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Modeling non-normal data

In all of the linear models we have seen so far, the
response variable has been modeled with a normal
distribution

(response) = (fixed parameters) + (normal error)

For many data sets, this model is inadequate.

Ex: if the response variable is categorical with two possible
responses, it makes no sense to model the outcome as
normal.

Ex: if the response is always a small positive integer, its
distribution is also not well described by a normal
distribution.

Generalized linear models (GLMs) are an extension of
linear models to model non-normal response variables.
Logistic regression is for binary response variables.



The link function
Standard linear model:

yi = β1xi1 + β2xi2 + · · ·+ βkxik + ei , ei ∼ N (0, σ2)

The mean of expected value of the response is:

IE(yi) = β1xi1 + β2xi2 + · · ·+ βkxik

We will use the notation ηi = β1xi1 + · · ·+ βkxik to
represent the linear combination of explanatory variables.
In a standard linear model,

IE(yi) = ηi

In a GLM, there is a link function g between η and the
mean of the response variable:

g(IE(yi)) = ηi

For standard linear models, the link function is the identity
function g(yi) = yi .



The link function
It can be easier to consider the inverse of the link function:

IE(yi) = g−1(ηi)

When the response variable is binary (with values coded
as 0 or 1), the mean is simply IEy = IP{y = 1}.

A useful function for this case is

IEy = IP{y = 1} =
eη

1 + eη
= g−1(η)

η can take any value, the mean is always between 0 and 1.

The corresponding link function is called the logit function,

g(p) = log
(

p
1 − p

)
= log

(
IP{Y = 1}
IP{Y = 0}

)
It is the log of the odds. Regression under this model is
called logistic regression.



Deviance

In standard linear models, we estimate the parameters by
minimizing the sum of the squared residuals .
Equivalent to finding parameters that maximize the
likelihood.

In a GLM we also fit parameters by maximizing the
likelihood. The deviance is negative two times the
maximum log likelihood up to an additive constant.

Estimation is equivalent to finding parameter values that
minimize the deviance.



Logistic regression

Logistic regression is a natural choice when the response
is categorical with two possible outcomes.

Pick one outcome to be a “success”, or “yes”, where y = 1.

We desire a model to estimate the probability of “success”
as a function of the explanatory variables. Using the
inverse logit function, the probability of success has the
form

IP{y = 1} =
eη

1 + eη
=

1
1 + e−η

Equivalent formulas:

eη =
IP{y = 1}
IP{y = 0}

η = log
(

IP{Y = 1}
IP{Y = 0}

)
We estimate the parameters so that this probability is high
for cases where y = 1 and low for cases where y = 0.



Anesthesia example

In surgery, it is desirable to give enough anesthetic so that
patients do not move when an incision is made. It is also
desirable not to use much more anesthetic than necessary.

In an experiment, patients are given different
concentrations of anesthetic.

Response: whether or not they move at the time of incision
15 minutes after receiving the drug.



Anesthesia data

Concentration
0.8 1.0 1.2 1.4 1.6 2.5

Move 6 4 2 2 0 0
No move 1 1 4 4 4 2
Total 7 5 6 6 4 2
Proportion 0.17 0.20 0.67 0.67 1.00 1.00

Analyze in R with glm twice,

once using raw data (0’s and 1’s) and

once using summarized counts (1/7, 1/4, . . . , 4/4, 2/2).

Extends chi-square tests.



Binomial distribution

Logistic regression is related to the binomial distribution.
If there are several observations with the same explanatory
variable values, then the individual responses can be
added up and the sum has a binomial distribution.

Recall: the binomial distribution has parameters n and p,
mean µ = np and variance σ2 = np(1 − p).

The probability distribution is

IP{X = x} =

(
n
x

)
px(1 − p)n−x

Logistic regression is in the “binomial family” of GLMs.



Logistic regression in R on raw data
> dat = read.table("anesthetic.txt", header = T)
> str(dat)
’data.frame’: 30 obs. of 3 variables:

$ movement: Factor w/ 2 levels "move","noMove": 2 1 2 1 1 ...
$ conc : num 1 1.2 1.4 1.4 1.2 2.5 1.6 0.8 1.6 1.4 ...
$ nomove : int 1 0 1 0 0 1 1 0 1 0 ...

> dat$movement
[1] noMove move noMove move move ...

[21] ... noMove move noMove move noMove
Levels: move noMove

> fit.raw = glm(movement ˜ conc, data=dat, family=binomial)
> summary(fit.raw)
glm(formula = nomove ˜ conc, family = binomial, data = dat)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.469 2.418 -2.675 0.00748 **
conc 5.567 2.044 2.724 0.00645 **
...

Null deviance: 41.455 on 29 degrees of freedom
Residual deviance: 27.754 on 28 degrees of freedom
AIC: 31.754



Fitted Model

IP{No move} =
eη

1 + eη
=

1
1 + e−η

with η = −6.469 + 5.567 × concentration

We can get predictions

at the ‘link’ level: ηi

and at the ‘response’ level: y , or IEY = IP{Y = 1}

> predict(fit.raw, type="link")
1 2 3 4 5 6 ... 28 29 30

-0.90 0.21 1.32 1.32 0.21 7.448 ... 0.21 -0.90 0.21

> predict(fit.raw, type="response")
1 2 3 4 5 6 ... 28 29 30

0.29 0.55 0.79 0.79 0.55 0.999 ... 0.55 0.29 0.55



Plot of the logit curve
layout(matrix(1:2,2,1))
my.etas = seq(-8,8, by=.01)
my.prob = 1/(1+exp(-my.etas))
plot(my.etas, my.prob, type="l", bty="n",

xlab="linear predictor: log-odds eta",
ylab="probability of ’success’")

abline(h=0); abline(h=1);
lines(c(-10,0),c(.5,.5), lty=2)
lines(c(0,0),c(0,.5), lty=2)

my.conc = seq(0,2.5,by=.05)
my.etas = -6.469 + 5.567 * my.conc
my.prob = 1/(1+exp(-my.etas))
plot(my.conc, my.prob, type="l", bty="n", adj=1,

xlab="", ylab="prob. no movement")
mtext("concentration", side=1, line=0.4)
mtext("eta", side=1, line=2.4)
mtext("-6.5\n(intercept)",side=1,at=0, line=4)
mtext("-0.9\n(-6.5+5.6)",side=1,at=1, line=4)
conc.5 = (0-(-6.469))/5.567
mtext("0",side=1,at=conc.5, line=3)
mtext("4.7\n(-6.5+2 * 5.6)",side=1,at=2, line=4)
lines(c(-1,conc.5),c(.5,.5), lty=2)
lines(c(conc.5,conc.5),c(0,.5), lty=2)



Plot of movement probability versus concentration

plot(movement ˜ conc, data=dat)
plot(movement ˜ as.factor(conc), data=dat)
plot(nomove ˜ conc, data=dat)
plot(jitter(nomove) ˜ conc, data=dat)
plot(jitter(nomove,amount=.02) ˜ conc, data=dat)

myconc = seq(0.8,2.5,by=.05)
lines(myconc, predict(fit.raw, type="response",

list(conc = myconc)))



Logistic regression in R on summary data

> with(dat, table(movement, conc))
conc

movement 0.8 1 1.2 1.4 1.6 2.5
move 6 4 2 2 0 0
noMove 1 1 4 4 4 2

> dat2 = data.frame( conc = c(.8,1,1.2,1.4,1.6,2.5),
+ total = c(7,5,6,6,4,2),
+ prop = c(1/7,1/5,4/6,4/6,4/4,2/2)
+ )

> fit.tot = glm(prop ˜ conc, data=dat2, weights=total,
+ family=binomial)
> predict(fit.tot, type="link")

1 2 3 4 5 6
-2.02 -0.90 0.21 1.32 2.44 7.45
> predict(fit.tot, type="response")

1 2 3 4 5 6
0.12 0.29 0.55 0.79 0.92 1.00



Logistic regression in R on summary data

> summary(fit.tot)
glm(formula = prop ˜ conc, family=binomial, data=dat2,

weights = total)
Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.469 2.419 -2.675 0.00748 **
conc 5.567 2.044 2.724 0.00645 **
...

Null deviance: 15.4334 on 5 degrees of freedom
Residual deviance: 1.7321 on 4 degrees of freedom
AIC: 13.811

> plot(prop ˜ conc, data=dat2)
> lines(myconc, predict(fit.raw, type="response",

list(conc=myconc))
+ )



Runoff data set

Data collected over a 4-year period from a Madison home.

Outcome: indicator if a rain storm produces runoff.

Multiple predictors. From graphical examinations: the total
amount of precipitation and various measures of storm
intensity are good predictors.
Storm duration and time since the previous storm are less
predictive.

runoff = read.table("runoff.txt",header=T)

plot( RunoffEvent ˜ Precip, data=runoff)
plot(jitter(RunoffEvent,amount=.02) ˜ Precip, data=runoff)

library(lattice)
densityplot(˜ StormDuration,groups=factor(RunoffEvent),

data=runoff,auto.key=list(columns=2))
densityplot(˜ Precip,groups=factor(RunoffEvent),

data=runoff,auto.key=list(columns=2))



Fitting a logistic model in R: glm

We first study a model with storm total precipitation as a single
predictor: Precip , in inches.

> fit1 = glm(RunoffEvent ˜ Precip, data=runoff,
+ family=binomial)
> summary(fit1)

glm(formula = RunoffEvent ˜ Precip, family=binomial,
data=runoff)

(Intercept) -3.6418 0.4152 -8.771 < 2e-16 ***
Precip 3.8059 0.5801 6.560 5.37e-11 ***

Null deviance: 227.82 on 230 degrees of freedom
Residual deviance: 148.13 on 229 degrees of freedom
AIC: 152.13



Fitted Model

The general logistic regression formula is

IP{yi = 1} =
eηi

1 + eηi
=

1
1 + exp(−ηi)

where ηi = Xi β̂. So the probability of runoff in this model is:

IP{runoff} =
1

1 + exp(−(−3.64 + 3.81 ∗ Precip))

To plot the prediction curve:

plot(jitter(RunoffEvent, amount=.02) ˜ Precip, data=runoff)
lines(myprecip, predict(fit1, list(Precip = myprecip),

type="response")
)



Finding the 50/50 point

In general:

p =
1

1 + exp(−η)
or equivalently η = log

(
p

1 − p

)
At the 50/50 point, there is a 50% chance of runoff and 50%
chance of no runoff. The odds are 50:50, or 1:1 or just
p/(1 − p) = 1, and the log of the odds is η = log(1) = 0.

With one predictor (plus an intercept), we want to solve:

η̂ = β̂1 + β̂2 ∗ Precip = log(1) = 0

so

Precip = − β̂1

β̂2
= −−3.64

3.81
= 0.96 in



Interpreting coefficients

Intercept: related to predictions when the predictor has
value 0. Here we estimate IP{runoff|precip = 0} = 0.025.

Slope: determines how steeply the probability of runoff
moves from 0 to 1, as precipitation increases. Roughly:

slope/4 ≈ change in probability, around the 50:50 point

Here: 3.81/4 = 0.95. Because this is so high, we need to
consider smaller changes than one unit. When the
precipitation is near the 50:50 point (near one inch), an
increase of 0.1 inch of precipitation increases the runoff
probability by about 0.09.



Predictions

At the linear ‘link’ level, or at the response level:

> newdat = data.frame(Precip=c(0, 0.25, 0.5, 0.75, 1.0, 1.1,
+ 1.25, 1.5, 1.75, 2.0, 4.0)
+ )
> predict(fit1, newdat)

1 2 3 4 5 6 7 8 9 10 11
-3.6 -2.7 -1.7 -0.79 0.16 0.54 1.12 2.07 3.02 3.97 11.6
> predict(fit1, newdat, type="response")

1 2 3 4 5 6 7 8 9 10 11
0.03 0.06 0.15 0.31 0.54 0.63 0.75 0.89 0.95 0.98 1.0



Adding another predictor

Maximum intensity at 10 minutes: in/hr

> fit2 = glm(RunoffEvent ˜ Precip + MaxIntensity10,
+ data=runoff, family=binomial)
> summary(fit2)
glm(formula=RunoffEvent ˜ Precip + MaxIntensity10,

family=binomial, data=runoff)
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.9017 0.6157 -7.961 1.70e-15 ***
Precip 2.8148 0.6750 4.170 3.05e-05 ***
MaxIntensity10 1.8377 0.3753 4.896 9.78e-07 ***
...

Null deviance: 227.82 on 230 degrees of freedom
Residual deviance: 116.11 on 228 degrees of freedom
AIC: 122.11

What is the equation for η? for the probability p of runoff?



Including an interaction

Maximum intensity at 10 minutes: in/hr

> fit3 = glm(RunoffEvent ˜ Precip * MaxIntensity10,
+ data=runoff, family=binomial)
> summary(fit3)
glm(formula=RunoffEvent ˜ Precip * MaxIntensity10,

family=binomial, data=runoff)
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.4276 0.8581 -6.325 2.53e-10 ***
Precip 3.5900 1.0376 3.460 0.00054 ***
MaxIntensity10 2.4211 0.6911 3.503 0.00046 ***
Precip:MaxIntensity10 -0.8447 0.7707 -1.096 0.27308
...

Null deviance: 227.82 on 230 degrees of freedom
Residual deviance: 115.27 on 227 degrees of freedom
AIC: 123.27

What is the equation for η? for the probability p of runoff?



Plots
Without interaction, the curves are parallel: just shifted.
With interaction: some curves are steeper than others.

plot(jitter(RunoffEvent,amount=.02) ˜ Precip, data=runoff,
ylab="Probability of runoff event")

legend("right",pch=1,col=c("blue","darkblue","black"),
legend=c("1.0","0.8","0.24"),title="MaxIntensity10")

myprecip = seq(0,5,0.02) # calculate predictions
prob1 = predict(fit2,type="response",

data.frame(Precip=myprecip, MaxIntensity10=0.24))
prob2 = predict(fit2,type="response",

data.frame(Precip=myprecip, MaxIntensity10=0.80))
prob3 = predict(fit2,type="response",

data.frame(Precip=myprecip, MaxIntensity10=1.00))

lines(myprecip, prob1, col="black") # draw prediction curves
lines(myprecip, prob2, col="darkblue")
lines(myprecip, prob3, col="blue")

abline(h=0,lty=2) # Add horizontal lines
abline(h=1,lty=2)



Case study: Baby food

Number of infant respiratory disease (bronchitis or pneumonia)
in their first year of life:

Bottle only Some breast with supplement Breast only
Boys 77/458 19/147 47/494
Girls 48/384 16/127 31/464

How could we test an effect of food

ignoring a possible gender effect?

among boys only?

How could we test an effect of gender, ignoring a possible food
effect?



Case study: Baby food

> babyfood = read.table("babyfood.txt", header=T)

# re-ordering the food levels, non-alphabetically:
> babyfood$food = factor(babyfood$food,
+ levels = c("bottle","mixed","breast"))

# calculate number of non-disease cases:
> babyfood$nondisease = with(babyfood, total - disease)

> xtabs(disease/total ˜ sex+food, babyfood)
food

sex bottle mixed breast
boy 0.16812227 0.12925170 0.09514170
girl 0.12500000 0.12598425 0.06681034

> plot(xtabs(disease/total ˜ sex+food, babyfood),
+ main="Respiratory disease incidence in 1st year")
> plot(xtabs(disease/total ˜ food+sex, babyfood),
+ main="Respiratory disease incidence in 1st year")



Chi-square test of association
Inappropriate if gender effect, which we don’t know yet.

> l1 = with(babyfood, tapply(disease, food, sum))
> l2 = with(babyfood, tapply(nondisease, food, sum))
> l1
bottle mixed breast

125 35 78
> l2
bottle mixed breast

717 239 880
> cbind(l1, l2)

l1 l2
bottle 125 717
breast 78 880
mixed 35 239

> chisq.test(cbind(l1,l2))
Pearson’s Chi-squared test

data: cbind(l1, l2)
X-squared = 20.348, df = 2, p-value = 3.815e-05



Logistic model

> fit = glm(disease/total ˜ sex + food, weight=total,
+ family=binomial, data=babyfood)
> fit = glm(cbind(disease, nondisease) ˜ sex + food,

family=binomial, data=babyfood)

> summary(fit)

...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.6127 0.1124 -14.347 < 2e-16 ***
sexgirl -0.3126 0.1410 -2.216 0.0267 *
foodmixed -0.1725 0.2056 -0.839 0.4013
foodbreast -0.6693 0.1530 -4.374 1.22e-05 ***
...

Null deviance: 26.37529 on 5 degrees of freedom
Residual deviance: 0.72192 on 2 degrees of freedom
AIC: 40.24



Interpretation of coefficients: odds
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.6127 0.1124 -14.347 < 2e-16 ***
sexgirl -0.3126 0.1410 -2.216 0.0267 *
foodmixed -0.1725 0.2056 -0.839 0.4013
foodbreast -0.6693 0.1530 -4.374 1.22e-05 ***

Let p = probability of infant respiratory disease. With o = eη,

p =
o

1 + o
, o =

p
1 − p

=
IP{disease}

IP{no disease}

η = log(o) =

 −1.61 bottle-fed boys
−1.61 − 0.31 = −1.92 bottle-fed girls
−1.61 − 0.31 − 0.67 = −2.60 breast-fed girls

or, the odds of respiratory disease are:

o =

 exp(−1.61) ∼ 1/5 bottle-fed boys
exp(−1.61) exp(−0.31) ∼ 1/7 bottle-fed girls
exp(−1.61) exp(−0.31) exp(−0.67) ∼ 1/14 breast-fed girls

exp(coefficient) is the multiplicative change in odds.



Interpretation of coefficients: odds

Quiz:

Odds log odds (η) probability
o = 100 log(100) = 4.6 p =

100/101 = 0.99

o = 10 log(10) = 2.3 p =

10/11 = 0.909

o = 9 log(9) = 2.2 p =

9/10 = 0.90

o = 7 log(7) = 1.94 p =

7/8 = 0.875

o = 1 log(1) = 0 p =

1/2 = 0.50

o = 1/7 log(1/7) = −1.94 p =

1/8 = 0.125

o = 1/9 log(1/9) = −2.2 p =

1/10 = 0.10

o = 0.1 log(0.1) = −2.3 p =

1/11 = 0.09

exp (−0.6693) = 0.512: breastfeeding reduces the odds of
respiratory disease to 51% of that for bottle feeding:
For girls: from o ≈ 1/7 (p = 0.13) to o ≈

1/14 (p = 0.07)

For boys: from o ≈ 1/5 (p = 0.17) to o ≈

1/10 (p = 0.10)
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Model fit and the residual deviance

If the model is correct and when ni ’s are large, the residual
deviance D has a chi-square distribution approximately:

residual D ∼ χ2
dfResid

If D is too large, or p-value too small: the model does not
capture all the features in the data.

Example: baby food.

> summary(fit)
... Null deviance: 26.37529 on 5 degrees of freedom
Residual deviance: 0.72192 on 2 degrees of freedom
> pchisq(0.72192, df=2, lower.tail=F)
[1] 0.6970069

No sign of lack of fit: the model fits well enough. This test is
valid because sample sizes ni are large:

> babyfood$total
[1] 458 147 494 384 127 464



Model fit and the residual deviance

Warning: The chi-square approximation is very bad when ni ’s
are small. This chi-square test is worthless when all ni = 1.

Example: anesthesia data, fit on raw 0/1’s versus grouped
totals:

> summary(fit.raw)
... Residual deviance: 27.754 on 28 degrees of freedom
> summary(fit.tot)
... Residual deviance: 1.7321 on 4 degrees of freedom

> pchisq(27.754, df=28, lower.tail=F)
[1] 0.4775395 # don’t trust this one
> pchisq(1.7321, df=4, lower.tail=F)
[1] 0.7848787 # this one is more trustworthy (but how much?)



Response residuals

yi − ŷi

Example: anesthetic on raw 0/1 data:
observed 1 0 1 0 ...
predicted 0.29 0.55 0.79 0.79 ...
residual 0.71 -0.55 0.21 -0.79 ...

on group totals:
observed 0.14 0.20 0.67 0.67 1.00 1.00
predicted 0.12 0.29 0.55 0.79 0.92 0.9994
residual 0.03 -0.09 0.11 -0.12 0.08 0.0006

> residuals(fit.raw, type="response")[1:4]
> residuals(fit.tot, type="response")

But we expect unequal variances: smaller when p is close to 0
or 1, larger when p ∼ 0.5: var(yi) = p(1 − p)/ni



Pearson’s residuals

yi − ŷi√
var(ŷi)

Example: anesthetic on raw 0/1 data:
observed 1 0 1 0 ...
predicted 0.29 0.55 0.79 0.79 ...
residual 1.57 -1.11 0.52 -1.94 ...

on group totals:
observed 0.14 0.20 0.67 0.67 1.00 1.00
predicted 0.12 0.29 0.55 0.79 0.92 0.9994
residual 0.21 -0.44 0.56 -0.74 0.59 0.03

> residuals(fit.raw, type="pearson")
> residuals(fit.tot, type="pearson")

Their variance should be more uniform.



Deviance residuals

rD
i = sign(yi − ŷi) ∗

√
di

where di is the contribution of observation i to the (residual)
deviance:

di = 2
(

yi log
yi

ŷi
+ (ni − yi) log

ni − yi

ni − ŷi

)
They are the default in R, and often quite similar to Pearson’s
residuals:

> residuals(fit.raw)
1 2 3 4

1.58 -1.27 0.69 -1.77 ...
> residuals(fit.tot)

1 2 3 4 5 6
0.20 -0.45 0.57 -0.70 0.82 0.05

In standard linear models, these residuals coincides.



Residual plots

Deviance residuals are most appropriate for residual plots.

Plotting predicted values on the linear (link) scale is best.

Residual plots are almost useless when ni = 1: predictable
pattern

> layout(matrix(1:4,2,2))
> plot(fit.raw)
> plot(fit.tot)
> plot(fit2) # from runoff data: were 0/1 response values
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Why is the deviance is too large?

A large residual deviance (as compared to a chi-square
distribution) suggests a bad fit. Ways to correct this:

include the correct predictors in the model

transform predictors appropriately

detect if there are a few outliers or a few points with undue
influence, using residual plots

if all/many ni ’s are small: the residual deviance is not
approximately χ2, so it is useless to assess goodness of fit.

if none of the above: consider overdispersion. More later.



Comparing models: chi-square likelihood ratio test

The deviance always goes down as more predictors are added
to the model, just like RSS goes down (R2 goes up) in linear
models.

χ2 test (LRT) for nested models
If the reduced model is true, then

Dreduced− Dfull ∼ χ2
d

approximately, when d is the difference in degrees of freedom
between the two models.

Much more reliable than the χ2 test for goodness of fit.

This is a likelihood-ratio test (LRT)



Comparing models: chi-square test

> summary(fit1)
... glm(formula = RunoffEvent ˜ Precip,

family = binomial, data = runoff)
... Residual deviance: 148.13 on 229 degrees of freedom

> summary(fit2)
... glm(formula = RunoffEvent ˜ Precip + MaxIntensity10,

family = binomial, data = runoff)
... Residual deviance: 116.11 on 228 degrees of freedom

> pchisq(148.13-116.11, df=229-228, lower.tail=F)
[1] 1.525e-08

> anova(fit1, fit2, test="Chisq")
Analysis of Deviance Table
Model 1: RunoffEvent ˜ Precip
Model 2: RunoffEvent ˜ Precip + MaxIntensity10

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 229 148.129
2 228 116.106 1 32.023 1.524e-08



Comparing models: chi-square test

> anova(fit2, test="Chisq") # Warning! sequential

Analysis of Deviance Table
Model: binomial, link: logit
Response: RunoffEvent
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 230 227.820
Precip 1 79.691 229 148.129 4.378e-19
MaxIntensity10 1 32.023 228 116.106 1.524e-08

> drop1(fit2, test="Chisq") # each term against the full model

Single term deletions
Model: RunoffEvent ˜ Precip + MaxIntensity10

Df Deviance AIC LRT Pr(Chi)
<none> 116.106 122.106
Precip 1 136.717 140.717 20.611 5.628e-06 ***
MaxIntensity10 1 148.129 152.129 32.023 1.524e-08 ***



Comparing models: chi-square test

> anova(fit1, fit2, fit3, test="Chisq")
Analysis of Deviance Table

Model 1: RunoffEvent ˜ Precip
Model 2: RunoffEvent ˜ Precip + MaxIntensity10
Model 3: RunoffEvent ˜ Precip * MaxIntensity10

Resid. Df Resid. Dev Df Deviance P(>|Chi|)
1 229 148.129
2 228 116.106 1 32.023 1.524e-08
3 227 115.273 1 0.833 0.361

AIC = Deviance +2p, where p = total # coefficients

> extractAIC(fit1)
[1] 2.0000 152.1287
> extractAIC(fit2)
[1] 3.0000 122.1059
> extractAIC(fit3)
[1] 4.0000 123.2725



Wald test for coefficients

Standard errors for coefficients obtained as in linear
models, using matrix algebra.

Wald test: z-test here. Approximate. Roughly speaking, a
coefficient will be statistically significant if it is at least
two standard errors away from zero .

The chi-square test using deviances is more reliable.

It rarely makes sense to test the intercept.

> summary(fit2)
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.9017 0.6157 -7.961 1.70e-15 ***
Precip 2.8148 0.6750 4.170 3.05e-05 ***
MaxIntensity10 1.8377 0.3753 4.896 9.78e-07 ***



Confidence intervals for coefficients, Wald-based
Confidence intervals associated with Wald test: on the
linear scale.
Transform with exp to have CI for the change in odds.
Symmetric interval around the coefficient, not symmetric
on the odds scale.

> summary(fit)
...

Estimate Std. Error z value Pr(>|z|)
sexgirl -0.3126 0.1410 -2.216 0.0267 *
foodmixed -0.1725 0.2056 -0.839 0.4013
foodbreast -0.6693 0.1530 -4.374 1.22e-05 ***

# CI for breastfeeding effect:
> c(-0.6693 - 2 * 0.1530, -0.6693 + 2 * 0.1530)
[1] -0.9753 -0.3633

# CI for change in odds due to breastfeeding:
> exp(c(-0.6693 - 2 * 0.1530, -0.6693 + 2 * 0.1530))
[1] 0.3770792 0.6953778



Confidence intervals from profile likelihood
Profile likelihood-based method: include in the interval all
the ‘plausible’ values that are not rejected by a LRT.

This is preferable to Wald-based CI.

> library(MASS)
> confint(fit)
Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) -1.8376014 -1.39661429
sexgirl -0.5912751 -0.03778236
foodmixed -0.5878196 0.22028446
foodbreast -0.9723573 -0.37176239

> exp(confint(fit))
Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) 0.1591988 0.2474333
sexgirl 0.5536209 0.9629225
foodmixed 0.5555372 1.2464312
foodbreast 0.3781905 0.6895181



Sparse data and the separation problem

Growth of Staphylococcus aureus in vacuum-packaged
ready-to-eat meats. (work with Darand Borneman and Steve Ingham)

data for 68 products:
ph: pH
aw: water activity
wps: percent water phase salt
mpr: moisture protein ratio
growth: 0 (no growth) or 1 (growth)

We would like to predict growth of S. aureus, and find the best
variables to make this prediction.



S. aureus example

Let’s predict S. aureus growth using pH alone:

> rte = read.table("rte.txt", header=T)
> fit.ph = glm(growth ˜ ph, family=binomial, data=rte)
> summary(fit.ph)
ph 6.38 2.55 2.502 0.0123 *
Residual deviance: 20.226 on 66 degrees of freedom
AIC: 24.226
> plot(growth ˜ ph, data=rte)
> mypH = seq(4,7,by=.05)
> lines(mypH, predict(fit.ph, type="response", list(ph=mypH)))



S. aureus growth explained by pH
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S. aureus growth

Using water activity alone:

> fit.aw = glm(growth ˜ aw, family=binomial, data=rte)
> summary(fit.aw)
aw 39.48 19.04 2.074 0.0381 *
Residual deviance: 50.871 on 66 degrees of freedom
AIC: 54.871
> plot(growth ˜ aw, data=rte)
> myaw = seq(.65,1,by=.005)
> lines(myaw, predict(fit.aw, type="response", list(aw=myaw)))



S. aureus growth explained by water activity
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S. aureus growth

Using both pH and water activity:

> fit.awph = glm(growth ˜ aw+ph, family=binomial, data=rte)
1: In glm.fit(x=X, y=Y, weights=weights, start=start, etastart=etastart,:

algorithm did not converge
2: In glm.fit(x=X, y=Y, weights=weights, start=start, etastart=etastart,:

fitted probabilities numerically 0 or 1 occurred

What is going on? Let’s look at the data (something that should
be done before...)

> growthcolor = rep(NA, 68)
> growthcolor[rte$growth==0] = "black"
> growthcolor[rte$growth==1] = "orangered"
> plot(aw˜ph, data=rte, col=growthcolor)



S. aureus growth explained by both pH and aw
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Sparse data and the separation problem

When the 0/1 are perfectly separated by a linear combination of
the predictors,

we could fit many, many curves, all providing perfect fit.

diagnostic: Residual deviance= 0.

the coefficient values providing maximum likelihood are
infinite: infinitely steep curve, or step-shaped curve.

diagnostic: huge SE for individual coefficients and p = 1
from Wald test.



Sparse S. aureus data diagnostic

> fit.awph = glm(growth ˜ aw+ph, family=binomial, data=rte)
... error messages
> summary(fit.awph)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -556.69 664238.24 -0.001 1
aw 316.63 540050.65 0.001 1
ph 44.78 51071.97 0.001 1
...

Null deviance: 6.3376e+01 on 67 degrees of freedom
Residual deviance: 1.3577e-09 on 65 degrees of freedom

Still, LRT indicates that both aw and pH are significant
predictors:

> drop1(fit.awph, test="Chisq")
Df Deviance AIC LRT Pr(Chi)

<none> 0.000 6.000
aw 1 20.229 24.229 20.229 6.870e-06 ***
ph 1 50.995 54.995 50.995 9.262e-13 ***



Sparse data and the separation problem

Possible corrections:

Increase the sampling in the separation zone, so as to
obtain some overlap between the cloud of 0’s and the
cloud of 1’s.

Use a “bias-reduction” approach, which penalizes large
coefficients, i.e. penalizes steep curves. The theoretical
basis is a reduction bias in estimated coefficients.



S. aureus growth with bias-reduction analysis

brglm package: for ‘bias-reduction’ glm. In active development.

> library(brglm)

> fit.awph = brglm(growth ˜ aw+ph, family=binomial, data=rte)
> summary(fit.awph)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -53.009 15.095 -3.512 0.000445 ***
aw 25.592 10.773 2.376 0.017517 *
ph 4.948 1.444 3.426 0.000613 ***

Null deviance: 56.2075 on 67 degrees of freedom
Residual deviance: 3.0725 on 65 degrees of freedom
Penalized deviance: 8.09377
AIC: 9.0725



Visualize S. aureus growth estimated probability

data and estimated region of 1:1, 4:1 and 1:4 odds of growth:

> co =coef(fit.awph)
> co
(Intercept) aw ph

-53.00912 25.59206 4.94773

> b = -co["ph"]/co["aw"] # slope of line on a aw˜ph plot
> a50 = -co[1]/co["aw"] # intercept of line with 1:1 odds
> a80 = ( log(4) -co[1])/co["aw"] # intercept 4:1 odds
> a20 = (-log(4) -co[1])/co["aw"] # intercept 1:4 odds

> plot(aw˜ph, data=rte, col=growthcolor)
> abline(a80,b, col="orangered", lty=3)
> abline(a50,b, col="orangered4")
> abline(a20,b, col="black", lty=3)
> legend("bottomleft", lty=c(3,1,3),title="odds of growth",
+ col=c("orangered","orangered4","black"),
+ legend=c("4:1","1:1","1:4"))



S. aureus growth explained by water activity
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