conclusion: There is no evidence that the genetic model is false. The data are consistent with the genetic model (p=0.4). The difference between the data and the model can easily be due to sampling error.

We want to compare the performance of 2 drugs on rats.

	drug 1	drug 2	total
success	71	45	116
failure	34	42	76
total	105	87	192

 $p_1 = \mathbb{P}\{\text{success} | \text{drug 1}\}, \text{ probability of success with drug 1} p_2 = \mathbb{P}\{\text{success} | \text{drug 2}\}$

He want to test H_0 : **drugs perform equally**, i.e $p_1 = p_2$ against H_A : one drug is better than the other, i.e $p_1 \neq p_2$.

Equivalently, we have H_0 : drug and success are **independent**. H_A : drug and success are not independent.

O Build table of expected counts under H_0 .

If H_0 is true, $p_1 = p_2$, but we don't know this value. So we estimate it. Best guess is

$$\hat{\rho} = rac{ ext{total \# successes}}{ ext{total \# rats}} = rac{116}{192} = .60$$

somewhat in between $\hat{p}_1 = \frac{71}{105} = .68$ and $\hat{p}_2 = \frac{45}{87} = .52$.

Expected # successes with drug 1: $105 * \hat{p} = 105 * \frac{116}{192}$. In general,

$$E = \frac{\text{Row total * Column total}}{\text{Grand total}}$$

Observed counts:

Expected counts when drug and success are independent:

2 Calculate the test statistic X^2

$$X^{2} = \sum_{\text{all cells}} \frac{(\text{obs} - \text{exp})^{2}}{\text{exp}}$$

= $\frac{(71 - 63.44)^{2}}{63.44} + \dots + \frac{(42 - 34.44)^{2}}{34.44}$
= 5.026

3 **Calculate the p-value.** If there is independence (success does not depend on drug) then X^2 has a χ^2 distribution with df= 1 here.

Using Table B, we get .02 .

Conclusion: There is moderate evidence that the drugs have different success rates (p = 0.025, chi-square test of independence).

Furthermore, in the data we have $\hat{p}_1 = .68 > \hat{p}_2 = .52$. There is evidence that drug 1 has a higher success rate.

Same conclusion as a *z* test (remember?) for testing $p_1 = p_2$. We have $X^2 = z^2$ and exact same p-value.

Using R: chisq.test()

```
> rats = matrix( c(71,34,45,42), 2,2)
> rats
   [,1] [,2]
[1,] 71 45
[2,] 34 42
> chisq.test(rats)
      Pearson's Chi-squared test with
      Yates' continuity correction
data: rats
X-squared = 4.3837, df = 1, p-value = 0.03628
> chisq.test(rats, correct=FALSE)
       Pearson's Chi-squared test
data: rats
X-squared = 5.0264, df = 1, p-value = 0.02496
```

 χ^2 test with a bigger table

Wisconsin corn farmers: does use of pesticides depend on age?

	Observed counts				
Response	never use	use sparingly	use as needed		
25 and under	15	15	6		
26-40	39	73	28		
41-55	46	90	41		
56 and over	25	59	29		

 H_0 : Response to pestidice use and age are independent H_A : They are not!

Expected values

	never use	use sparingly	use as needed	total
\leq 25	15	15	6	36
26-40	39	73	28	140
41-55	46	90	41	177
\geq 56	25	59	29	113
total	125	237	104	466

X^2 , degree of freedom and p-value

$$X^{2} = \sum_{\text{all cells}} \frac{(\text{obs} - \text{exp})^{2}}{\text{exp}} = \underbrace{\frac{(15 - 9.7)^{2}}{9.7} + \dots + \frac{(29 - 25.2)^{2}}{25.2}}_{12 \text{ cells, so } 12 \text{ terms}}$$

Degree of freedom: # pieces of information (cells) needed to fill in entire table. Marginals (totals in the margins) are known.

Here df = 6.

p-value: From Table B, we get .25 . There is no evidence that pesticide use is dependent upon farmer's age. No association.

Applicability of the method

Random samples

 Expected counts of cells ≥ 1 in all cells, and ≥ 5 in at least 80% cells for the χ² distribution to be a good approximation. If all expected counts ≥ 5, it's even better.

If some cells have small counts, what can be done?

- Fisher's exact test: but we won't cover this method.
- Group cells together. Pesticide use example with a 10-fold decrease in sample size.

Grouping cells

	never use	use sparingly	use as needed	total
\leq 25	2 (1.10)	1 (1.96)	1 (.94)	4
26-40	4 (3.87)	7 (6.85)	3 (3.28)	14
41-55	5 (4.98)	9 (8.81)	4 (4.21)	18
\geq 56	2 (3.05)	6 (5.38)	3 (2.57)	11
total	13	23	11	47

1 cell with E< 1 and 9 cells (out of 12) have E< 5. Chi² test not to be trusted.

Can we merge cells to increase observed counts and expected counts in turn?

Grouping cells

	never	use	use spa	aringly	use as r	needed	total
\leq 40	6 ()	8 ()	4 ()	18
≥ 41	7 ()	15 ()	7 ()	29
total	13	3	23	3	11		47

Now all expected counts are > 1 and only 2 are < 5, although close to 5. We get df= 2, $X^2 = 0.477$ and .75 < p < .90.

All ages seem to make the same use of pesticides: no evidence of change before/after age of 40.

Smoking cessation example

	no contact	group counseling	total
☺ quit smoking	1	26	27
③ resumed within a year	30	69	99
Total	31	95	126

 $p_1 = \mathbb{P}\{ \odot | \text{ no contact} \}$ and $p_2 = \mathbb{P}\{ \odot | \text{ group counseling} \}$

$$\hat{p}_1 = \frac{1}{31} = .032 \quad < \quad \hat{p}_2 = \frac{26}{95} = .274.$$

Question: Does group counseling increase the chances of quitting for longer than a year? Does success rate depend on counseling strategy?

Smoking cessation example

Observed and expected counts:

	no contact	group counseling	total
☺ quit smoking	1 (6.64)	26 (20.36)	27
③ resumed within a year	30 (24.36)	69 (74.64)	99
Total	31	95	126

Is a chi-square test of independence okay to use here? Is it valid/applicable?

Smoking cessation example

We get $X^2 = 8.09$, with df = 1 so $.001 and we conclude that there is strong evidence that success is dependent on counseling strategy <math>(p_1 \neq p_2)$. Since the data show $\hat{p}_1 < \hat{p}_2$, there is strong evidence that $p_1 < p_2$, i.e. better success rate with group counseling.

Exact p-value in R:

```
> 1-pchisq(8.09, df=1)
[1] 0.004451016
```