
Anatomy of a �oating point
number
Posted on 6 April 2009 by John

In my previous post, I explained that �oating point numbers are a leaky abstraction.

Often you can pretend that they are mathematical real numbers, but sometimes you

cannot. This post peels back the abstraction and explains exactly what a �oating point

number is. (Technically, this post describes an IEEE 754 double precision �oating point

number, by far the most common kind of �oating point number in practice.)

A �oating point number has 64 bits that encode a number of the form ± p × 2 . The �rst

bit encodes the sign, 0 for positive numbers and 1 for negative numbers. The next 11 bits

encode the exponent e, and the last 52 bits encode the precision p. The encoding of the

exponent and precision require some explanation.

The exponent is stored with a bias of 1023. That is, positive and negative exponents are

all stored in a single positive number by storing e + 1023 rather than storing e directly.

Eleven bits can represent integers from 0 up to 2047. Subtracting the bias, this

corresponds to values of e from -1023 to +1024. De�ne e = -1022 and e = +1023. The

values e – 1 and e + 1 are reserved for special use. More on that below.

Floating point numbers are typically stored in normalized form. In base 10, a number is

in normalized scienti�c notation if the signi�cand is ≥ 1 and < 10. For example, 3.14 × 10

is in normalized form, but 0.314 × 10 and 31.4 × 10 are not. In general, a number in base

β is in normalized form if it is of the form p × β where 1 ≤ p < β. This says that for binary,

i.e. β = 2, the �rst bit of the signi�cand of a normalized number is always 1. Since this bit

never changes, it doesn’t need to be stored. Therefore we can express 53 bits of

precision in 52 bits of storage. Instead of storing the signi�cand directly, we store f, the

fractional part, where the signi�cand is of the form 1.f.

e

min max

min max

2

3 2

e

https://www.johndcook.com/blog/2009/04/06/anatomy-of-a-floating-point-number/
https://www.johndcook.com/blog/author/john/
https://www.johndcook.com/blog/2009/04/06/numbers-are-a-leaky-abstraction/
https://www.johndcook.com/blog/

The scheme above does not explain how to store 0. Its impossible to specify values of f

and e so that 1.f × 2 = 0. The �oating point format makes an exception to the rules

stated above. When e = e – 1 and f = 0, the bits are interpreted as 0. When e = e – 1

and f ≠ 0, the result is a denormalized number. The bits are interpreted as 0.f × 2 . In

short, the special exponent reserved below e is used to represent 0 and

denormalized �oating point numbers.

The special exponent reserved above e is used to represent ∞ and NaN. If e = e + 1

and f = 0, the bits are interpreted as ∞. But if e = e + 1 and f ≠ 0, the bits are

interpreted as a NaN or “not a number.” See IEEE �oating point exceptions for more

information about ∞ and NaN.

Since the largest exponent is 1023 and the largest signi�cant is 1.f where f has 52 ones,

the largest �oating point number is 2 (2 – 2) = 2 – 2 ≈ 2 ≈ 1.8 × 10 . In C,

this constant is de�ned as DBL_MAX, de�ned in <float.h>.

Since the smallest exponent is -1022, the smallest positive normalized number is 1.0 × 2

 ≈ 2.2 × 10 . In C, this is de�ned as DBL_MIN. However, it is not the smallest positive

number representable as a �oating point number, only the smallest normalized

�oating point number. Smaller numbers can be expressed in denormalized form, albeit

at a loss of signi�cance. The smallest denormalized positive number occurs with f has

51 0’s followed by a single 1. This corresponds to 2 *2 = 2 ≈ 4.9 × 10 . Attempts

to represent any smaller number must under�ow to zero.

C gives the name DBL_EPSILON to the smallest positive number ε such that 1 + ε ≠ 1 to

machine precision. Since the signi�cant has 52 bits, it’s clear that DBL_EPSILON = 2 ≈

2.2 × 10 . That is why we say a �oating point number has between 15 and 16 signi�cant

(decimal) �gures.

For more details see What Every Computer Scientist Should Know About Floating-

Point Arithmetic.

First post in this series: Floating point numbers are a leaky abstraction

e

min min
emin

min

max max

max

1023 -52 1024 971 1024 308

-

1022 -308

-52 -1022 -1074 -324

-52

-16

https://www.johndcook.com/blog/IEEE_exceptions_in_cpp/
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://www.johndcook.com/blog/2009/04/06/numbers-are-a-leaky-abstraction

