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Web sites associated with the workshop

www.stat.wisc.edu/∼bates/UseR2008 Materials for the course

www.R-project.org Main web site for the R Project

cran.R-project.org Comprehensive R Archive Network primary site

cran.us.R-project.org Main U.S. mirror for CRAN

R-forge.R-project.org R-Forge, development site for many public R
packages. This is also the URL of the repository for
installing the development versions of the lme4 and
Matrix packages, if you are so inclined.

lme4.R-forge.R-project.org development site for the lme4 package
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Organizing data in R

• Standard rectangular data sets (columns are variables, rows
are observations) are stored in R as data frames.

• The columns can be numeric variables (e.g. measurements or
counts) or factor variables (categorical data) or ordered factor
variables. These types are called the class of the variable.

• The str function provides a concise description of the
structure of a data set (or any other class of object in R). The
summary function summarizes each variable according to its
class. Both are highly recommended for routine use.

• Entering just the name of the data frame causes it to be
printed. For large data frames use the head and tail

functions to view the first few or last few rows.
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R packages

• Packages incorporate functions, data and documentation.

• You can produce packages for private or in-house use or you
can contribute your package to the Comprehensive R Archive
Network (CRAN), http://cran.us.R-project.org

• We will be using the lme4 package from CRAN. Install it from
the Packages menu item or with
> install.packages("lme4")

• You only need to install a package once. If a new version
becomes available you can update (see the menu item).

• To use a package in an R session you attach it using
> require(lme4)

or
> library(lme4)

(This usage causes widespread confusion of the terms
“package” and “library”.)

http://cran.us.R-project.org
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Accessing documentation

• To be added to CRAN, a package must pass a series of quality
control checks. In particular, all functions and data sets must
be documented. Examples and tests can also be included.

• The data function provides names and brief descriptions of
the data sets in a package.
> data(package = "lme4")

Data sets in package ’lme4’:

Dyestuff Yield of dyestuff by batch

Dyestuff2 Yield of dyestuff by batch

Pastes Paste strength by batch and cask

Penicillin Variation in penicillin testing

cake Breakage angle of chocolate cakes

cbpp Contagious bovine pleuropneumonia

sleepstudy Reaction times in a sleep deprivation study

• Use ? followed by the name of a function or data set to view
its documentation. If the documentation contains an example
section, you can execute it with the example function.
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Lattice graphics

• One of the strengths of R is its graphics capabilities.

• There are several styles of graphics in R. The style in
Deepayan Sarkar’s lattice package is well-suited to the type of
data we will be discussing.

• I will not show every piece of code used to produce the data
graphics. The code is available in the script files for the slides
(and sometimes in the example sections of the data set’s
documentation).

• Deepayan’s book, Lattice: Multivariate Data Visualization
with R (Springer, 2008) provides in-depth documentation and
explanations of lattice graphics.

• I also recommend Phil Spector’s book, Data Manipulation
with R (Springer, 2008).
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The Dyestuff data set
• The Dyestuff, Penicillin and Pastes data sets all come

from the classic book Statistical Methods in Research and
Production, edited by O.L. Davies and first published in 1947.

• The Dyestuff data are a balanced one-way classification of
the Yield of dyestuff from samples produced from six Batches
of an intermediate product. See ?Dyestuff.

> str(Dyestuff)

’data.frame’: 30 obs. of 2 variables:

$ Batch: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 2 2 2 2 2 ...

$ Yield: num 1545 1440 1440 1520 1580 ...

> summary(Dyestuff)

Batch Yield

A:5 Min. :1440

B:5 1st Qu.:1469

C:5 Median :1530

D:5 Mean :1528

E:5 3rd Qu.:1575

F:5 Max. :1635
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The effect of the batches

• To emphasize that Batch is categorical, we use letters instead
of numbers to designate the levels.

• Because there is no inherent ordering of the levels of Batch,
we will reorder the levels if, say, doing so can make a plot
more informative.

• The particular batches observed are just a selection of the
possible batches and are entirely used up during the course of
the experiment.

• It is not particularly important to estimate and compare yields
from these batches. Instead we wish to estimate the
variability in yields due to batch-to-batch variability.

• The Batch factor will be used in random-effects terms in
models that we fit.
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Dyestuff data plot

Yield of dyestuff (grams of standard color)
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• The line joins the mean yields of the six batches, which have
been reordered by increasing mean yield.

• The vertical positions are jittered slightly to reduce
overplotting. The lowest yield for batch A was observed on
two distinct preparations from that batch.
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A mixed-effects model for the dyestuff yield
> fm1 <- lmer(Yield ~ 1 + (1 | Batch), Dyestuff)
> print(fm1)

Linear mixed model fit by REML

Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff

AIC BIC logLik deviance REMLdev

325.7 329.9 -159.8 327.4 319.7

Random effects:

Groups Name Variance Std.Dev.

Batch (Intercept) 1763.7 41.996

Residual 2451.3 49.511

Number of obs: 30, groups: Batch, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 1527.50 19.38 78.81

• Fitted model fm1 has one fixed-effect parameter, the mean
yield, and one random-effects term, generating a simple,
scalar random effect for each level of Batch.
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Extracting information from the fitted model

• fm1 is an object of class "mer" (mixed-effects representation).

• There are many extractor functions that can be applied to
such objects.

> fixef(fm1)

(Intercept)

1527.5

> ranef(fm1, drop = TRUE)

$Batch

A B C D E F

-17.60596 0.39124 28.56079 -23.08338 56.73033 -44.99302

> fitted(fm1)

[1] 1509.9 1509.9 1509.9 1509.9 1509.9 1527.9 1527.9 1527.9

[9] 1527.9 1527.9 1556.1 1556.1 1556.1 1556.1 1556.1 1504.4

[17] 1504.4 1504.4 1504.4 1504.4 1584.2 1584.2 1584.2 1584.2

[25] 1584.2 1482.5 1482.5 1482.5 1482.5 1482.5
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Definition of linear mixed-effects models

• A mixed-effects model incorporates two vector-valued random
variables: the response, Y , and the random effects, B. We
observe the value, y, of Y . We do not observe the value of B.

• In a linear mixed-effects model the conditional distribution,
Y |B, and the marginal distribution, B, are independent,
multivariate normal (or “Gaussian”) distributions,

(Y |B = b) ∼ N
(
Xβ +Zb, σ2I

)
, B ∼ N

(
0, σ2Σ

)
, (Y |B) ⊥ B.

• The scalar σ is the common scale parameter; the
p-dimensional β is the fixed-effects parameter; the n× p X
and the n× q Z are known, fixed model matrices; and the
q × q relative variance-covariance matrix Σ(θ) is a positive
semidefinite, symmetric q × q matrix that depends on the
parameter θ.
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Conditional modes of the random effects

• Technically we do not provide “estimates” of the random
effects because they are not parameters.

• One answer to the question, “so what are those numbers
anyway?” is that they are BLUPs (Best Linear Unbiased
Predictors) but that answer is not informative and the concept
does not generalize.

• A better answer is that those values are the conditional
means, E[B|Y = y], evaluated at the estimated parameters.
Regrettably, we can only evaluate the conditional means for
linear mixed models.

• However, these values are also the conditional modes and that
concept does generalize to other types of mixed models.
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Caterpillar plot for fm1

• For linear mixed models we can evaluate the means and
standard deviations of the conditional distributions
Bj |Y , j = 1, . . . , q. We show these in the form of a 95%
prediction interval, with the levels of the grouping factor
arranged in increasing order of the conditional mean.

• These are sometimes called “caterpillar plots”.
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Mixed-effects model formulas

• In lmer the model is specified by the formula argument. As in
most R model-fitting functions, this is the first argument.

• The model formula consists of two expressions separated by
the ∼ symbol.

• The expression on the left, typically the name of a variable, is
evaluated as the response.

• The right-hand side consists of one or more terms separated
by ‘+’ symbols.

• A random-effects term consists of two expressions separated
by the vertical bar, (‘|’), symbol (read as “given” or “by”).
Typically, such terms are enclosed in parentheses.

• The expression on the right of the ‘|’ is evaluated as a factor,
which we call the grouping factor for that term.
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Simple, scalar random-effects terms

• In a simple, scalar random-effects term, the expression on the
left of the ‘|’ is ‘1’. Such a term generates one random effect
(i.e. a scalar) for each level of the grouping factor.

• Each random-effects term contributes a set of columns to Z.
For a simple, scalar r.e. term these are the indicator columns
for the levels of the grouping factor. The transpose of the
Batch indicators is

> with(Dyestuff, as(Batch, "sparseMatrix"))

6 x 30 sparse Matrix of class "dgCMatrix"

A 1 1 1 1 1 . . . . . . . . . . . . . . . . . . . . . . . . .

B . . . . . 1 1 1 1 1 . . . . . . . . . . . . . . . . . . . .

C . . . . . . . . . . 1 1 1 1 1 . . . . . . . . . . . . . . .

D . . . . . . . . . . . . . . . 1 1 1 1 1 . . . . . . . . . .

E . . . . . . . . . . . . . . . . . . . . 1 1 1 1 1 . . . . .

F . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 1
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Formulation of the marginal variance matrix

• In addition to determining Z, the random effects terms
determine the form and parameterization of the relative
variance-covariance matrix, Σ(θ).

• The parameterization is based on a modified “LDL′” Cholesky
factorization

Σ = TSS′T ′

where T is a q × q unit lower Triangular matrix and S is a
q × q diagonal Scale matrix with nonnegative diagonal
elements.

• Σ, T and S are all block-diagonal, with blocks corresponding
to the random-effects terms.

• The diagonal block of T for a scalar random effects term is
the identity matrix, I, and the block in S is a nonnegative
multiple of I.
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Verbose fitting, extracting T and S

• The optional argument verbose = TRUE causes lmer to print
iteration information during the optimzation of the parameter
estimates.

• The quantity being minimized is the profiled deviance of the
model. The deviance is negative twice the log-likelihood. It is
profiled in the sense that it is a function of θ only — β and σ
are at their conditional estimates.

• If you want to see exactly how the parameters θ generate Σ,
use expand to obtain a list with components sigma, T and S.
The list also contains a permutation matrix P whose role we
will discuss later.

• T , S and Σ can be very large but are always highly patterned.
The image function can be used to examine their structure.
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Obtain the verbose output for fitting fm1

> invisible(update(fm1, verbose = TRUE))

0: 319.76562: 0.730297

1: 319.73549: 0.962389

2: 319.65735: 0.869461

3: 319.65441: 0.844025

4: 319.65428: 0.848469

5: 319.65428: 0.848327

6: 319.65428: 0.848324

• The first number on each line is the iteration count —
iteration 0 is at the starting value for θ.

• The second number is the profiled deviance — the criterion to
be minimized at the estimates.

• The third and subsequent numbers are the parameter vector θ.
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Extract T and S

• As previously indicated, T and S from fm1 are boring.

> (efm1 <- expand(fm1))$S

6 x 6 diagonal matrix of class "ddiMatrix"

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.84823 . . . . .

[2,] . 0.84823 . . . .

[3,] . . 0.84823 . . .

[4,] . . . 0.84823 . .

[5,] . . . . 0.84823 .

[6,] . . . . . 0.84823

> efm1$T

6 x 6 sparse Matrix of class "dtCMatrix"

[1,] 1 . . . . .

[2,] . 1 . . . .

[3,] . . 1 . . .

[4,] . . . 1 . .

[5,] . . . . 1 .

[6,] . . . . . 1
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Reconstructing Σ

> (fm1S <- tcrossprod(efm1$T %*% efm1$S))

6 x 6 sparse Matrix of class "dsCMatrix"

[1,] 0.71949 . . . . .

[2,] . 0.71949 . . . .

[3,] . . 0.71949 . . .

[4,] . . . 0.71949 . .

[5,] . . . . 0.71949 .

[6,] . . . . . 0.71949
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REML estimates versus ML estimates

• The default parameter estimation criterion for linear mixed
models is restricted (or “residual”) maximum likelihood
(REML).

• Maximum likelihood (ML) estimates (sometimes called “full
maximum likelihood”) can be requested by specifying REML =

FALSE in the call to lmer.

• Generally REML estimates of variance components are
preferred. ML estimates are known to be biased. Although
REML estimates are not guaranteed to be unbiased, they are
usually less biased than ML estimates.

• Roughly, the difference between REML and ML estimates of
variance components is comparable to estimating σ2 in a
fixed-effects regression by SSR/(n− p) versus SSR/n, where
SSR is the residual sum of squares.

• For a balanced, one-way classification like the Dyestuff data,
the REML and ML estimates of the fixed-effects are identical.
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Re-fitting the model for ML estimates

> (fm1M <- update(fm1, REML = FALSE))

Linear mixed model fit by maximum likelihood

Formula: Yield ~ 1 + (1 | Batch)

Data: Dyestuff

AIC BIC logLik deviance REMLdev

333.3 337.5 -163.7 327.3 319.7

Random effects:

Groups Name Variance Std.Dev.

Batch (Intercept) 1388.1 37.258

Residual 2451.3 49.511

Number of obs: 30, groups: Batch, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 1527.50 17.69 86.33

(The extra parentheses around the assignment cause the value to
be printed. Generally the results of assignments are not printed.)



Simple Longitudinal Interactions Theory GLMM Item Response NLMM

Recap of the Dyestuff model

• The model is fit as
lmer(formula = Yield ~ 1 + (1 | Batch), data = Dyestuff)

• There is one random-effects term, (1|Batch), in the model
formula. It is a simple, scalar term for the grouping factor
Batch with n1 = 6 levels. Thus q = 6.

• The model matrix Z is the 30× 6 matrix of indicators of the
levels of Batch.

• The relative variance-covariance matrix, Σ, is a nonnegative
multiple of the 6× 6 identity matrix I6.

• The fixed-effects parameter vector, β, is of length p = 1. All
the elements of the 30× 1 model matrix X are unity.
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The Penicillin data (see also the ?Penicillin description)
> str(Penicillin)

’data.frame’: 144 obs. of 3 variables:

$ diameter: num 27 23 26 23 23 21 27 23 26 23 ...

$ plate : Factor w/ 24 levels "a","b","c","d",..: 1 1 1 1 1 1 2 2 2 2 ...

$ sample : Factor w/ 6 levels "A","B","C","D",..: 1 2 3 4 5 6 1 2 3 4 ...

> xtabs(~sample + plate, Penicillin)

plate

sample a b c d e f g h i j k l m n o p q r s t u v w x

A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

• These are measurements of the potency (measured by the
diameter of a clear area on a Petri dish) of penicillin samples
in a balanced, unreplicated two-way crossed classification with
the test medium, plate.
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Penicillin data plot

Diameter of growth inhibition zone (mm)
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Model with crossed simple random effects for Penicillin

> (fm2 <- lmer(diameter ~ 1 + (1 | plate) + (1 | sample),
+ Penicillin))

Linear mixed model fit by REML

Formula: diameter ~ 1 + (1 | plate) + (1 | sample)

Data: Penicillin

AIC BIC logLik deviance REMLdev

338.9 350.7 -165.4 332.3 330.9

Random effects:

Groups Name Variance Std.Dev.

plate (Intercept) 0.71691 0.84671

sample (Intercept) 3.73030 1.93140

Residual 0.30242 0.54992

Number of obs: 144, groups: plate, 24; sample, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 22.9722 0.8085 28.41
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Fixed and random effects for fm2
• The model for the n = 144 observations has p = 1

fixed-effects parameter and q = 30 random effects from k = 2
random effects terms in the formula.

> fixef(fm2)

(Intercept)

22.972

> ranef(fm2, drop = TRUE)

$plate

a b c d e f

0.804547 0.804547 0.181672 0.337391 0.025953 -0.441203

g h i j k l

-1.375516 0.804547 -0.752641 -0.752641 0.960266 0.493109

m n o p q r

1.427422 0.493109 0.960266 0.025953 -0.285484 -0.285484

s t u v w x

-1.375516 0.960266 -0.908360 -0.285484 -0.596922 -1.219797

$sample

A B C D E F

2.187057 -1.010476 1.937898 -0.096895 -0.013842 -3.003742
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Prediction intervals for random effects
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Model matrix Z for fm2

• Because the model matrix Z is generated from k = 2 simple,
scalar random effects terms, it consists of two sets of indicator
columns.

• The structure of Z ′ is shown below. (Generally we will show
the transpose of these model matrices - they fit better on
slides.)

Z'
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Models with crossed random effects

• Many people believe that mixed-effects models are equivalent
to hierarchical linear models (HLMs) or “multilevel models”.
This is not true. The plate and sample factors in fm2 are
crossed. They do not represent levels in a hierarchy.

• There is no difficulty in defining and fitting models with
crossed random effects (meaning random-effects terms whose
grouping factors are crossed). However, fitting models with
crossed random effects can be somewhat slower.

• The crucial calculation in each lmer iteration is evaluation of
the sparse, lower triangular, Cholesky factor, L(θ), that
satisfies

L(θ)L(θ)′ = P (A(θ)A(θ)′ + Iq)P ′

from A(θ)′ = ZT (θ)S(θ). Crossing of grouping factors
increases the number of nonzeros in AA′ and also causes
some “fill-in” when creating L from A.
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All HLMs are mixed models but not vice-versa
• Even though Raudenbush and Bryk (2002) do discuss models

for crossed factors in their HLM book, such models are not
hierarchical.

• Experimental situations with crossed random factors, such as
“subject” and “stimulus”, are common. We can, and should,
model such data according to its structure.

• In longitudinal studies of subjects in social contexts (e.g.
students in classrooms or in schools) we almost always have
partial crossing of the subject and the context factors,
meaning that, over the course of the study, a particular
student may be observed in more than one class but not all
students are observed in all classes. The student and class
factors are neither fully crossed nor strictly nested.

• For longitudinal data, “nested” is only important if it means
“nested across time”. “Nested at a particular time” doesn’t
count.

• The lme4 package in R is different from most other software
for fitting mixed models in that it handles fully crossed and
partially crossed random effects gracefully.
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Images of some of the q × q matrices for fm2

• Because both random-effects terms are scalar terms, T is a
block-diagonal matrix of two blocks, both of which are
identity matrices. Hence T = Iq.

• For this model it is also the case that P = Iq.

• S consists of two diagonal blocks, both of which are multiples
of an identity matrix. The multiples are different.
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Recap of the Penicillin model

• The model formula is
diameter ~ 1 + (1 | plate) + (1 | sample)

• There are two random-effects terms, (1|plate) and
(1|sample). Both are simple, scalar (q1 = q2 = 1) random
effects terms, with n1 = 24 and n2 = 6 levels, respectively.
Thus q = q1n1 + q2n2 = 30.

• The model matrix Z is the 144× 30 matrix created from two
sets of indicator columns.

• The relative variance-covariance matrix, Σ, is block diagonal
in two blocks that are nonnegative multiples of identity
matrices. The matrices AA′ and L show the crossing of the
factors. L has some fill-in relative to AA′.

• The fixed-effects parameter vector, β, is of length p = 1. All
the elements of the 144× 1 model matrix X are unity.
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The Pastes data (see also the ?Pastes description)

> str(Pastes)

’data.frame’: 60 obs. of 4 variables:

$ strength: num 62.8 62.6 60.1 62.3 62.7 63.1 60 61.4 57.5 56.9 ...

$ batch : Factor w/ 10 levels "A","B","C","D",..: 1 1 1 1 1 1 2 2 2 2 ...

$ cask : Factor w/ 3 levels "a","b","c": 1 1 2 2 3 3 1 1 2 2 ...

$ sample : Factor w/ 30 levels "A:a","A:b","A:c",..: 1 1 2 2 3 3 4 4 5 5 ...

> xtabs(~batch + sample, Pastes, sparse = TRUE)

10 x 30 sparse Matrix of class "dgCMatrix"

A 2 2 2 . . . . . . . . . . . . . . . . . . . . . . . . . . .

B . . . 2 2 2 . . . . . . . . . . . . . . . . . . . . . . . .

C . . . . . . 2 2 2 . . . . . . . . . . . . . . . . . . . . .

D . . . . . . . . . 2 2 2 . . . . . . . . . . . . . . . . . .

E . . . . . . . . . . . . 2 2 2 . . . . . . . . . . . . . . .

F . . . . . . . . . . . . . . . 2 2 2 . . . . . . . . . . . .

G . . . . . . . . . . . . . . . . . . 2 2 2 . . . . . . . . .

H . . . . . . . . . . . . . . . . . . . . . 2 2 2 . . . . . .

I . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2 . . .

J . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2
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Structure of the Pastes data

• The sample factor is nested within the batch factor. Each
sample is from one of three casks selected from a particular
batch.

• Note that there are 30, not 3, distinct samples.

• We can label the casks as ‘a’, ‘b’ and ‘c’ but then the cask

factor by itself is meaningless (because cask ‘a’ in batch ‘A’ is
unrelated to cask ‘a’in batches ‘B’, ‘C’, . . . ). The cask factor
is only meaningful within a batch.

• Only the batch and cask factors, which are apparently
crossed, were present in the original data set. cask may be
described as being nested within batch but that is not
reflected in the data. It is implicitly nested, not explicitly
nested.

• You can save yourself a lot of grief by immediately creating
the explicitly nested factor. The recipe is

> Pastes <- within(Pastes, sample <- (batch:cask)[drop = TRUE])
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Avoid implicitly nested representations

• The lme4 package allows for very general model specifications.
It does not require that factors associated with random effects
be hierarchical or “multilevel” factors in the design.

• The same model specification can be used for data with
nested or crossed or partially crossed factors. Nesting or
crossing is determined from the structure of the factors in the
data, not the model specification.

• You can avoid confusion about nested and crossed factors by
following one simple rule: ensure that different levels of a
factor in the experiment correspond to different labels of the
factor in the data.

• Samples were drawn from 30, not 3, distinct casks in this
experiment. We should specify models using the sample factor
with 30 levels, not the cask factor with 3 levels.
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Pastes data plot
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A model with nested random effects

> (fm3 <- lmer(strength ~ 1 + (1 | batch) + (1 | sample),
+ Pastes))

Linear mixed model fit by REML

Formula: strength ~ 1 + (1 | batch) + (1 | sample)

Data: Pastes

AIC BIC logLik deviance REMLdev

255 263.4 -123.5 248.0 247

Random effects:

Groups Name Variance Std.Dev.

sample (Intercept) 8.43378 2.90410

batch (Intercept) 1.65692 1.28721

Residual 0.67801 0.82341

Number of obs: 60, groups: sample, 30; batch, 10

Fixed effects:

Estimate Std. Error t value

(Intercept) 60.0533 0.6768 88.73
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Random effects from model fm3
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Dimensions and relationships in fm3

• There are n = 60 observations, p = 1 fixed-effects parameter,
k = 2 simple, scalar random-effects terms (q1 = q2 = 1) with
grouping factors having n1 = 30 and n2 = 10 levels.

• Because both random-effects terms are scalar terms, T = I40

and S is block-diagonal in two diagonal blocks of sizes 30 and
10, respectively. Z is generated from two sets of indicators.
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Images of some of the q × q matrices for fm3

• The permutation P has two purposes: reduce fill-in and
“post-order” the columns to keep nonzeros near the diagonal.

• In a model with strictly nested grouping factors there will be
no fill-in. The permutation P is chosen for post-ordering only.
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Eliminate the random-effects term for batch?

• We have seen that there is little batch-to-batch variability
beyond that induced by the variability of samples within
batches.

• We can fit a reduced model without that term and compare it
to the original model.

• Somewhat confusingly, model comparisons from likelihood
ratio tests are obtained by calling the anova function on the
two models. (Put the simpler model first in the call to anova.)

• Sometimes likelihood ratio tests can be evaluated using the
REML criterion and sometimes they can’t. Instead of learning
the rules of when you can and when you can’t, it is easiest
always to refit the models with REML = FALSE before
comparing.
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Comparing ML fits of the full and reduced models

> fm3M <- update(fm3, REML = FALSE)
> fm4M <- lmer(strength ~ 1 + (1 | sample), Pastes,
+ REML = FALSE)
> anova(fm4M, fm3M)

Data: Pastes

Models:

fm4M: strength ~ 1 + (1 | sample)

fm3M: strength ~ 1 + (1 | batch) + (1 | sample)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm4M 3 254.40 260.69 -124.20

fm3M 4 255.99 264.37 -124.00 0.4072 1 0.5234
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p-values of LR tests on variance components

• The likelihood ratio is a reasonable criterion for comparing
these two models. However, the theory behind using a χ2

distribution with 1 degree of freedom as a reference
distribution for this test statistic does not apply in this case.
The null hypothesis is on the boundary of the parameter
space.

• Even at the best of times, the p-values for such tests are only
approximate because they are based on the asymptotic
behavior of the test statistic. To carry the argument further,
all results in statistics are based on models and, as George
Box famously said, “All models are wrong; some models are
useful.”
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LR tests on variance components (cont’d)

• In this case the problem with the boundary condition results
in a p-value that is larger than it would be if, say, you
compared this likelihood ratio to values obtained for data
simulated from the null hypothesis model. We say these
results are “conservative”.

• As a rule of thumb, the p-value for the χ2 test on a simple,
scalar term is roughly twice as large as it should be.

• In this case, dividing the p-value in half would not affect our
conclusion.
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Updated model, REML estimates

> (fm4 <- update(fm4M, REML = TRUE))

Linear mixed model fit by REML

Formula: strength ~ 1 + (1 | sample)

Data: Pastes

AIC BIC logLik deviance REMLdev

253.6 259.9 -123.8 248.4 247.6

Random effects:

Groups Name Variance Std.Dev.

sample (Intercept) 9.9767 3.1586

Residual 0.6780 0.8234

Number of obs: 60, groups: sample, 30

Fixed effects:

Estimate Std. Error t value

(Intercept) 60.0533 0.5864 102.4
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Recap of the analysis of the Pastes data

• The data consist of n = 60 observations on q1 = 30 samples
nested within q2 = 10 batches.

• The data are labelled with a cask factor with 3 levels but that
is an implicitly nested factor. Create the explicit factor sample

and ignore cask from then on.

• Specification of a model for nested factors is exactly the same
as specification of a model with crossed or partially crossed
factors — provided that you avoid using implicitly nested
factors.

• In this case the batch factor was inert — it did not “explain”
substantial variability in addition to that attributed to the
sample factor. We therefore prefer the simpler model.

• At the risk of “beating a dead horse”, notice that, if we had
used the cask factor in some way, we would still need to
create a factor like sample to be able to reduce the model.
The cask factor is only meaningful within batch.
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Recap of simple, scalar random-effects terms

• For the lmer function (and also for glmer and nlmer) a
simple, scalar random effects term is of the form (1|F).

• The number of random effects generated by the ith such term
is the number of levels, ni, of F (after dropping “unused”
levels — those that do not occur in the data. The idea of
having such levels is not as peculiar as it may seem if, say, you
are fitting a model to a subset of the original data.)

• Such a term contributes ni columns to Z. These columns are
the indicator columns of the grouping factor.

• Such a term contributes a diagonal block Ini to T . If all
random effects terms are scalar terms then T = I.

• Such a term contributes a diagonal block ciIni to S. The
multipliers ci can be different for different terms. The term
contributes exactly one element (which is ci) to θ.
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This is all very nice, but . . .
• These methods are interesting but the results are not really

new. Similar results are quoted in Statistical Methods in
Research and Production, which is a very old book.

• The approach described in that book is actually quite
sophisticated, especially when you consider that the methods
described there, based on observed and expected mean
squares, are for hand calculation — in pre-calculator days!

• Why go to all the trouble of working with sparse matrices and
all that if you could get the same results with paper and
pencil? The one-word answer is balance.

• Those methods depend on the data being balanced. The
design must be completely balanced and the resulting data
must also be completely balanced.

• Balance is fragile. Even if the design is balanced, a single
missing or questionable observation destroys the balance.
Observational studies (as opposed to, say, laboratory
experiments) cannot be expected to yield balanced data sets.

• Also, the models involve only simple, scalar random effects
and do not incorporate covariates.
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A large observational data set

• A large U.S. university (not mine) provided data on the grade
point score (gr.pt) by student (id), instructor (instr) and
department (dept) from a 10 year period. I regret that I
cannot make these data available to others.

• These factors are unbalanced and partially crossed.

> str(anon.grades.df)

’data.frame’: 1721024 obs. of 9 variables:

$ instr : Factor w/ 7964 levels "10000","10001",..: 1 1 1 1 1 1 1 1 1 1 ...

$ dept : Factor w/ 106 levels "AERO","AFAM",..: 43 43 43 43 43 43 43 43 43 43 ...

$ id : Factor w/ 54711 levels "900000001","900000002",..: 12152 1405 23882 18875 18294 20922 4150 13540 5499 6425 ...

$ nclass : num 40 29 33 13 47 49 37 14 21 20 ...

$ vgpa : num NA NA NA NA NA NA NA NA NA NA ...

$ rawai : num 2.88 -1.15 -0.08 -1.94 3.00 ...

$ gr.pt : num 4 1.7 2 0 3.7 1.7 2 4 2 2.7 ...

$ section : Factor w/ 70366 levels "19959 AERO011A001",..: 18417 18417 18417 18417 9428 18417 18417 9428 9428 9428 ...

$ semester: num 19989 19989 19989 19989 19972 ...
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A preliminary model

Linear mixed model fit by REML

Formula: gr.pt ~ (1 | id) + (1 | instr) + (1 | dept)

Data: anon.grades.df

AIC BIC logLik deviance REMLdev

3447389 3447451 -1723690 3447374 3447379

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 0.3085 0.555

instr (Intercept) 0.0795 0.282

dept (Intercept) 0.0909 0.301

Residual 0.4037 0.635

Number of obs: 1685394, groups: id, 54711; instr, 7915; dept, 102

Fixed effects:

Estimate Std. Error t value

(Intercept) 3.1996 0.0314 102
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Comments on the model fit

• n = 1685394, p = 1, k = 3, n1 = 54711, n2 = 7915,
n3 = 102, q1 = q2 = q3 = 1, q = 62728

• This model is sometimes called the “unconditional” model in
that it does not incorporate covariates beyond the grouping
factors.

• It takes less than an hour to fit an ”unconditional” model
with random effects for student (id), instructor (inst) and
department (dept) to these data.

• Naturally, this is just the first step. We want to look at
possible time trends and the possible influences of the
covariates.

• This is an example of what “large” and “unbalanced” mean
today. The size of the data sets and the complexity of the
models in mixed modeling can be formidable.
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Outline

Organizing and plotting data; simple, scalar random effects

Models for longitudinal data

Interactions of grouping factors and other covariates

Evaluating the log-likelihood

Generalized Linear Mixed Models

Item Response Models as GLMMs

Nonlinear Mixed Models
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Simple longitudinal data

• Repeated measures data consist of measurements of a
response (and, perhaps, some covariates) on several
experimental (or observational) units.

• Frequently the experimental (observational) unit is Subject

and we will refer to these units as “subjects”. However, the
methods described here are not restricted to data on human
subjects.

• Longitudinal data are repeated measures data in which the
observations are taken over time.

• We wish to characterize the response over time within
subjects and the variation in the time trends between subjects.

• Frequently we are not as interested in comparing the
particular subjects in the study as much as we are interested
in modeling the variability in the population from which the
subjects were chosen.
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Sleep deprivation data

• This laboratory experiment measured the effect of sleep
deprivation on cognitive performance.

• There were 18 subjects, chosen from the population of
interest (long-distance truck drivers), in the 10 day trial.
These subjects were restricted to 3 hours sleep per night
during the trial.

• On each day of the trial each subject’s reaction time was
measured. The reaction time shown here is the average of
several measurements.

• These data are balanced in that each subject is measured the
same number of times and on the same occasions.



Simple Longitudinal Interactions Theory GLMM Item Response NLMM

Reaction time versus days by subject

Days of sleep deprivation

A
ve

ra
ge

 r
ea

ct
io

n 
tim

e 
(m

s)

200

250

300

350

400

450

0 2 4 6 8

● ●

● ● ●
●

●

● ●
●

310

●
● ● ● ●

● ● ● ●
●

309

0 2 4 6 8

●
● ● ●

●

●

●

●
● ●

370

● ●
●

● ●
●

●

●

●
●

349

0 2 4 6 8

●
●

● ●
●

●

●
●

● ●

350

●
●

●
●

● ●

●

● ●

●

334

0 2 4 6 8

●
●

●

●

●

●

●

●

●

●

308

● ● ● ● ● ●

●

●

●
●

371

0 2 4 6 8

● ●
●

●

● ●
●

●
●

●

369

●

●

●
●

●

●
●

●

●

●

351

0 2 4 6 8

●

●

●
●

● ●
●

● ● ●

335

●
●

●

● ● ●

●

●
●

●

332

0 2 4 6 8

● ●

●
●

●

● ●
●

● ●

372

● ●
●

● ●

● ●
●

●

●

333

0 2 4 6 8

●

●

●

● ● ● ● ●
●

●

352

● ●
●

● ●

● ●

●

●

●

331

0 2 4 6 8

●

●
● ● ●

●
●

●
●

●

330

200

250

300

350

400

450

● ●

●

●

●

●
●

●

● ●

337



Simple Longitudinal Interactions Theory GLMM Item Response NLMM

Comments on the sleep data plot

• The plot is a “trellis” or “lattice” plot where the data for each
subject are presented in a separate panel. The axes are
consistent across panels so we may compare patterns across
subjects.

• A reference line fit by simple linear regression to the panel’s
data has been added to each panel.

• The aspect ratio of the panels has been adjusted so that a
typical reference line lies about 45◦ on the page. We have the
greatest sensitivity in checking for differences in slopes when
the lines are near ±45◦ on the page.

• The panels have been ordered not by subject number (which
is essentially a random order) but according to increasing
intercept for the simple linear regression. If the slopes and the
intercepts are highly correlated we should see a pattern across
the panels in the slopes.
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Assessing the linear fits

• In most cases a simple linear regression provides an adequate
fit to the within-subject data.

• Patterns for some subjects (e.g. 350, 352 and 371) deviate
from linearity but the deviations are neither widespread nor
consistent in form.

• There is considerable variation in the intercept (estimated
reaction time without sleep deprivation) across subjects – 200
ms. up to 300 ms. – and in the slope (increase in reaction
time per day of sleep deprivation) – 0 ms./day up to 20
ms./day.

• We can examine this variation further by plotting confidence
intervals for these intercepts and slopes. Because we use a
pooled variance estimate and have balanced data, the
intervals have identical widths.

• We again order the subjects by increasing intercept so we can
check for relationships between slopes and intercepts.



Simple Longitudinal Interactions Theory GLMM Item Response NLMM

95% conf int on within-subject intercept and slope
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These intervals reinforce our earlier impressions of considerable
variability between subjects in both intercept and slope but little
evidence of a relationship between intercept and slope.
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A preliminary mixed-effects model

• We begin with a linear mixed model in which the fixed effects
[β1, β2]′ are the representative intercept and slope for the
population and the random effects
bi = [bi1, bi2]′, i = 1, . . . , 18 are the deviations in intercept and
slope associated with subject i.

• The random effects vector, b, consists of the 18 intercept
effects followed by the 18 slope effects.
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Fitting the model
> (fm1 <- lmer(Reaction ~ Days + (Days | Subject),
+ sleepstudy))

Linear mixed model fit by REML

Formula: Reaction ~ Days + (Days | Subject)

Data: sleepstudy

AIC BIC logLik deviance REMLdev

1756 1775 -871.8 1752 1744

Random effects:

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 612.095 24.7405

Days 35.071 5.9221 0.065

Residual 654.944 25.5919

Number of obs: 180, groups: Subject, 18

Fixed effects:

Estimate Std. Error t value

(Intercept) 251.405 6.825 36.84

Days 10.467 1.546 6.77

Correlation of Fixed Effects:

(Intr)

Days -0.138
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Terms and matrices

• The term Days in the formula generates a model matrix X
with two columns, the intercept column and the numeric Days

column. (The intercept is included unless suppressed.)

• The term (Days|Subject) generates a vector-valued random
effect (intercept and slope) for each of the 18 levels of the
Subject factor.
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A model with uncorrelated random effects

• The data plots gave little indication of a systematic
relationship between a subject’s random effect for slope and
his/her random effect for the intercept. Also, the estimated
correlation is quite small.

• We should consider a model with uncorrelated random effects.
To express this we use two random-effects terms with the
same grouping factor and different left-hand sides. In the
formula for an lmer model, distinct random effects terms are
modeled as being independent. Thus we specify the model
with two distinct random effects terms, each of which has
Subject as the grouping factor. The model matrix for one
term is intercept only (1) and for the other term is the column
for Days only, which can be written 0+Days. (The expression
Days generates a column for Days and an intercept. To
suppress the intercept we add 0+ to the expression; -1 also
works.)
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A mixed-effects model with independent random effects

Linear mixed model fit by REML

Formula: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject)

Data: sleepstudy

AIC BIC logLik deviance REMLdev

1754 1770 -871.8 1752 1744

Random effects:

Groups Name Variance Std.Dev.

Subject (Intercept) 627.577 25.0515

Subject Days 35.852 5.9876

Residual 653.594 25.5655

Number of obs: 180, groups: Subject, 18

Fixed effects:

Estimate Std. Error t value

(Intercept) 251.405 6.885 36.51

Days 10.467 1.559 6.71

Correlation of Fixed Effects:

(Intr)

Days -0.184



Simple Longitudinal Interactions Theory GLMM Item Response NLMM

Comparing the models

• Model fm1 contains model fm2 in the sense that if the
parameter values for model fm1 were constrained so as to
force the correlation, and hence the covariance, to be zero,
and the model were re-fit, we would get model fm2.

• The value 0, to which the correlation is constrained, is not on
the boundary of the allowable parameter values.

• In these circumstances a likelihood ratio test and a reference
distribution of a χ2 on 1 degree of freedom is suitable.

> anova(fm2, fm1)

Data: sleepstudy

Models:

fm2: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject)

fm1: Reaction ~ Days + (Days | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm2 5 1762.05 1778.01 -876.02

fm1 6 1763.99 1783.14 -875.99 0.0609 1 0.805
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Conclusions from the likelihood ratio test

• Because the large p-value indicates that we would not reject
fm2 in favor of fm1, we prefer the more parsimonious fm2.

• This conclusion is consistent with the AIC (Akaike’s
Information Criterion) and the BIC (Bayesian Information
Criterion) values for which “smaller is better”.

• We can also use a Bayesian approach, where we regard the
parameters as themselves being random variables, is assessing
the values of such parameters. A currently popular Bayesian
method is to use sequential sampling from the conditional
distribution of subsets of the parameters, given the data and
the values of the other parameters. The general technique is
called Markov chain Monte Carlo sampling.

• The lme4 package has a function called mcmcsamp to evaluate
such samples from a fitted model. At present, however, there
seem to be a few “infelicities”, as Bill Venables calls them, in
this function.
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Likelihood ratio tests on variance components
• As for the case of a covariance, we can fit the model with and

without the variance component and compare the fit quality.
• As mentioned previously, the likelihood ratio is a reasonable

test statistic for the comparison but the “asymptotic”
reference distribution of a χ2 does not apply because the
parameter value being tested is on the boundary.

• The p-value computed using the χ2 reference distribution
should be conservative (i.e. greater than the p-value that
would be obtained through simulation).

> fm3 <- lmer(Reaction ~ Days + (1 | Subject), sleepstudy)
> anova(fm3, fm2)

Data: sleepstudy

Models:

fm3: Reaction ~ Days + (1 | Subject)

fm2: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm3 4 1802.10 1814.87 -897.05

fm2 5 1762.05 1778.01 -876.02 42.053 1 8.885e-11
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Conditional modes of the random effects
> (rr2 <- ranef(fm2))

$Subject

(Intercept) Days

308 1.5138208 9.3232133

309 -40.3749111 -8.5989182

310 -39.1816685 -5.3876345

330 24.5182902 -4.9684963

331 22.9140342 -3.1938381

332 9.2219310 -0.3084836

333 17.1560764 -0.2871973

334 -7.4515943 1.1159563

335 0.5774084 -10.9056432

337 34.7689489 8.6273638

349 -25.7541538 1.2806475

350 -13.8642113 6.7561991

351 4.9156060 -3.0750414

352 20.9294541 3.5121076

369 3.2587508 0.8730251

370 -26.4752093 4.9836364

371 0.9055256 -1.0052631

372 12.4219020 1.2583667
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Scatterplot of the conditional modes
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Comparing within-subject coefficients

• For this model we can combine the conditional modes of the
random effects and the estimates of the fixed effects to get
conditional modes of the within-subject coefficients.

• These conditional modess will be “shrunken” towards the
fixed-effects estimates relative to the estimated coefficients
from each subject’s data. John Tukey called this “borrowing
strength” between subjects.

• Plotting the shrinkage of the within-subject coefficients shows
that some of the coefficients are considerably shrunken toward
the fixed-effects estimates.

• However, comparing the within-group and mixed model fitted
lines shows that large changes in coefficients occur in the
noisy data. Precisely estimated within-group coefficients are
not changed substantially.
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Estimated within-group coefficients and BLUPs
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Observed and fitted
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Plot of prediction intervals for the random effects
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Each set of prediction intervals have constant width because of the
balance in the experiment.
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Conclusions from the example

• Carefully plotting the data is enormously helpful in
formulating the model.

• It is relatively easy to fit and evaluate models to data like
these, from a balanced designed experiment.

• We consider two models with random effects for the slope and
the intercept of the response w.r.t. time by subject. The
models differ in whether the (marginal) correlation of the
vector of random effects per subject is allowed to be nonzero.

• The “estimates” (actually, the conditional modes) of the
random effects can be considered as penalized estimates of
these parameters in that they are shrunk towards the origin.

• Most of the prediction intervals for the random effects overlap
zero.



Simple Longitudinal Interactions Theory GLMM Item Response NLMM

Outline

Organizing and plotting data; simple, scalar random effects

Models for longitudinal data

Interactions of grouping factors and other covariates

Evaluating the log-likelihood

Generalized Linear Mixed Models

Item Response Models as GLMMs

Nonlinear Mixed Models



Simple Longitudinal Interactions Theory GLMM Item Response NLMM

Interactions of covariates and grouping factors

• For longitudinal data, having a random effect for the slope
w.r.t. time by subject is reasonably easy to understand.

• Although not generally presented in this way, these random
effects are an interaction term between the grouping factor for
the random effect (subject) and the time covariate.

• We can also define interactions between discrete covariates in
the fixed-effects terms and a random-effects grouping factor.
However, there is more than one way to define such an
interaction.

• Different ways of expressing such interactions lead to different
numbers of random effects.

• Models with interactions defined in different ways have levels
of complexity, affecting both their expressive power and the
ability to estimate all the parameters in the model.
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Machines data

• Milliken and Johnson (1989) provide (probably artificial) data
on an experiment to measure productivity according to the
machine being used for a particular operation.

• In the experiment, a sample of six different operators used
each of the three machines on three occasions — a total of
nine runs per operator.

• These three machines were the specific machines of interest
and we model their effect as a fixed-effect term.

• The operators represented a sample from the population of
potential operators. We model this factor, (Worker), as a
random effect.

• This is a replicated “subject/stimulus” design with a fixed set
of stimuli that are themselves of interest. (In other situations
the stimuli may be a sample from a population of stimuli.)
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Machines data plot
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Comments on the data plot

• There are obvious differences between the scores on different
machines.

• It seems likely that Worker will be a significant random effect,
especially when considering the low variation within replicates.

• There also appears to be a significant Worker:Machine

interaction. Worker 6 has a very different pattern w.r.t.
machines than do the others.

• We can approach the interaction in one of two ways: define
simple, scalar random effects for Worker and for the
Worker:Machine interaction or define vector-valued random
effects for Worker
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Random effects for subject and subject/stimulus

> print(fm1 <- lmer(score ~ Machine + (1 | Worker) +
+ (1 | Worker:Machine), Machines), corr = FALSE)

Linear mixed model fit by REML

Formula: score ~ Machine + (1 | Worker) + (1 | Worker:Machine)

Data: Machines

AIC BIC logLik deviance REMLdev

227.7 239.6 -107.8 225.5 215.7

Random effects:

Groups Name Variance Std.Dev.

Worker:Machine (Intercept) 13.90963 3.72956

Worker (Intercept) 22.85526 4.78072

Residual 0.92464 0.96158

Number of obs: 54, groups: Worker:Machine, 18; Worker, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 52.356 2.486 21.062

MachineB 7.967 2.177 3.659

MachineC 13.917 2.177 6.393
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Vector-valued random effects by subject

> print(fm2 <- lmer(score ~ Machine + (0 + Machine |
+ Worker), Machines), corr = FALSE)

Linear mixed model fit by REML

Formula: score ~ Machine + (0 + Machine | Worker)

Data: Machines

AIC BIC logLik deviance REMLdev

228.3 248.2 -104.2 216.6 208.3

Random effects:

Groups Name Variance Std.Dev. Corr

Worker MachineA 16.64098 4.07934

MachineB 74.39564 8.62529 0.803

MachineC 19.26648 4.38936 0.623 0.771

Residual 0.92463 0.96158

Number of obs: 54, groups: Worker, 6

Fixed effects:

Estimate Std. Error t value

(Intercept) 52.356 1.681 31.150

MachineB 7.967 2.421 3.291

MachineC 13.917 1.540 9.037
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Comparing the model fits

• Although not obvious from the specifications, the model fits
are nested. If the variance-covariance matrix for the
vector-valued random effects has a special form, called
compound symmetry, the model reduces to model fm1.

• The p-value from this comparison is borderline significant.

> fm2M <- update(fm2, REML = FALSE)
> fm1M <- update(fm1, REML = FALSE)
> anova(fm2M, fm1M)

Data: Machines

Models:

fm1M: score ~ Machine + (1 | Worker) + (1 | Worker:Machine)

fm2M: score ~ Machine + (0 + Machine | Worker)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm1M 6 237.27 249.20 -112.64

fm2M 10 236.42 256.31 -108.21 8.8516 4 0.06492
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Model comparisons eliminating the unusual combination

• In a case like this we may want to check if a single, unusual
combination (Worker 6 using Machine “B”) causes the more
complex model to appear necessary. We eliminate that
unusual combination.

> Machines1 <- subset(Machines, Worker != "6" | Machine !=
+ "B")
> xtabs(~Machine + Worker, Machines1)

Worker

Machine 1 2 3 4 5 6

A 3 3 3 3 3 3

B 3 3 3 3 3 0

C 3 3 3 3 3 3
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Machines data after eliminating the unusual combination
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Model comparisons without the unusual combination

> fm1aM <- lmer(score ~ Machine + (1 | Worker) + (1 |
+ Worker:Machine), Machines1, REML = FALSE)
> fm2aM <- lmer(score ~ Machine + (0 + Machine | Worker),
+ Machines1, REML = FALSE)
> anova(fm2aM, fm1aM)

Data: Machines1

Models:

fm1aM: score ~ Machine + (1 | Worker) + (1 | Worker:Machine)

fm2aM: score ~ Machine + (0 + Machine | Worker)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fm1aM 6 208.554 220.145 -98.277

fm2aM 10 208.289 227.607 -94.144 8.2655 4 0.08232
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Trade-offs when defining interactions

• It is important to realize that estimating scale parameters (i.e.
variances and covariances) is considerably more difficult than
estimating location parameters (i.e. means or fixed-effects
coefficients).

• A vector-valued random effect term having qi random effects
per level of the grouping factor requires qi(qi + 1)/2
variance-covariance parameters to be estimated. A simple,
scalar random effect for the interaction of a “random-effects”
factor and a “fixed-effects” factor requires only 1 additional
variance-covariance parameter.

• Especially when the “fixed-effects” factor has a moderate to
large number of levels, the trade-off in model complexity
argues against the vector-valued approach.

• One of the major sources of difficulty in using the lme4

package is the tendency to overspecify the number of random
effects per level of a grouping factor.
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Definition of linear mixed models
• As previously stated, we define a linear mixed model in terms

of two random variables: the n-dimensional Y and the
q-dimensional B

• The probability model specifies the conditional distribution

(Y |B = b) ∼ N
(
Xβ +Zb, σ2I

)
and the unconditional distribution

B ∼ N
(
0, σ2Σ(θ)

)
, (Y |B) ⊥ B

as independent, multivariate Gaussian distributions depending
on the parameters β, θ and σ.

• The relative variance-covariance matrix for B, written Σ(θ),
can be factored as

Σ(θ) = T (θ)S(θ)S(θ)T (θ)′ = (TS)(TS)′.

We say that the product T (θ)S(θ) is a left square-root factor
of Σ(θ).
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The conditional distribution, Y |B

• The mean of the conditional distribution, Y |B, is a linear
function of β and b.

µY|B(b) = E[Y |B = b] = η = Xβ +Zb

• For generalized linear models we will distinguish between the
conditional mean, µY|B(b), which may be bounded, and the
linear predictor, η, which is always unbounded. For linear
mixed models, µY|B(b) = η.

• Components of Y are conditionally independent, given B.
That is, the conditional distribution, (Y |B = b), is
determined by the (scalar) distribution of each component.

• Hence, the conditional distribution, (Y |B = b), is completely
determined by the conditional mean, µY|B, and the common
scale parameter, σ.
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The unscaled conditional density of B|Y = y

• Because it is y, not b, that we observe, we are interested in
evaluating the other conditional distribution, (B|Y = y). We
will write its density as [B|Y ](b|y) (it is always continuous,
even when, as in some GLMMs, Y is discrete).

• Given y, θ, β and, if used, σ, we can evaluate [B|Y ](b|y), up
to a scale factor, as [Y |B](y|b) [B](b).

• The inverse of the scale factor,∫
Rq

[Y |B](y|b) [B](b) db,

is exactly the likelihood, L(θ,β, σ2|y) (or L(θ,β, |y) when σ
is not used).
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The unscaled conditional density of U |Y = y

• To simplify the integral defining the likelihood, we change the
variable of integration to u, where U is a vector-valued
random variable with unconditional distribution
U ∼ N (0, σ2Iq) (or U ∼ N (0, Iq), when σ is not used), and
B = T (θ)S(θ)P ′U .

• The linear predictor, η, which determines the conditional
density, [Y |U ](y|u), becomes

η = ZT (θ)S(θ)P ′u+Xβ = A(θ)′P ′u+Xβ,

where A(θ)′ = ZT (θ)S(θ), and likelihood

L(θ,β|y) =
∫

Rq
[Y |U ](y|u) [U ](u) du.
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Maximizing the unscaled density U |Y = y

• In our general strategy for evaluating the likelihood,
L(θ,β, σ2|y), we first maximize the unscaled density of
U |Y = y, w.r.t. u.

• Both [Y |U ](y|u) and [U ](u) are spherical normal densities,
which means that the components are independent with
constant variance, e.g. Var(U) = σ2I, (“spherical” because
the contours of constant density are spheres).

• That is, probability density is related to the (squared) lengths,
‖y − µY|U‖2 and ‖u‖2, with the same scale factor, σ2.

• The conditional mode of U |Y – the value that maximizes the
conditional density (and also the unscaled version) – does not
depend on σ2.

ũ(y|θ,β) = arg max
u

[Y |U ](y|u) [U ](u)

= arg min
u

(
‖y − µY|U‖2 + ‖u‖2

)
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Solving for the conditional mode

• Incorporating the definition of µY|U provides

‖y − µY|U‖2 = ‖y −A′P ′u−Xβ‖2

• Recall that P is a permutation matrix. These have the
property that P−1 = P ′, allowing us to write

‖0− P ′u‖2 = u′PP ′u = u′u = ‖u‖2

• Combining these produces

ũ(y|θ,β) = arg min
u

∥∥∥∥[y −Xβ0

]
−
[
A′

I

]
P ′u

∥∥∥∥2

Hence, ũ satisfies

P
(
AA′ + I

)
P ′ũ = LL′ũ = PA(y −Xβ)

where L(θ) is the sparse left Cholesky factor of
P (A(θ)A(θ)′ + I)P ′.
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Evaluating the likelihood - linear mixed models
• Because µY|U depends linearly on both u and β, the

conditional mode ũ(θ) and the conditional maximum
likelihood estimate, β̂(θ), can be determined simultaneously
as the solutions to a penalized least squares problem[

ũ(θ)
β̂(θ)

]
= arg min

u,β

∥∥∥∥[y0
]
−
[
A′P ′ X
I 0

] [
u
β

]∥∥∥∥2

for which the solution satisfies[
P (AA′ + I)P ′ PAX

X ′A′P ′ X ′X

] [
ũ(θ)
β̂(θ)

]
=
[
PAy
X ′y

]
• The Cholesky factor of the system matrix for the PLS problem

is[
P (AA′ + I)P ′ PAX

X ′A′P ′ X ′X

]
=
[
L 0

R′ZX R′X

] [
L′ RZX
0 RX

]
• The dense matrices RZX and RX are stored in the RZX and
RX slots, respectively.
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Special case of linear mixed models (cont’d)

• It is not necessary to solve for ũ(θ) and β̂(θ). All that is
needed for evaluation of the profiled log-likelihood is the
penalized residual sum of squares, r2, and the determinant

|AA′ + I| = |L|2

• Because L is triangular, its determinant is simply the product
of its diagonal elements.

• Because AA′ + I is positive definite, |L|2 > 0.

• The profiled deviance, as a function of θ only (β and σ2 at
their conditional estimates), is

d(θ|y) = log(|L|2) + n

(
1 + log

(
2πr2

n

))
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REML results

• Although not often derived in this form, Laird and Ware
showed that the REML criterion can be derived as the integral
of the likelihood w.r.t. β.

• The same techniques as used to evaluate the integral w.r.t. b
can be used to evaluate the integral for the REML criterion.
In this case the integral introduces the factor |RX |2.

• The profiled REML deviance, as a function of θ only ( σ at its
conditional estimate), is

dR(θ|y) = log(|L|2|RX |2) + (n− p)
(

1 + log
(

2πr2

n− p

))
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Recap

• For a linear mixed model, even one with a huge number of
observations and random effects like the model for the grade
point scores, evaluation of the ML or REML profiled deviance,
given a value of θ, is straightforward. It involves updating T
and S, then updating A, L, RZX , RX , calculating the
penalized residual sum of squares, r and a couple of
determinants of triangular matrices.

• The profiled deviance can be optimized as a function of θ
only. The dimension of θ is usually very small. For the grade
point scores there are only three components to θ.
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Generalized Linear Mixed Models

• When using linear mixed models (LMMs) we assume that the
response being modeled is on a continuous scale.

• Sometimes we can bend this assumption a bit if the response
is an ordinal response with a moderate to large number of
levels. For example, the Scottish secondary school test results
were integer values on the scale of 1 to 10.

• However, an LMM is not suitable for modeling a binary
response, an ordinal response with few levels or a response
that represents a count. For these we use generalized linear
mixed models (GLMMs).

• To describe GLMMs we return to the representation of the
response as an n-dimensional, vector-valued, random variable,
Y , and the random effects as a q-dimensional, vector-valued,
random variable, B.
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Parts of LMMs carried over to GLMMs

• Random variables
Y the response variable
B the (possibly correlated) random effects
U the orthogonal random effects

• Parameters
β - fixed-effects coefficients
σ - the common scale parameter (not always used)
θ - parameters that determine Var(B) = σ2(TS)(TS)′

• Some matrices
X the n× p model matrix for β
Z the n× q model matrix for b
P fill-reducing q × q permutation (from Z)
S(θ) non-negative q × q diagonal scale matrix
T (θ) q × q unit lower-triangular matrix
A(θ) = (ZT (θ)S(θ))′
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The conditional distribution, Y |U
• For GLMMs, the marginal distribution, B ∼ N (0,Σ(θ)) is

the same as in LMMs except that σ2 is omitted. We define
U ∼ (0, Iq) such that B = T (θ)S(θ)P ′U .

• For GLMMs we retain some of the properties of the
conditional distribution

(Y |U = u) ∼ N
(
µY|U , σ

2I
)

where µY|U (u) = Xβ+A′P ′u

Specifically
• The distribution Y |U = u depends on u only through the

conditional mean, µY|U (u).
• Elements of Y are conditionally independent. That is, the

distribution of Y |U = u is completely specified by the
univariate, conditional distributions, Yi|U , i = 1, . . . , n.

• These univariate, conditional distributions all have the same
form. They differ only in their means.

• GLMMs differ from LMMs in the form of the univariate,
conditional distributions and in how µY|U (u) depends on u.
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Some choices of univariate conditional distributions

• Typical choices of univariate conditional distributions are:
• The Bernoulli distribution for binary (0/1) data, which has

probability mass function

p(y|µ) = µy(1− µ)1−y, 0 < µ < 1, y = 0, 1

• Several independent binary responses can be represented as a
binomial response, but only if all the Bernoulli distributions
have the same mean.

• The Poisson distribution for count (0, 1, . . . ) data, which has
probability mass function

p(y|µ) = e−y µ
y

y!
, 0 < µ, y = 0, 1, 2, . . .

• All of these distributions are completely specified by the
conditional mean. This is different from the conditional
normal (or Gaussian) distribution, which also requires the
common scale parameter, σ.



Simple Longitudinal Interactions Theory GLMM Item Response NLMM

The link function, g

• When the univariate conditional distributions have constraints
on µ, such as 0 < µ < 1 (Bernoulli) or 0 < µ (Poisson), we
cannot define the conditional mean, µY|U , to be equal to the
linear predictor, Xβ +A′P ′u, which is unbounded.

• We choose an invertible, univariate link function, g, such that
η = g(µ) is unconstrained. The vector-valued link function, g,
is defined by applying g component-wise.

η = g(µ) where ηi = g(µi), i = 1, . . . , n

• We require that g be invertible so that µ = g−1(η) is defined
for −∞ < η <∞ and is in the appropriate range (0 < µ < 1
for the Bernoulli or 0 < µ for the Poisson). The vector-valued
inverse link, g−1, is defined component-wise.
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“Natural” link functions

• There are many choices of invertible scalar link functions, g,
that we could use for a given set of constraints.

• For the Bernoulli and Poisson distributions, however, one link
function arises naturally from the definition of the probability
mass function. (The same is true for a few other, related but
less frequently used, distributions, such as the gamma
distribution.)

• To derive the natural link, we consider the logarithm of the
probability mass function (or, for continuous distributions, the
probability density function).

• For distributions in this “exponential” family, the logarithm of
the probability mass or density can be written as a sum of
terms, some of which depend on the response, y, only and
some of which depend on the mean, µ, only. However, only
one term depends on both y and µ, and this term has the
form y · g(µ), where g is the natural link.
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The natural link for the Bernoulli distribution

• The logarithm of the probability mass function is

log(p(y|µ)) = log(1−µ)+y log
(

µ

1− µ

)
, 0 < µ < 1, y = 0, 1.

• Thus, the natural link function is the logit link

η = g(µ) = log
(

µ

1− µ

)
.

• Because µ = P [Y = 1], the quantity µ/(1− µ) is the odds
ratio (in the range (0,∞)) and g is the logarithm of the odds
ratio, sometimes called “log odds”.

• The inverse link is

µ = g−1(η) =
eη

1 + eη
=

1
1 + e−η
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Plot of natural link for the Bernoulli distribution
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Plot of inverse natural link for the Bernoulli distribution
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The natural link for the Poisson distribution

• The logarithm of the probability mass is

log(p(y|µ)) = log(y!)− µ+ y log(µ)

• Thus, the natural link function for the Poisson is the log link

η = g(µ) = log(µ)

• The inverse link is

µ = g−1(η) = eη
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The natural link related to the variance

• For the natural link function, the derivative of its inverse is
the variance of the response.

• For the Bernoulli, the natural link is the logit and the inverse
link is µ = g−1(η) = 1/(1 + e−η). Then

dµ

dη
=

e−η

(1 + e−η)2
=

1
1 + e−η

e−η

1 + e−η
= µ(1− µ) = Var(Y)

• For the Poisson, the natural link is the log and the inverse link
is µ = g−1(η) = eη. Then

dµ

dη
= eη = µ = Var(Y)
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The unscaled conditional density of U |Y = y

• As in LMMs we evaluate the likelihood of the parameters,
given the data, as

L(θ,β|y) =
∫

Rq
[Y |U ](y|u) [U ](u) du,

• The product [Y |U ](y|u)[U ](u) is the unscaled (or
unnormalized) density of the conditional distribution U |Y .

• The density [U ](u) is a spherical Gaussian density
1

(2π)q/2
e−‖u‖

2/2.

• The expression [Y |U ](y|u) is the value of a probability mass
function or a probability density function, depending on
whether Yi|U is discrete or continuous.

• The linear predictor is g(µY|U ) = η = Xβ +A(θ)′P ′u.
Alternatively, we can write the conditional mean of Y , given
U , as

µY|U (u) = g−1
(
Xβ +A(θ)′P ′u

)
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The conditional mode of U |Y = y

• In general the likelihood, L(θ,β|y) does not have a closed
form. To approximate this value, we first determine the
conditional mode

ũ(y|θ,β) = arg max
u

[Y |U ](y|u) [U ](u)

using a quadratic approximation to the logarithm of the
unscaled conditional density.

• This optimization problem is (relatively) easy because the
quadratic approximation to the logarithm of the unscaled
conditional density can be written as a penalized, weighted
residual sum of squares,

ũ(y|θ,β) = arg min
u

∥∥∥∥[W 1/2(µ)
(
y − µY|U (u)

)
−u

]∥∥∥∥2

where W (µ) is the diagonal weights matrix. The weights are
the inverses of the variances of the Yi.
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The PIRLS algorithm

• Parameter estimates for generalized linear models (without
random effects) are usually determined by iteratively
reweighted least squares (IRLS), an incredibly efficient
algorithm. PIRLS is the penalized version. It is iteratively
reweighted in the sense that parameter estimates are
determined for a fixed weights matrix W then the weights are
updated to the current estimates and the process repeated.

• For fixed weights we solve

min
u

∥∥∥∥[W 1/2
(
y − µY|U (u)

)
−u

]∥∥∥∥2

as a nonlinear least squares problem with update, δu, given by

P
(
AMWMA′ + I

)
P ′δu = PAMW (y − µ)− u

where M = dµ/dη is the (diagonal) Jacobian matrix. Recall
that for the natural link, M = Var(Y |U) = W−1.
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The Laplace approximation to the deviance

• At convergence, the sparse Cholesky factor, L, used to
evaluate the update is

LL′ = P
(
AMWMA′ + I

)
P ′

or
LL′ = P

(
AMA′ + I

)
P ′

if we are using the natural link.

• The integrand of the likelihood is approximately a constant
times the density of the N (ũ,LL′) distribution.

• On the deviance scale (negative twice the log-likelihood) this
corresponds to

d(β,θ|y) = dg(y,µ(ũ)) + ‖ũ‖2 + log(|L|2)

where dg(y,µ(ũ)) is the GLM deviance for y and µ.
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Modifications to the algorithm

• Notice that this deviance depends on the fixed-effects
parameters, β, as well as the variance-component parameters,
θ. This is because log(|L|2) depends on µY|U and, hence, on
β. For LMMs log(|L|2) depends only on θ.

• It is likely that modifying the PIRLS algorithm to optimize
simultaneously on u and β would result in a value that is very
close to the deviance profiled over β.

• Another approach, which is being implemented as a Google
Summer of Code project, is adaptive Gauss-Hermite
quadrature (AGQ). This has a similar structure to the Laplace
approximation but is based on more evaluations of the
unscaled conditional density near the conditional modes. It is
only appropriate for models in which the random effects are
associated with only one grouping factor



Simple Longitudinal Interactions Theory GLMM Item Response NLMM

Outline

Organizing and plotting data; simple, scalar random effects

Models for longitudinal data

Interactions of grouping factors and other covariates

Evaluating the log-likelihood

Generalized Linear Mixed Models

Item Response Models as GLMMs

Nonlinear Mixed Models



Simple Longitudinal Interactions Theory GLMM Item Response NLMM

Item Response Models

• Models for binary (or ordered categorical) data that are
cross-classified according to subject and item are sometimes
called Item Response or IRT (Item Response Theory) models.

• There is a long history of models for such data with many
contributors. Only recently have statisticians become aware of
this literature and considered how such models could be
framed in the context of GLMMs.

• Even when approaching IRT models as GLMMs they were not
expressed as GLMMs with crossed random effects, because of
software limitations.

• Because glmer can fit GLMMs with crossed random effects,
we can approach such models as GLMMs with random effects
for subject and item.
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Data from a study of verbal aggression

• Results on a study of verbal aggression, used as an example
through the book Expanatory Item Response Models, edited
by De Boeck and Wilson (Springer, 2004) are available as the
data set VerbAgg, in the “long” format.

• The items correspond to scenarios for which the subject was
asked if they would curse, scold or shout.

• The scenarios are classified according to the behavior mode
(want versus do) and according to the situation (self-to-blame
versus other-to-blame).

• The subjects are classified by sex. Each subject’s score on a
separately administered anger index (STAXI) is given.

• The response was recorded on a three-level ordinal scale
(“no”, “perhaps” and “yes”). We will consider a dichotomous
version, r2.
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Structure of VerbAgg data

• We also check that the item-level covariates and the
person-level covariates are consistently defined.

> str(VerbAgg)

’data.frame’: 7584 obs. of 9 variables:

$ Anger : int 20 11 17 21 17 21 39 21 24 16 ...

$ Gender: Factor w/ 2 levels "M","F": 2 2 1 1 1 1 1 1 1 1 ...

$ item : Factor w/ 24 levels "S1wantcurse",..: 1 1 1 1 1 1 1 1 1 1 ...

$ resp : Ord.factor w/ 3 levels "no"<"perhaps"<..: 1 1 2 2 2 3 3 1 1 3 ...

$ id : Factor w/ 316 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...

$ btype : Factor w/ 3 levels "curse","scold",..: 1 1 1 1 1 1 1 1 1 1 ...

$ situ : Factor w/ 2 levels "other","self": 1 1 1 1 1 1 1 1 1 1 ...

$ mode : Factor w/ 2 levels "want","do": 1 1 1 1 1 1 1 1 1 1 ...

$ r2 : Factor w/ 2 levels "N","Y": 1 1 2 2 2 2 2 1 1 2 ...

> stopifnot(nrow(unique(subset(VerbAgg, select = c(item,
+ btype, situ, mode)))) == 24, nrow(unique(subset(VerbAgg,
+ select = c(id, Anger, Gender)))) == 316)
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Influence of item-level covariates

• We can check the proportions of responses for combinations
of item-level covariates

> round(100 * ftable(prop.table(xtabs(~mode + situ +
+ resp, VerbAgg), 1:2)), 1)

resp no perhaps yes

mode situ

want other 37.7 30.0 32.3

self 55.9 29.1 15.0

do other 49.8 27.2 23.0

self 66.2 23.5 10.3
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Influence of person-level covariates

Anger Index (STAXI)
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Initial model fit
Generalized linear mixed model fit by the Laplace approximation

Formula: r2 ~ Anger * Gender + situ + btype + mode + (1 | id) + (1 | item)

Data: VerbAgg

AIC BIC logLik deviance

8156 8225 -4068 8136

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 1.79340 1.33918

item (Intercept) 0.11714 0.34226

Number of obs: 7584, groups: id, 316; item, 24

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.53205 0.43378 1.227 0.22000

Anger 0.05849 0.01947 3.003 0.00267

GenderF 0.40229 0.78232 0.514 0.60710

situself -1.05430 0.15119 -6.973 3.09e-12

btypescold -1.05980 0.18415 -5.755 8.67e-09

btypeshout -2.10383 0.18651 -11.280 < 2e-16

modedo -0.70703 0.15100 -4.682 2.84e-06

Anger:GenderF -0.00411 0.03817 -0.108 0.91425
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Removing non-significant gender effects

Generalized linear mixed model fit by the Laplace approximation

Formula: r2 ~ Anger + situ + btype + mode + (1 | id) + (1 | item)

Data: VerbAgg

AIC BIC logLik deviance

8155 8210 -4069 8139

Random effects:

Groups Name Variance Std.Dev.

id (Intercept) 1.81154 1.34594

item (Intercept) 0.11721 0.34236

Number of obs: 7584, groups: id, 316; item, 24

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.63927 0.38334 1.668 0.095392

Anger 0.05685 0.01682 3.380 0.000726

situself -1.05437 0.15123 -6.972 3.12e-12

btypescold -1.05972 0.18420 -5.753 8.76e-09

btypeshout -2.10391 0.18656 -11.278 < 2e-16

modedo -0.70725 0.15104 -4.683 2.83e-06
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Allowing situational/behavior random effects by person
Generalized linear mixed model fit by the Laplace approximation

Formula: r2 ~ Anger + situ + btype + mode + (1 | id:btype) + (1 | id:situ) + (1 | id:mode) + (1 | id) + (1 | item)

Data: VerbAgg

AIC BIC logLik deviance

7751 7827 -3865 7729

Random effects:

Groups Name Variance Std.Dev.

id:btype (Intercept) 1.41069 1.18772

id:mode (Intercept) 0.80916 0.89954

id:situ (Intercept) 0.61539 0.78447

id (Intercept) 1.70950 1.30748

item (Intercept) 0.17213 0.41489

Number of obs: 7584, groups: id:btype, 948; id:mode, 632; id:situ, 632; id, 316; item, 24

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.79168 0.48183 1.643 0.100369

Anger 0.07483 0.02107 3.551 0.000384

situself -1.35741 0.19199 -7.070 1.55e-12

btypescold -1.36066 0.24118 -5.642 1.68e-08

btypeshout -2.69333 0.24372 -11.051 < 2e-16

modedo -0.94096 0.19503 -4.825 1.40e-06
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Item-specific random effects
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Person-specific random effects - Intercept
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Correlated random effects by person
Generalized linear mixed model fit by the Laplace approximation

Formula: r2 ~ Anger + situ + btype + mode + (1 + situ + btype + mode | id) + (1 | item)

Data: VerbAgg

AIC BIC logLik deviance

7727 7880 -3842 7683

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 4.53798 2.13025

situself 1.31457 1.14655 -0.521

btypescold 1.62184 1.27352 -0.085 -0.247

btypeshout 4.03040 2.00759 -0.374 0.010 0.423

modedo 1.68339 1.29745 -0.295 0.112 0.103

item (Intercept) 0.18221 0.42686

0.104

Number of obs: 7584, groups: id, 316; item, 24

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.98349 0.47248 2.082 0.03738

Anger 0.06564 0.02041 3.217 0.00130

situself -1.37642 0.19723 -6.979 2.97e-12

btypescold -1.30372 0.23811 -5.475 4.37e-08

btypeshout -2.73189 0.25666 -10.644 < 2e-16

modedo -0.97905 0.20000 -4.895 9.82e-07
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Nonlinear mixed-effects models (NLMM)

• The LMM and GLMM are powerful data analysis tools.

• The “common denominator” of these models is the expression
for the linear predictor. The models require that the fixed
effects parameters and the random effects occur linearly in

η = Xβ +Zb = Xβ +A′u

• This is a versatile and flexible way of specifying empirical
models, whose form is determined from the data.

• In many situations, however, the form of the model is derived
from external considerations of the mechanism generating the
response. The parameters in such mechanistic models often
occur nonlinearly.

• Mechanistic models can emulate behavior like the response
approaching an asymptote, which is not possible with models
that are linear in the parameters.
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The Michaelis-Menten model, SSmicmen

y = φ1x
x+φ2

x

y

φφ1

φφ2

φ1 (called Vm in enzyme kinetics) is the maximum reaction
velocity, φ2 (K) is the concentration at which y = φ1/2.
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The “asymptotic regression” model, SSasymp

y = φ1 + (φ1 − φ2)e−φ3x

x

y

φφ1

φφ2

t0.5
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The logistic growth model, SSlogis

y = φ1

1+e−(x−φ2)/φ3

x

y

φφ1

φφ2

φφ3
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Modeling repeated measures data with a nonlinear model

• Nonlinear mixed-effects models are used extensively with
longitudinal pharmacokinetic data.

• For such data the time pattern of an individual’s response is
determined by pharmacokinetic parameters (e.g. rate
constants) that occur nonlinearly in the expression for the
expected response.

• The form of the nonlinear model is determined by the
pharmacokinetic theory, not derived from the data.

d · ke · ka · C
e−ket − e−kat

ka − ke
• These pharmacokinetic parameters vary over the population.

We wish to characterize typical values in the population and
the extent of the variation.

• Thus, we associate random effects with the parameters, ka, ke
and C in the nonlinear model.
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A simple example - logistic model of growth curves

• The Orange data set are measurements of the growth of a
sample of five orange trees in a location in California.

• The response is the circumference of the tree at a particular
height from the ground (often converted to “diameter at
breast height”).

• The covariates are age (days) and Tree (balanced).

• A data plot indicates that the growth patterns are similar but
the eventual heights vary.

• One possible growth model is the logistic growth model

f(t, A, t0, s) =
A

1 + e−(t−t0)/s

which can be seen to be related to the inverse logit link
function.
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Orange tree growth data
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Using nlmer

• The nonlinear mixed-effects model is fit with the nlmer

function in the lme4 package.

• The formula argument for nlmer is in three parts: the
response, the nonlinear model function depending on
covariates and a set of nonlinear model (nm) parameters, and
the mixed-effects formula.

• There is no longer a concept of an intercept or a 1 term in the
mixed-effects model. All terms in the mixed-effects formula
incorporate names of nm parameters.

• The default term for the fixed-effects is a separate “intercept”
parameter for each nm parameter.

• At present, the nonlinear model must provide derivatives, in
addition to the expected response. The deriv function can be
used to create such a function from an expression.

• The starting values for the fixed effects must also be given. It
is safest to phrase these as a named vector.
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Model fit for orange tree data

> print(nm1 <- nlmer(circumference ~ SSlogis(age,
+ Asym, xmid, scal) ~ Asym | Tree, Orange, start = c(Asym = 200,
+ xmid = 770, scal = 120)), corr = FALSE)

Nonlinear mixed model fit by the Laplace approximation

Formula: circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym | Tree

Data: Orange

AIC BIC logLik deviance

273.1 280.9 -131.6 263.1

Random effects:

Groups Name Variance Std.Dev.

Tree Asym 1001.493 31.646

Residual 61.513 7.843

Number of obs: 35, groups: Tree, 5

Fixed effects:

Estimate Std. Error t value

Asym 192.05 15.58 12.32

xmid 727.91 34.44 21.14

scal 348.07 26.31 13.23
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Random effects for trees
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Extending the model

• Model nm1 incorporates random effects for the asymptote
only. The asymptote parameter occurs linearly in the model
expression. When random effects are associated with only
such conditionally linear parameters, the Laplace
approximation to the deviance is exact.

• We can allow more general specifications of random effects.
In practice it is difficult to estimate many variance and
covariance parameters when the number of levels of the
grouping factor (Tree) is small.

• Frequently we begin with independent random effects to see
which parameters show substantial variability. Later we allow
covariances.

• This is not a fool-proof modeling strategy by any means but it
is somewhat reasonable.
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Independent random effects for each parameter

Nonlinear mixed model fit by the Laplace approximation

Formula: circumference ~ SSlogis(age, Asym, xmid, scal) ~ (Asym | Tree) + (xmid | Tree) + (scal | Tree)

Data: Orange

AIC BIC logLik deviance

277.1 288.0 -131.5 263.1

Random effects:

Groups Name Variance Std.Dev.

Tree Asym 968.559 31.1217

Tree xmid 0.000 0.0000

Tree scal 342.032 18.4941

Residual 59.519 7.7149

Number of obs: 35, groups: Tree, 5

Fixed effects:

Estimate Std. Error t value

Asym 192.34 15.33 12.54

xmid 728.93 33.92 21.49

scal 350.83 27.30 12.85
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Correlated random effects for Asym and scal only

Nonlinear mixed model fit by the Laplace approximation

Formula: circumference ~ SSlogis(age, Asym, xmid, scal) ~ (Asym + scal | Tree)

Data: Orange

AIC BIC logLik deviance

274.1 285.0 -130.1 260.1

Random effects:

Groups Name Variance Std.Dev. Corr

Tree Asym 828.134 28.777

scal 924.774 30.410 -1.000

Residual 55.591 7.456

Number of obs: 35, groups: Tree, 5

Fixed effects:

Estimate Std. Error t value

Asym 192.39 14.23 13.52

xmid 726.95 32.00 22.72

scal 357.90 28.42 12.59
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Singular variance-covariance matrix
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Theophylline pharmacokinetics

Time since drug administration (hr)
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Initial fit of first-order model

Nonlinear mixed model fit by the Laplace approximation

Formula: conc ~ SSfol(Dose, Time, lKe, lKa, lCl) ~ (lKe + lKa + lCl | Subject)

Data: Theoph

AIC BIC logLik deviance

374 402.8 -177 354

Random effects:

Groups Name Variance Std.Dev. Corr

Subject lKe 4.9461e-14 2.2240e-07

lKa 4.3088e-01 6.5642e-01 0.000

lCl 2.8050e-02 1.6748e-01 0.000 -0.007

Residual 5.0094e-01 7.0777e-01

Number of obs: 132, groups: Subject, 12

Fixed effects:

Estimate Std. Error t value

lKe -2.46559 0.05187 -47.53

lKa 0.48216 0.19986 2.41

lCl -3.23041 0.05952 -54.27
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Remove random effect for lKe

Nonlinear mixed model fit by the Laplace approximation

Formula: conc ~ SSfol(Dose, Time, lKe, lKa, lCl) ~ (lKa + lCl | Subject)

Data: Theoph

AIC BIC logLik deviance

368 388.2 -177 354

Random effects:

Groups Name Variance Std.Dev. Corr

Subject lKa 0.430870 0.65641

lCl 0.028050 0.16748 -0.007

Residual 0.500939 0.70777

Number of obs: 132, groups: Subject, 12

Fixed effects:

Estimate Std. Error t value

lKe -2.46559 0.05187 -47.53

lKa 0.48217 0.19985 2.41

lCl -3.23041 0.05952 -54.27
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Remove correlation

> print(nm6 <- nlmer(conc ~ SSfol(Dose, Time, lKe,
+ lKa, lCl) ~ (lKa | Subject) + (lCl | Subject),
+ Theoph, start = Th.start), corr = FALSE)

Nonlinear mixed model fit by the Laplace approximation

Formula: conc ~ SSfol(Dose, Time, lKe, lKa, lCl) ~ (lKa | Subject) + (lCl | Subject)

Data: Theoph

AIC BIC logLik deviance

366 383.3 -177 354

Random effects:

Groups Name Variance Std.Dev.

Subject lKa 0.43090 0.65643

Subject lCl 0.02806 0.16751

Residual 0.50094 0.70777

Number of obs: 132, groups: Subject, 12

Fixed effects:

Estimate Std. Error t value

lKe -2.46552 0.05187 -47.53

lKa 0.48214 0.19986 2.41

lCl -3.23036 0.05953 -54.26
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Random effects for clearance and absorption
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Methodology

• Evaluation of the deviance is very similar to the calculation for
the generalized linear mixed model. For given parameter
values θ and β the conditional mode ũ(θ,β) is determined by
solving a penalized nonlinear least squares problem.

• r2(θ,β) and |L|2 determine the Laplace approximation to the
deviance.

• As for GLMMs this can (and will) be extended to an adaptive
Gauss-Hermite quadrature evaluation when there is only one
grouping factor for the random effects.

• The theory (and, I hope, the implementation) for the
generalized nonlinear mixed model (GNLMM) is
straightforward, once you get to this point. Map first through
the nonlinear model function then through the inverse link
function.
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From linear predictor to µ

• The main change in evaluating µY|U for NLMMs is in the role
of the linear predictor. If there are s nonlinear model (nm)
parameters and n observations in total then the model matrix
X is n · s× p and the model matrix Z is n · s× q.

• The linear predictor, v = Xβ +A′u, of length n · s, is
rearranged as an n× s matrix of parameter values Φ. The ith
component of the unbounded predictor, η, is the nonlinear
model evaluated for the i set of covariate values with the
nonlinear parameters, φ, at the ith row of Φ.

u→ b→ v →Φ→ η → µ

b =T (θ)S(θ)P ′u
v = Xβ +Zb =Xβ +A(θ)′P ′u = vec(Φ)

η =f(t,Φ)

µ =g−1η
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Generalizations of PIRLS
• The reason that the PLS problem for determining the

conditional modes is relatively easy is because the standard
least squares-based methods for fixed-effects models are easily
adapted.

• For linear mixed-models the PLS problem is solved directly. In
fact, for LMMs it is possible to determine the conditional
modes of the random effects and the conditional estimates of
the fixed effects simultaneously.

• Parameter estimates for generalized linear models (GLMs) are
(very efficiently) determined by iteratively re-weighted least
squares (IRLS) so the conditional modes in a GLMM are
determined by penalized iteratively re-weighted least squares
(PIRLS).

• Nonlinear least squares, used for fixed-effects nonlinear
regression, is adapted as penalized nonlinear least squares
(PNLS) or penalized iteratively reweighted nonlinear least
squares (PIRNLS) for generalized nonlinear mixed models.
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