

Matrix Computations

THIRD EDITION

Johns Hopkins Studies in the Mathematical Sciences
in association with the Department of Mathematical Sciences
The Johns Hopkins University

Matrix Computations

THIRD EDITION

Gene H. Golub

Department of Computer Science
Stanford University

Charles F. Van Loan

Department of Computer Science
Cornell University

The Johns Hopkins University Press
Beltimore and London

©1983, 1989, 1996 The Johns Hopkins University Press
All rights reserved. Published 1996

Printed in the United Stales of America on acid-free paper
05 04 03 02 01 00 99 93 97 54312

First edition 1983
Second edition 1989
Third Edition 1996

The Johns Hopkins University Press
2715 North Charles Street

Baltimore, Maryland 21218-4319

The Johns Hopkins Press Lid., London

Library of Congress Cataloging-in-Publication Data will be found
at the end of this book.

A catalog record for this book is available from the British Library.

ISBN 0-8018-5413-X
ISBN 0-8018-5414-8 {pbk.)

DEDICATED TO

ALSTON S. HOUSEHOLDER

AND

JAMES H. WILKINSON

Contents

Preface to the Third Edition xi
Software xiij
Selected References xv

Matrix Multiplication Problems 1

1.1 Basic Algorithms and Notation 2

1.2 Exploiting Structure 16

1.3 Block Matrices and Algorithms 24

14 Vectorization and Re-Use Issues 34

2 Matrix Analysis 48
2.1 Basic Ideas from Linear Alpgebra 48

2.2 Vector Norms 52

2.3 Matrix Norms 54

24 Finite Precision Matrix Computations 59

2.5 Orthogonality and the SVD 69

2.6 Frojections and the CS Decompasition 75

2.7 The Sensitivity of Square Linear Systems 80

3 General Linear Systems 87
31 Triangular Systems 88

3.2 The LU Factorization 94

33 Roundoff Analysis of Gaussian Elimination 104

34 Pivoting 109

3.5 Improving and Estimating Accuracy 123

i

4 Special Linear Systems 133
4.1 The LDMT and LDLT Factorizations 135

4.2 Positive Definite Systems 140

4.3 Banded Systems 152

4.4 Symmetric Indefinite Systems 161

4.5 Block Systems 174

4.6 Vandermonde Systems and the FFT 183

4.7 Toeplitz and Related Systems 193

D Orthogonalization and Least Squares 206
5.1 Householder and Givens Matrices 208

5.2 The QR Factorization 223

5.3 The Full Rank LS Problem 236

54 Other Orthogonal Factorizations 248

5.5 The Rank Deficient LS Problem 256

5.6 Weighting and Iterative Improvement 264

3.7 Square and Underdetermined Systems 270

6 Parallel Matrix Computations 275
6.1 Basic Concepts 276

6.2 Matrix Multiplication 292

6.3 Factorizations 300

7 The Unsymmetric Eigenvalue Problem 308
7.1 Properties and Decompositions 310

7.2 Perturbation Theory 320

7.3 Power lterations 330

74 The Hessenberg and Real Schur Forms 341

7.5 The Practical QR Algorithm 352

7.6 Invariant Subspace Computations 362

7.7 The QZ Method for Ax = A Bx 375

8 The Symmetric Eigenvalue Problem 391

8.1
8.2

Properties and Decompositions 393
Power Iterations 405

8.3
8.4
8.5
8.6
B.7

The Symmetric QR Algorithm 414

Jacobi Methods 426

Tridiagonal Methods 439

Computing the SVD 448

Some Generalized Eigenvalue Problems 461

9 Lanczos Methods 470
9.1 Derivation and Convergence Properties 471

9.2 Practical Lanczos Procedures 479

93 Applications to Ar = b and Least Squares 490

9.4 Arnoldi and Unsymmetric Lanczos 499

10 Iterative Methods for Linear Systems 508
10.1 The Standard Iterations 509

10.2 The Conjugate Gradient Method 520

10.3 Preconditioned Conjugate Gradients 532

10.4 Other Krylov Subspace Methods 544

11 Functions of Matrices 555
11.1 Eigenvalue Methods 556

112 Approximation Methods 562

11.3 The Matrix Exponential 572

12 Special Topics 579

121
12.2
12.3
12.4
125
12.6

Constrained Least Squares 580

Subset Selection Using the SVD 590
Total Least Squares 595

Computing Subspaces with the SVD 601
Updating Matrix Factorizations 606
Modified /Structured Eigenproblems 621

Bibliography 637

Index

687

Preface to the Third Edition

The field of matrix computations continues to grow and mature. In
the Third Edition we have added over 300 new references and 100 new
problems. The LINPACK and EISPACK citations have been replaced with
appropriate pointers to LAPACK with key codes tabulated at the beginning
of appropriate chapters.

In the First Edition and Second Edition we identified a emall number
of global references: Wilkinson {1965), Forsythe and Moler (1967), Stewart
(1973), Hanson and Lawson (1974) and Parlett (1980). These volumes are
as important 8s ever to the research landscape, but there are some mag-
nificent new textbooks and monographs on the scene. See The Literature
section that follows.

We continue as before with the practice of giving references at the end
of each section and a master bibliography at the end of the book.

The earlier editions suffered from a large number of typographical errors
and we are obliged to the dozens of readers who have brought these to our
attention. Many corrections and clarifications have been made.

Here are some specific highlights of the new edition. Chapter 1 (Matrix
Multiplication Problems) and Chapter 6 {Parallel Matrix Computations)
have been completely rewritten with less formality. We think that this
facilitates the building of intuition for high performance computing and
draws a better line between algorithm snd implementation on the printed
page.

In Chapter 2 (Matrix Analysis) we expanded the treatment of CS de-
composition and included a proof. The overview of floating point arithmetic
has been brought up to date. In Chapter 4 (Special Linear Systems) we
embellished the Toeplitz section with connections to circulant matrices and
the fast Fourier transform. A subsection on equilibrium systems has been
included in our treatment of indefinite systems.

A more accurate rendition of the modified Gram-Schmidt process is
offered in Chapter 5 (Orthogonalization and Least Squares). Chapter 8
{The Symmetric Eigenproblem) has been extensively rewritten and rear-
ranged so as to minimize its dependence upon Chapter 7 (The Unsymmet-
ric Eigenproblem). Indeed, the coupling between these two chapters is now
s0 minimal that it is possible to read either one first,

In Chapter 9 (Lanczos Methods) we have expanded the discussion of

x

Xl FRirAaGk 1O THe 1 HIKD UL iUN

the unsymmetric Lanczos process and the Arnoldi iteration. The “unsym-
metric component™ of Chapter 10 (Iterative Methods for Linear Systems)
has likewise been broadened with a whole new section devoted to various
Krylov space methods designed to handle the sparse unsymmetric linear
system problem.

In §12.5 (Updating Orthogonal Decompositione) we included a new sub-
section on ULV updating. Toeplitz matrix eigenproblems and orthogonal
matrix eigenproblems are discussed in §12.6.

Both of us look forward to continuing the dialog with our readers. As
we gaid in the Preface to the Second Edition, “It has been a pleasure to
deal with such an interested and friendly readership.”

Many individuals made valuable Third Edition suggestions, but Greg
Ammar, Mike Heath, Nick Trefethen, and Steve Vavasis deserve special
thanks.

Finally, we would like to acknowledge the support of Cindy Robinson
at Cornell. A dedicated assistant makes a big difference.

Software

LAPACK

Many of the algorithms in this book are implemented in the software pack-
age LAPACK:

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCrcz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D.
Sorensen (1995). LAPACK Users’ Guide, Release 2.0, 2nd ed., SIAM
Publications, Philadelphia.

Pointers to some of the wmore important routines in this package are given
at the beginning of selected chapters:

Chapter 1. Lewvel-1, Level-2, Level-3 BLAS

Chapter 3. General Linear Systems

Chapter 4. Positive Definite and Band Systems

Chapter 5. Orthogonalization and Least Squares Problems
Chapter 7. The Unsymmetric Eigenvalue Problem
Chapter 8. The Symmetric Eigenvalue Problem

Our LAPACK references are spare in detail but rich enough to “get you
started.” Thus, when we say that _TRSV can be used to solve a triangular
system Az = b, we leave it to you to discover through the LAPACK manual
that A can be either upper or lower triangular and that the transposed
system ATz = b can be handled as well. Moreover, the underscore is a
placeholder whose mission is to designate type (single, double, complex,
etc).

LAPACK stands on the shoulders of two other packages that are mile-
stones in the history of software development. EISPACK was developed in
the early 1970s and is dedicated to solving symmetric, unsymmetric, and
generalized eigenproblems:

B.T. Smith, J.M. Boyle, Y. Ikebe, V.C. Klema, and C.B. Moler (1970).
Matriz Eigensystem Routines: EISPACK Guide, 2nd ed., Lecture Notes
in Computer Science, Volume 6, Springer-Verlag, New York.

xiv SOFTWARE

B.S. Garbow, J.M. Boyle, J.J. Dongarra, and C.B. Moler (1972). Matriz
Eigensystem Routines: EISPACK Guide Extension, Lecture Notes in
Computer Science, Volume 51, Springer-Verlag, New York.

LINPACK was developed in the late 1970s for linear equations and least
squares problems:

EISPACK and LINPACK have their roots in sequence of papers that feature
Algol implementations of some of the key matrix factorizations. These
papers are collected in

J.H. Wilkinson and C. Reinsch, eds. (1971). Handbook for Automatic
Computation, Vol. 2, Linear Algebra, Springer-Verlag, New York.

NETLIB

A wide range of software including LAPACK, EISPACK, and LINPACK is
available electronically via Netlib:

World Wide Wel: http://www.netlib,.org/index.html
Anonymous ftp: £tp://ftp.netlib.org

Via emall, send a one-line message:

mail netlibfornl.gov
send index

to get started.
MATLAB®

Complementing LAPACK and defining a very popular matrix computation
enviroument is MATLAB:

MATLAB User’s Guide, The MathWorks Inc., Natick, Massachusetta.

M. Marcus (1993). Matrices and MATLAB: A Tutorial, Prentice Hall, Up-
per Saddle River, NJ.

R Pratap (1995). Getting Started with MaTLAB, Saunders College Pub-
lishing, Fort Worth, TX.

Many of the problems in Mairiz Computations are best posed to students
a8 MATLAB problems. We make extensive use of MATLAB notation in the
presentation of algorithms.

Selected References

Each section in the book concludes with an annotated list of references.
A master bibliography is given at the end of the text.

Useful books that collectively cover the field, are cited below. Chapter
titles are included if appropriate but do not infer too much from the level
of detail because one author's chapter may be another’s subsection. The
citations are classified as follows: '

Pre-1970 Classics. Early volumes that set the stage.
Introductory (General). Suitable for the undergraduate classroom.
Advanced (General). Best for practitioners and graduate students.
Analytical. For the supporting mathematics.

Linear Equation Problems. Ar = b.

Linear Fitting Problems. Ax =~ b,

Eigenvalue Problems. Ar = Az.

High Performance. Parallel/vector issues.

Edited Volumes. Useful, thematic collections.

Within each group the entries are specified in chronclogical order.
Pre-1970 Classics

V.N. Faddeeva {1959). Compulational Methods of Linear Algebra, Dover,
New York.

Basic Material from Linear Algebra. Systenw of Linear Equations. The Proper
Numbers and Proper Vectors of a Matrix

E. Bodewig (1959). Matrir Caleulus, North Holland, Amsterdam.

Matrix Calculus. Direct Methoda for Linear Equations. Indirect Methods for Linear
Equations. Inversion of Matrices. Geodetic Matrices. Eigonproblems.

R.S. Varga (1962). Matriz [terative Analysis, Prentice-Hall, Englewood
Cliffs, NJ.
Matrix Propertiss and Concepts. Nonnegative Matrices. Basic Iterative Methods
and Comparison Theorems. Successive Overrelaxation [lerative Methods. Semi-
Jterative Methods. Derivation and Solution of Elliptic Difference Equations. Alter-
nating Direction Implicit Iterative Methods. Matrix Methods for Parabolic Partial
Differential Equations. Estimation of Acceleration Parameters.

xvi SELECTED REFERENCES

J.H. Wilkinson (1963). Rounding Errors in Algebraic Processes, Prentice-

Hall, Englewood Cliffs, NJ.

The Fundamental Arithmetic Operations. Computations Involving Polynomials.
Matrix Computations.

A.S. Householder (1964). Theory of Matrices in Numerical Analysis, Blais--

dell, New York. Reprinted in 1974 by Dover, New York.

Some Basic [dentities and Inequalities. Norms, Bounds, and Convergence. Localiza-
tion Theorems and Other Inequalities. The Solution of Linear Systemns: Methods of
Successive Approximation. Direct Methods of inversion. Proper Values and Vectom:
Normalization and Reduction of the Matrix. Proper Values and Vectors: Successive
Approximation.

L. Fax (1964). An Introduction to Numerical Linear Algebra, Oxford Uni-

versity Press, Oxford, England.

Introduction, Matrix Algebra. Elimination Methods of Gauss, Jordan, and Aitken.
Compact Elimination Methods of Doolittle, Crout, Banachiewicz, and Cholesky.
Orthogonalization Methods. Condition, Accuracy, and Precision. Comparison of
Methods, Measure of Work. Iterative and Gradient Methods. Iterative methods for
Latent Roots and Vectors. Transformation Methods for Latent Roots and Vectors.
Notes on Ervor Analysis for Latent Roots and Vectors.

J.H. Wilkinson (1965). The Algebraic Eigenvalue Problem, Clarendon Press,

Oxford, England.

Theoretical Background. Perturbation Theory. Error Analysis. Solution of Lin-
ear Algebraic Equations. Hermitian Matrices. Reduction of a General Matrix to
Condensed Form. Eigenvalues of Matrices of Condensed Forma. The LR and QR
Algorithms. Iterative Methoda.

G.E. Forsythe and C. Moler (1967). Computer Solution of Linear Algebraic

Systems, Prentice-Hall, Englewood Cliffs, NJ.

Reader’s Background and Purpose of Book. Vector and Matrix Norms. Diagonal
Form of a Matrix Under Orthogonal Equivalence. Proof of Diagoual Form Theorem.
Types of Computational Problems in Linear Algebra. Types of Matrices encoun-
tered in Practical Problems. Sources of Computational Problems of Linear Algebra.
Condition of a Linear System. Gaussian Elimination and LU Decomposition. Need
for Interchanging Rows. Scaling Equations and Unknowns. The Crout and Doolit-
tle Variants. Iterative Improvement. Computing the Determinant. Neariy Singular
Matrices. Algol 60 Program. Fortran, Extended Algol, and PL/I Programs. Ma-
trix Inversion. An Example: Hilbert Matrices. Floating Point Round-Off Analysis.
Rounding Error in Gaumian Elimination. Convergence of Iterative Improvement.
Positive Definite Matrices; Band Matrices. lterative Methods for Solving Linear
Systerms. Nonlinear Systems of Equations.

REFERENCES xvil

Introductory (General)

A.R. Gourlay and G.A. Watson (1973). Computational Methods for Matriz
Eigenproblems, John Wiley & Sons, New York.
Introduction. Background Theory. Reductions and Transformations. Methods for
the Dominant Eigenvalue. Methods for the Subdominant Eigenvelue. Inverse [i-
eration. Jacobi's Methods. Givens and Householder's Methods. Eigensystem of
& Symmetric Tridiagonal Matrix. The LR and QR Algorithms, Extensions of Ja-
cobi's Method. Extension of Givens' and Householder's Methods. QR Algorithm for
Hessenberg Matricen. generalized Eigenvalue Problems. Awsilable Implementations,

G.W. Stewart (1973). Introduction to Matrir Compuiations, Academic
Press, New York.
Preliminaries. Practicalities. The Direct Solution of Linear Systems. Morms, Lim-
its, and Condition Numbars, The Linear Lenst Squares Problem. Eigenvalues and
Eigenvectors. The QR Algorithm.

R.J. Goult, RF. Hoskins, J.A. Milner and M.J. Pratt {1974). Computa-
tional Methods in Linear Algebra, John Wiley and Sons, New York.
Eigenvalues and Eigenvectors. Error Analysis. The Solution of Linear Equations by
Elimination and Decomposition Methods. The Solntion of Linear Systema of Equa-
tions by Iterative Methods. Errors in the Solution Sets of Equations. Computation
of Eigenvalues and Eigenvectors. Errors in Eigenvalues and Eigenvectors. Appendix
— A Survey of Essential Resulta from Linear Algebra.

T.F. Coleman and C.F. Van Loan (1988). Handbook for Matriz Computa-
tions, SIAM Publications, Philadelphia, PA.

Fartran 77, The Basic Linear Algebra Subprograms, Linpack MATLAB.

W.W. Hager (1988). Applied Numerical Linear Algebra, Prentice-Hall, En-
glewood Cliffs, NJ.
Introduction. Elimination Schemes. Conditioning. Nonlinear Systems. Least
Squares. Eigenproblems. [terative Methods. '

P.G. Ciarlet (1989). Introduction to Numerical Linear Algebra and Opti-
misation, Cambridge University Press.
A Summary of Resuits on Matrices. General Results in the Numerical Analysis of
Matrices. Sources of Problems in the Numerical Analysis of Matrices. Direct Meth-
oda for the Solution of Linear Systems. Iterative Metheds for the Solution of Linear
Systems. Methods for the Calculation of Eigenvalues and Eigenvectors. A Review of
Differential Calculus. Some Applications. General Remults on Optimization. Some
Algorithma. Introduction to Nonlinear Programming. Linear Programming.

D.S. Watkins (1991). Fundamentals of Matrizx Computations, John Wiley
and Sons, New York.
Gaussian Elimination and Its Variants. Sensitivity of Linear Systems; Effects of
Roundoff Errors. Orthogonal Matrices and the Least-Squares Problem. Eigenvalues

and Eigenvectora 1. Eigenvalues and Eigeavectors II. Other Methods for the Sym-
metric Figenvalue Problem. The Singular Vaiue Decomposition.

xviii REFERENCES

P. Gill, W. Murray, and M.H. Wright (1991). Numerical Linear Algebra
and Optimizetion, Vol. 1, Addison-Wesley, Reading, MA.
Introduction. Linear Algebra Background. Computation and Condition. Linear
Equations. Compatible Systems. Liuear Lesst Squares. Linear Constraints I: Linear
Programming. The Simplex Method_

A. Jennings and J.J. McKeowen (1992). Matriz Computation (2nd ed),
John Wiley and Sons, New York.

Basic Algebraic and Numerical Concepts. Some Matrix Problems. Computer Imple-
mentation. Elimination Methods for Linear Equations. Sparse Matrix Elimination.
Some Matrix Eigenvalue Problemsa. Transformation Methods for Eigenvalue Prob-
lems. Sturm Sequence Methods. Vactor Iterative Methods for Partial Eigensolution.
Orthogonalization and Re-Solution Techniques for Linear Equations. Iterative Meth-
oda for Linear Equations. Non-linear Equations. Parallel and Vector Computing.

B.N. Datta (1995). Numerical Linear Algebro and Applications. Brooks/Cole

Publishing Company, Pacific Grove, California.

Review of Required Linear Algebra Concepts. Floating Point Numbers and Errors in
Computations. Stability of Algorithms and Conditioning of Problems. Numerically
Effective Algorithms and Mathematical Software. Some Useful Transformations in
Numerical Linear Algebra and Their Applications. Numerical Matrix Eilgeovalue
Problems. The Generalized Figenvalue Problem. The Singular Value Decomposition.
A Taste of Roundoff Error Analysis.

M.T. Heath (1997). Scientific Computing: An Intraductory Survey, McGraw-
Hill, New York.

Scientific Computing. Systema of Linear Equations. Linear Least Squares. Eigen-
values and Singuiar Values. Noanlinear Equations. Optimizaetion. Interpolation. Nu-
merical Integration and Differentiation. Initiad Value Problems for ODEs. Boundary
Vaiue Problams for ODEs. Partial Differential Equations. Fast Fourier Transform.
Random Numbers and Simulation.

C.F. Van Loan (1997). Introduction to Scientific Computing: A Mairiz-
Vector Approach Using Matlab, Prentice Hall, Upper Saddle River, NJ.

Power Tools of the Trade. Polynomial Interpoiation. Piecewise Polynomial Interpo-
lation. Numerical Integration. Matrix Computations. Linear Systems. The QR and
Choleaky Factorizations. Nonlinear Equations and Optimization. The Initial Value
Problem.

Advanced (General)

N.J. Higham (1996). Accuracy and Stability of Numerical Algorithms,
SIAM Publications, Philadeiphia, PA.

Principlea of Finite Precixion Computation. Floating Point Arithmetic. Basics.
Summation. Polynomisis. Norms. Perturbation Theory for Linear Systems. Tri-
anguiar Systems. LU Pactorization and Linear Equations. Choleaky Factorization.
{terntive Refinement. Block LU Factorization. Matrix Inversion. Condition Number
Eatimation. The Sylvesier Equation. Stationary terative Methods. Matrix Powers.
QR Factorization. The Least Squares Problem. Underdetermined Systema. Van-
dermonde Systerns. Fast Matrix Multiplication. The Fast Fourier Transform and
Applications, Automatic Error Analysis, Sceitware Issues in Floating Point Arith-
metic. A Gallery of Test Matrices

SELECTED REFERENCES XX

J.W. Demumel (1996). Numerical Linear Algebra, SLAM Publications, Philadel-
phia, PA.
Introduction. Linear Equation Solving. Linear Least Squares Problems. Nonsym-
metric Eigenvalue Problems. The Symmetric Eigenproblem and Singular Value De-
composition. Iterative Methods for Linear Systems and Eigenvalue Problema. Iter-
ative Algorithma for Eigenvalue Problems.

L.N. Trefethen and D. Bau III (1997). Numerical Linear Algebra, SIAM
Publications, Philadelphia, PA.

Matrix-Vectar Multiplication. Orthogonsl Vectora and Matrices. Norms. The Sin-
gular Value Decomposition. More on the SVD. Projectors. QR Factorization, Gram-
Schmidt Orthogonalization. MATLAB. Householder Triangularization. Least-Squares
Problems. Conditioning and Condition Numbers. Floating Point Arithmetic. Stabil-
ity. More on Stability. Stability of Householder Trisngularization. Stability of Back
Subetitution. Conditioning of Least-Squsares Problems. Stability of Least-Squares
Algorithms. Caussian Elimination. Pivoting. Stability of Ganssian Elimination.
Cholesky Pactorization, Eigenvalue Problems. Overview of Eigenvalus Algorithms,
Reduction to Heesenberg/Tridisgenal Form. Rayleigh Cuotient, Inverse Iteration.
QR Algorithm Without Shifte. QR Algorithm With Shifts. Other Eigenvalue Al
gorithms. Computing the SVD. Overview of Iterative Methods. The Arnoldi Itern-
tion. How Arnoldi Locates Eigenvalues. GMRES. The Lanczos [teration. Orthogo-
nal Polynomials and Gauss Quadrature. Conjugate Gradients. Biorthogonalization
Methods. Preconditioning. The Definition of Numerical Analynis.

Analytical

F.R. Gantmacher (1959). The Theory of Matrices Vol 1, Chelsea, New
York.
Matrices and Operations on Matrices. The Algorithm of Gauss and Some of its
Applications. Linear Operators in an n-dimensional Vector Space. The Character-
istic Polynomial and the Minimum Polynomial of a Matrix. Functions of Matrices,
Equivalent Transformations of Polynomial Matrices, Analytic Theory of Elementary
Divisors. The Structure of & Linear Operator in an n-dimensional Space. Matrix
Equations. Linesr Operstors in a Unitary Space. Quadratic and Hermitian Forms.

F.R. Gantmacher (1959). The Theory of Matrices Vol 2, Chelsea, New
York.
Complex Symunetric, Skew-Symmetric, and Orthogonal Matrices. Singular Pencils
of Matrices. Matrices with Nonnegative Elements. Application of the Theory of Ma-
trices to the Investigation of Systema of Linear Differential Fquations. The Problem
of Routh-Hurwits and Related Questions.

A. Berman and R.J. Plemmons (1979). Nonnegative Matrices in the Math-

ematical Sciences, Academic Press, New York. Reprinted with additions
in 1994 by SIAM Publications, Philadelphia, PA.
Matricen Which Leave a Cone Invariant. Nonnegative Matricss. Semigroups of Non-
negative Matrices. Symmetric Nonnegative Matrices. Genevalized Inverse-Positivity.
M-Matrices. Iterative Methods for Linear Systems, Finite Markov Chains. Input-
Output Analysis in Economics. The Linear Complementarity Problem.

x5 REFERENCES

G.W. Stewart and J. Sun (1990). Matriz Perturbation Theory, Academic
Press, San Diego.

Preliminaries. Norms sod Metrics. Linear Systems and Least Squaren Problems. The
Perturbation of Eigenvalues. [nvariant Subspaces. Generslized Eigeavalue Problema.

R. Horn and C. Johnson (1985). Matriz Analysts, Cambridge University
Press, New York.

Review and Misceollanea. Eigenvalues, Eigenrvectoms, and Similarity. Unitary Equiv-
alence and Normal Matrices. Canorical Forms., Hermitian and Symmetric Matrices.
Norms for Vectors and Matrices. Lacation and Perturbation of Eigenvalues. Positive
Definite Matrices.

R. Horn and C. Johnson (1991). Topics in Mairiz Analysis, Cambridge
University Press, New York.

The Field of Valuss. Stable Matrices and Inertia. Singular Value [nequalities. Ma-
trix Equations and the Kronecker Product. The Hadamerd Product. Matrices and
Functions,

Linear Equation Problems

D.M. Young (1971). lterative Solution of Large Linear Systems, Academic
Press, New York.

Introduction. Matrix Prefiminaries. Linear Stationary Iterative Methods. Conver-
gence of the Basic Iterative Methods. Eigenvalues of the SOR Method for Con-
sistently Ordered Matrices. Determination of the Optimum Relaxation Parameter.
Norma of the SOR Method. The Modified SOR Method: Fixed Parameters. Nonsta-
tionary Linear Iterative Methods. The Modified SOR Method: Variable Parameters.
Semi-iterative Methods, Extansions of the SOR Theory; Stisitjes Matrices. Gener-
alizad Consistently Ordered Matrices. Group [terstive Methods. Symmetric SOR
Method and Related Methods. Second Degree Methods. Alternating Direction Im-
plicit Methods. Selection of an Iteralive Method.

L.A. Hageman and D.M. Young (1981). Applied Iterative Methods, Aca-
demic Press, New York.

Background on Linsar Algebra and Related Topice. Background cn Basic Iterative
Methods. Polynomial Acceleration. Chebryshev Acceleration. An Adaptive Cheby-
shev Procedure Using Special Norms. Adaptive Chebyshev Accelaration. Conjugate
Gradient Accelerstion. Special Methods for Red/Black Partitionings. Adaptive Pro-
cadures for Succemive Overrelaxation Method. The Use of Iterstive Methods in the
Solution of Partial Differential Equations, Case Studies. The Nonsymmetrizable
Cane.

REFERENCES xd

A. George and J. W-H. Liu (1981). Computer Solution of Large Sparse

Positive Definite Systems. Prentice-Hall Inc., Englewood Cliffs, New
Jersey.
Introduction. Fundamentals. Some Graph Theory Notation and Its Use in the
Study of Sparse Symmetric Matrices. BAnd and Envelope Methods. General Sparse
Methods. Quotient Tree Methods for Finite Element and Finite Difference Prob-
lems. One-Way Disgection Methods for Finite Element Problema. Nested Dissection
Methods. Numerical Experiments.

S. Pissanetsky (1984). Sparse Matriz Technology, Academic Press, New
York.

Fundamentals. Linear Algebraic Equations. Numerical Errors in Gaussian Elimi-
nation. Ordering for Gausa Elimination: Symmetric Matrices. Ordering for Gausa
Elimination: General Matrices. Sparse Eigenanalysis. Sparse Matrix Algebra. Con-
nectivity and Nodal Assemhly. General Purpose Algorithma,

LS. Duff, A.M. Erisman, and J.K. Reid (1986). Direct Methods for Sparse
Matrices, Oxford University Press, New York.

Introduction. Sperse Matrices:Storage Schemes and Simple Operations. Gaussian
Elimination for Demse Matrices: The Algebraic Problem. Gaussian Elimination
for Dense Matrices: Numerical Considerations. Gaussian Elimination for Sparse
Matrices: An Introduction. Reduction to Block Triangular Form. Local Pivotal
Strategies for Sparse Matrices. Ordering Sparse Matrices to Special Forms. Im-
plementing Gauseian Elimination: Analyse with Numerical Values. Implementing
Gaussian Elimination with Symbolic Analyse. Partitioning, Matrix Medification,
and Tearing. Other Spamsity-Oriented Issues.

R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Donato, J. Dongarra, V.
Eijkhout, R. Pozo, C. Romine, H, van der Vorst (1993). Templates for
the Solution of Linear Systems: Building Blocks for Herative Methods,
STIAM Publications, Philadelphia, PA.

Introduction. Why Use Templates? What Methods sre Covered? Iterative Methoda.
Stationary Methods. Nonstationary Iterstive Methods. Survey of Recent Krylov
Methods. Jacobi, Incomplete, SSOR, and Polynomial Preconditioners. Complex
Systerns. Stopping Criteria. Data Structures. Paraileliam. The Lanczos Connection.
Block Iterative Methods. Reduced System Preconditioning. Demain Decomposition
Methoda Multigrid Methods. Row Projection Methoda.

W. Hackbusch (1994). Iterative Solution of Large Sparse Systems of Equa-
tions, Springer-Verlag, New York

Introduction. Rascapitulstion of Linear Algebra. Iterntive Methods. Methods of
Jncobi and Gauss-Seidel and SOR, Iteration in the Positive Definite Case. Analysis
in the 2-Cyclic Case, Anslysis for M-Matricea. Semi-Iterative Methods. Transfor-
mations, Secondary Iterations, Incompiete Trinngular Decompositions. Conjugate
Gradient Methods, Multi-Grid Methods. Domain Decomposition Methods.

xxii REFERENCES

O. Axelsson (1994). [terative Solution Methods, Cambridge University
Press.

Direct Solution Methods. Theory of Matrix Eigmvaluss. Posittve Definite Matri-
cea, Schur Complements, snd Generalised Eigenvaluye Probems. Reducible and Irre-
ducible Matrices and the Parron-Frobenious Theory for Nonnegative Matrices. Basic
Iterntive Mechods sond Their Rates of Convergence. M-Matrices, Corrvergent Split-
tings, and the SOR Method. Incamplets Factorization Preconditioning Methods
Approximata Matrix Inverses and Corresponding Preconditioning Methods Block
Disgonal and Schur Complement Preconditionngs. Estimaies of Eigenvalues sad
Condition Numbers for Preconditioned Matrices. Conjugate Gradient and Lanczos-
Type Methods., Generalised Conjugate Gradient Methods. The Rate of Convergence
of the Conjugste Gradisnt Method.

Y. Saad {1996). lterative Methods for Sparse Linear Systems, PWS Pub-
lishing Co., Boston.

Background in Linear Algebra. Discretization of PDEs. Sparse Matrices. Dasic
Iterative Methods. Projection Methods. Krylov Subspace Methods — Part I. Krylov
Subspace Methods — Part II. Methods Ralated to the Normal Equations. Precon-
ditioned Iterations. Preconditioning Tachniques. Parallel Implementations. Paralled
Preconditioners. Domain Decompasition Methods.

Linear Fitting Problems

C.L. Lawson and R.J. Hanson (1974). Solving Least Squares Problems,
Prentice-Hall, Englewood Cliffs, NJ. Reprinted with a detailed “new
developments” appendix in 1996 by SIAM Publications, Philadelphia,
PA.

Introduction. Analysis of the Lesst Squares Problem. Orthogonal Decomposition by
Certain Elementary Transformations. Orthogonal Decompasition by Singular Value
Decomposition. Parturbation Theorems for Singuiar Values Bounds for the Con-
dition Number of a Trisngular Matrix. The Pscudcinverse. Perturbation Bounds
for the Pseudoinverse. Perturbation Bounds for the Solution of Problem LS. Nu-
merical Computations Using Elementary Orthogonal Tranefarmations. Computing
the Salution for the Overdetermined or Exactly Determined Full Rank Problem.
Computation of the Covariance Matrix of the Solution Parametecs. Computing the
Solution for the Underdetermined Full Rank Problem Computing the Solntion for
Problem LS with Poasibly Deficiant Paeudorank. Anslysis of Computing Ervors for
Househokder Transformations. Analysis of Computing Errors for the Problem LS.
Analyyis of Computing Errors for the Problem LS Using Mixei Precision Arithmetic.
Computation of the Singular Valus Decomposition and the Solution of Problem
LS. Gther Methods for Losst Squares Problems. Linear Lesst Squares with Linear
Equality Constraisis Using a Basis of the Null Spare. Linear Least Squares with
Linsar Equality Constraints by Direct Elimination. Linesar Least Squares with Lio-
ear Equality Constraints by Waighting. Linear least Squares with Linear Inequality
Constraints. Modifying & QR Decomposition to Add or Renove Column Vectors.
Practical Apalysis of Least Squarss Problems, Exampiles of Some Methods of Ana-
lysing s Losat Squares Problem. Modilying & QR Decompasition to Add or Remove
Row Vectors with Application to Sequentinl Processing of Problems Having s Large
or Banded Coeffickeat Matrie

REFERENCES ¥xiii

R.W. Farebrother (1987). Linear Least Sguares Computations, Marcel
Dekker, New York.

The Gauss and Gause—Jordan Methods. Matrix Analysis of Gauss’s Method: The
Choleaky ard Doolittls Decompositions. The Linear Algebraic Model: The Method
of Averages and the Method of Least Squares. The Cauchy-Biemayms, Laplace,
and Schmidt Procedures. Householder Procedures. Givens Procedures. Updating
the QU Decomposition. Pseudorandom Numbers. The Standard Linear Model.
Condition Numbers. Instrumental Veriable Eqtimators. Generalized Least Squares
Estimation. Iterative Solntions of Linear and Nonlinear Lesat Squares Problema.
Canonical Expressions for the Least Squares Estimators end Test Statistics. Tra-
ditional Expressions for the Least Squares Updating Formulas and test Statistica.
Least Squares Egtimation Subject to Linsar Constrainta.

S. Van Huffel and J. Vandewalle {1991). The Total Least Squares Problem.:
Computational Aspects and Analysis, SIAM Publications, Philadelphia,
PA.

Introduction. Basic Principles of the Total Least Squares Problem. Extensions of the
Basic Total Lesst Squares Problem. Direct Speed Improvement of the Total Least
Squares Computations. Iterative Speed Improvement for Solving Slowly Verying
Total Least Squares Problems. Algebraic Connections Between Total Least Sqnares
and Least Squares Problemns. Sensitivity Analysis of Total Least Squares and Laast
Squeres Problems in the Presence of Errors in All Data. Statistical Properties of the
Total Least Squares Problem. Algebraic Connections Between Total Least Squares
Estimation and Classical Linear Regression in Multicollinearity Problems. Conclu-
sions,

A. Bjbrek (1996). Numerical Methods for Least Squares Problems, SIAM
Publications, Philadelphia, PA.

Mathemetical and Statistical Properties of Least Squares Solutions. Bagic Numerical
Methods. Modified Lesst Squares Problems. Generalizad Least Squares Problems.
Constrained Least Squares Problems. Direct Methods for Sparse Lesst Squares Prob-

lems. [terative Methods for Least Squares Problems. Least Squares with Special
Bases. Nonlinear Lesast Squares Problems.

Eigenvalue Problems

B.N. Pariett (1980). The Symmetric Figenvalue Problem, Prentice-Hall,
Englewood Cliffs, NJ.
Basic Facts about Self-Adjoint Matrices. Taaks, Obstacles, and Akle. Counting
Eigenvalues. Simple Vector Iterations. Defistion. Useful Orthogonal Matrices.
Tridiagonal Form. The QL and QR Algorithms. Jacobi Methods. Eigenvalue
Bounds. Approximstion from a Subspace. Krylov Subspaces. Lanczos Algorithma.
Subspace Iteration. The General Lineer Eigenvalne Problem.

J. Cullum and R.A. Willoughby (1985a). Lanczos Algorithms for Large
Symmetric Eigenvalue Computations, Vol. I Theory, Birkhaiiser, Boston.
Preliminaries: NotﬂmmdDdﬁnnwns. Real Symmetric Problems. Lancsos Pro-

Defective Complex Symmetric Matricea. Block Lancsoa Procedures, Real Symmetric
Matrices.

xxiv REFERENCES

J. Cullum and R.A. Willoughby (1985b). Lanczos Algorithms for Large
Symmetric Eigenvalue Computations, Vol. II Programs, Birkhaiiser,
Boston.

Lanczos Procedures. Real Symmetric Matricen. Hermitian Matrices. Factored In-
verses of Real Symmetric Matrices. Real Symmetric Generalized Problems. Real
Rectangular Problemms. Nondefective Complex Symmetric Matricea. Real Symmet-
ric Matrices, Block Lanczos Code. Factored Inverses, Real Symmetric Matrices,
Block Lanczos Code.

Y. Saad (1992). Numerical Methods for Large Eigenvalue Problems: Theory
and Algorithms, John Wiley and Sons, New York.

Background in Matrix Theory and Linesr Algebra. Perturbation Theory and Er-
ror Analysis. The Tools of Spectral Approximation. Subspace Iteration. Krylov
Snbspace Methods. Acceleration Techniques and Hybrid Methods. Precondition-
ing Techniques, Non-Standard Eigenvalue Problems. Origins of Matrix Eigenvalue
Problems.

F. Chatelin (1993). Figenvalues of Matrices, John Wiley and Sons, New
York.
Supplements from Linear Algebra. Elements of Spectral Theory. Why Compute

Eigenvalues. Error Analysis. Foundations of Methoda for Computing Eigenvalues.
Numerical Methods for Large Mairices. Chebyshev's Iterative Methoda.

High Performance

W. Schénauer (1987). Scientific Computing on Vector Computers, North
Holland, Amsterdam.

Intreduction. The First Commercially Significant Vector Computer. The Arithmetic
Performance of the First Commercially Significant Vector Computer. Hockney’s n1/3
and Timing Formulae. Fortran and Autovectorization. Behavior of Programa. Some
Basic Algorithms, Recurrences. Matrix Operations. Systems of Linear Equations
with Full Matrices. Tridiagonal Linear Systems. The Iterative Solution of Linear
Equations. Special Applications. The Fujitsu VPa and Other Japanese Vector Com-
puters. The Cray-2. The IBM VF and Other Vector Processors. The Convex C1.

R.W. Hockmey and C.R. Jesshope (1988). Parallel Computers 2, Adam
Hilger, Bristol and Philadelphia.

Introduction. Pipelined Computers. Processor Arrays. Parallel Languages. Parallel
Algorithms. Future Developments.

J.J. Modi (1988). Parallel Algorithms and Matriz Computation, Oxford Uni-
versity Press, Oxford.

General Principles of Parailel Computing. Paraflel Techniques and Algorithms. Par-
alldl Sorting Algorithma. Solution of a System of Lizear Algebraic Equations. The
Symmetric Eigenvalue Problem: Jacobi's Method. QR Factorization. Singuiar Value
Decomposition and Related Problema.

SELECTED REFERENCES xxv

J. Ortega (1988). Introduction to Parallel and Vector Solution of Linear
Systems, Plenum Press, New York.

Introduction. Direct Methods for Linear Equations. Iterative Methods for Linear
Equationa.

J. Dongarra, I. Duff, D. Sorensen, and H. van der Vorst (1990). Seolving

Linear Systems on Vector and Shared Memory Computers, SIAM Pub-
lications, Philadelphia, PA.
Vector and Parallel Procemsing. Overview of Current High-Performance Comput-
ers. Implementation Detaile and Overhead. Performance Analyais, Modeling, and
Measurements. Building Blocksin Linesr Algebra. Direct Solution of Sparse Linear
Systems. Iterative Solution of Sparse Linear Systems.

Y. Robert {1890). The Impact of Vector and Parallel Architectures on the
Gaussian Elimination Algorithm, Halsted Press, New York.
Introduction. Vector and Parallel Architectures. Vector Multiprocessor Computing.

Hypercube Computing, Systolic Computing. Task Graph Scheduling. Analysis of
Distribnted Algorithms. Design Methodoiogies.

G.H. Golub and J.M. Ortega (1993). Scientific Computing: An Introduc-
tion with Parallel Computing, Academic Press, Boston.
The World of Scientific Computing. Linear Algebra. Parallel and Vector Computing.
Polyoomisl Approsimation. Continuous Problems Solved Discretely. Direct Solu-

tion of Linear Equations. Parallel Direct Methods, Iterative Methods. Conjugate
Gradient-Type Methods,

Edited Volumes

D.J. Rose and R. A. Willoughby, eds. {1972). Sparse Matrices and Their
Applications, Plenum Press, New York, 1972

J.R. Bunch and D.J. Rose, eds. (1976). Sparse Matriz Computations,
Academic Press, New York.

LS. Duff and G.W. Stewart, eds. (1979). Sparse Mairiz Proceedings, 1978,
SIAM Publications, Philadelphia, PA.

LS. Duff, ed. {1981). Sparse Mairices and Their Uses, Academic Press,
New York.

A. Bjorck, R.J. Plemmons, and H. Schneider, eds. (1981). Large-Scale
Matriz Problems, North-Hollend, New York.

G. Rodrigue, ed. ({1982). Parcllel Computation, Academic Press, New
York.

xcvi REFERENCES

B. Kagstrom and A. Ruhe, eds. (1983). Mairiz Pencils, Proc. Pite Havs-
bad, 1982, Lecture Notes in Mathematics 973, Springer-Verlag, New
York and Berlin.

J. Cuilum and R.A. Willoughby, eds. (1986). Large Scale Eigenvalue Prob-
lems, North-Holland, Amsterdam.

A. Wouk, ed. (1986). New Computing Environments: Parallel, Vector, and
Systalic, STAM Publications, Philadelphia, PA.

M.T. Heath, ed. (1986). Proceedings of First SIAM Conference on Hyper-
cube Multiprocessors, SIAM Publications, Philadelphia, PA.

M.T. Heath, ed. (1987). Hypercube Multiprocessors, SIAM Publications,
Philadelphia, PA.

G. Fox, ed. (1988). The Third Conference on Hypercube Concurrent Com-
puters and Applications, Vol. IT - Applications, ACM Press, New York.

M.H. Schultz, ed. (1988). Numerical Algorithms for Modern Parallel Com-
puter Architectures, IMA Volumes in Mathematics and Its Applications,
Number 13, Springer-Verlag, Berlin.

E.F. Deprettere, ed. (1988). SVD and Signal Processing. Elsevier, Ams-
terdam.

B.N. Datta, C.R. Johnscn. M.A. Kaashoek, R. Plemmons, and E.D. Son-
tag, eds. (1988), Linear Algebra in Signals, Systems, and Control, SIAM
Publications, Philadelphia, PA.

J. Dongarra, 1. Duff, P. Gaffney, and S. McKee, eds. (1989), Vector and
Pargllel Computing, Ellis Horwood, Chichester, England.

O. Axelsson, ed. (1989). “Preconditioned Conjugate Gradient Methods,”
BIT 29:4.

K. Gallivan, M. Heath, E. Ng, J. Ortega, B. Peyton, R. Plemmons, C.
Romine, A. Sameh, and B. Voigt (1990), Parallel Algerithms for Matriz
Computations, SIAM Publications, Philadelphia, PA.

G.H. Golub and P. Van Dooren, eds. (1991). Numerical Linear Alge-
bra, Digital Signal Processing, and Parallel Algorithms. Springer-Verlag,
Berlin.

R. Vaccaro, ed. (1991). SVD and Signal Processing II: Algorithms, Analy-
sis, and Applications. Elsevier, Amsterdam.

REFERENCES xxvid

R. Beauwens and P. de Groen, eds. (1992). [terative Methods in Linear
Algebra, Elsevier (North-Holland}, Amsterdam.

R.J. Plemmons and C.D. Meyer, eds. (1993). Linear Algebrs, Markov
Chains, and Queting Models, Springer-Verlag, New York.

M.S. Mconen, G.H. Golub, and B.L.R. de Moor, eds. (1993). Linear
Algebra for Large Scale and Real- Time Applications, Kluwer, Dordrecht,
The Netherlands.

J.D. Brown, M.T". Chu, D.C. Ellison, and R.J. Plemmons, eds. (1994). Pro-
ceedings of the Cornelius Lanczos International Centenary Conference,
SIAM Publications, Philadelphia, PA.

R.V. Patel, A.J. Laub, and P.M. Van Dooren, eds. (1994). Numerical
Linear Algebra Techniques for Systems and Control, IEEE Press, Pis-
cataway, New Jersey.

J. Lewis, ed. (1994). Proceedings of the Fifth SIAM Conference on Applied
Linear Algebra, SIAM Publications, Philadeiphia, PA.

A. Bojanczyk and G. Cybenko, eds. (1995). Linear Algebra for Signal
Processing, IMA Volumes in Mathematics and Its Applications, Springer-
Verlag, New York.

M. Moonen and B. De Moor, eds. (1995). SVD and Signal Processing HI:
Algorithms, Analysis, and Applications. Elsevier, Amsterdam.

Matrix Computations

Chapter 1

Matrix Multiplication
Problems

§1.1 Basic Algorithms and Notation

§1.2 Exploiting Structure

§1.3 Block Matrices and Algorithms

§1.4 Vectorization and Re-Use Issues

The proper study of matrix computations begins with the study of the
matrix-matrix multiplication problem. Although this problem is simple
mathematically it is very rich from the computational point of view. We
begin in §1.1 by looking at the several ways that the matrix multiplica-
tion problem can be organized. The “language™ of partitioned matrices
Is established and used to characterize several linear algebraic “levels” of
computation.

If a matrix bhas structure, then it is usually possible to exploit it. For
example, a symmetric matrix can be stored in half the space as a general
matrix. A matrix-vector product that involves a matrix with many zero
entries may require much less time to execute than a full matrix times a
vector. These matters are discussed in §1.2.

In §1.3 block matrix notation is established. A block matrix is a matrix
with matrix entries. This concept is very important from the standpoint of
both theory and practice. On the theoretical side, block matrix notation
allows us to prove important matrix factorizations very succinctly. These
factorizations are the cornerstone of numerical linear algebra. From the
computational point of view, block algorithms are important because they

1

2 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

are rich in matrix multiplication, the operation of choice for many new high
performance computer architectures.

These new architectures require the algorithm designer to pay as much
attention to memory traffic as to the actual amount of arithmetic. This
aspect of scientific computation is illustrated in §1.4 where the critical is-
sues of vector pipeline computing are discussed: stride, vector length, the
number of vector loads and stores, and the level of vector re-use.

Before You Begin

It is important to be familiar with the MATLAB language. See the
texts by Pratap(1995} and Van Loan (1996). A richer introduction to high
performance matrix computations is given in Dongarra, Duff, Sorensen, and
Duff {1991). This chapter’s LAPACK connections include

LAPACK: Some General Operations

JSCAL | 2 +— o2 Vector scale
Dot [pe—zTy Dot produet
_AXPY | y—ax+y Saxpy

_GEMV | y— adzr + Py Matrix-vector multiplication
_CER A— A+anyT Rank-1 update
_GEMM | C — aAB + 8C | Matrix muitiplication

LAPACK: Some Symmetric Operations
_STMY Yy~ aAzx + Jy Matrix-vector multiplication
SPMY | y — adz+ By Matrix-vector multiplication (Packed)
.5TR A—azzT + A Rank-1 update
S22 | Aoyt +ayzT + A Rank-2 update
STRE | C — adAT +5C Rank-k update
5T | C — aABT + aBAT +8C Rank-2k update
-SYMM | C = aAB + fC or (aBA+ BC) | Symmetric/General Product

LAPACK: Some Band/Triangular Operations

_GENY | y — adx + Gy General Band

-SBMV | vy — aAz + By Symmetric Band

.TBMV | 2 — aAdx Triangular

TPMY | £ — adx Triangular Packsd

-TRMM | B+ aAB (or 8A) | Triangular/General Product

1.1 Basic Algorithms and Notation

Matrix computations are built upon a hierarchy of linear algebraic opera-
tions. Dot products invelve the scalar operations of addition and multipli-
cation. Matrix-vector multiplication is made up of dot products. Matrix-
matrix multiplication amounts to a collection of matrix-vector products.
All of these operations can be described in algorithmic form or in the lan-
guage of linear algebra. Qur primary objective in this section is to show

1.1. BaASIC ALGORITHMS AND NOTATION 3

how these two styles of expression complement each another. Along the way
we pick up notation and acquaint the reader with the kind of thinking that
underpins the matrix computation area. The discussion revolves around
the matrix multiplication problem, a computation that can be organized in
several ways.

1.1.1 Matrix Notation

Let R denote the set of real numbers. We denote the vector space of all
m-by-n real matrices by R™*"™:

a1 - O1p
AeR™" &= A=(aj)=| : : a; €R.
Tmy - Omn

If a capital letter is used to denote a matrix (e.g. A, B, A), then the
corresponding lower case letter with subscript ij refers to the (i,7) entry
{e.g., ai; , byj, &i5). As appropriate, we also use the notation [A |i; and
Alt, j) to designate the matrix elements.

1.1.2 Matrix Operations
Basic matrix operations include transposition (R™*" — R**™),

C=AT = Cij = 04,

addition (R™™ x R™*" _ R™*"),

C=A+B = Cij = 645 + byg,

scalar-matriz multiplicaiion, (B x R™*" — B™*"),
C=ad = G =ady,
and matriz-matriz multiplication (R™*P x RP*" — R™*"),

C=AB = Cij = 28.}5;,1.
k)

These are the building blocks of matrix computations.

4 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

1.1.3 Vector Notation
Let "™ denote the vector space of real n-vectors:
I
reR? = z=1{ : neR.
Tn
We refer to z; as the ith component of 2. Depending upon context, the
alternative notations [z]; and z(f) are sometimes used.
Notice that we are identifying IR® with R**! and so the members of
R" are column vectors. On the other hand, the elements of R!*" are row

vectors:
re R &= 1=(1y,...,2,).

If z is a column vector, then y = z7 is a row vector.

1.1.4 Vector Operations

Assumea € R,z € R", and y € K", Basic vector operations include scalar-
vector multiplication,

z=ax = z = &%,

vector addition,

z=z+y = Z = i+ Vi

the dot product (or inner product),

n
c=2Ty = c=) =my,
feal

and vector multiply (or the Hadamard product)

zZ=x.%y = 2 = I

Another very important operation which we write in “update form” is the

sazpy-
y=ar+y = Y=o+ Y

Here, the symbol “=" is being used to denote assignment, not mathematical
equality. The vector y is being updated. The name “saxpy™ is used in
LAPACK, a software package that implements many of the algorithms in
this book. One can think of “saxpy” as a mnemonic for “scalar g z plus

"

u.

1.1. BASIC ALGORITHMS AND NOTATION [

1.1.5 The Computation of Dot Products and Saxpys

We have chosen to express algorithms in a stylized version of the MATLAB
language. MATLAB is a powerful interactive system that is ideal for matrix
cormputation work. We gradually introduce our stylized MATLAB notation
in this chapter beginning with an algorithm for computing dot products.

Algorithm 1.1.1 (Dot Product) If z,y € R", then this algorithm com-
putes their dot product ¢ = zTy.
c=10
fori=1lmn
c = ¢+ z{i)y(i)
end

The dot product of two n~vectors involves n multiplications and n additions.
It is an “O(n)” operation, meaning that the amount of work is linear in
the dimension. The saxpy computation i3 also an ((n) operation, but it
returns a vector instead of a scalar.

Algorithm 1.1.2 (Saxpy} If z,y € R" and a € R, then this algorithm
averwrites y with ax + y.

for i=1mn
¥(3) = az(i) + v(3)
end

It must be stressed that the algorithms in this book are encapsulations of
eritical computational ideas amd not “production codes.”

1.1.6 Matrix-Vector Muitiplication and the Gaxpy
Suppase A € IR™*" and that we wish to compute the update
y=Az+y

where z € R” and y € R™ are given. This generalized saxpy operation is
referred to as a gaTpy. A standard way that this computation proceeds is
to update the components one at a time:

n
Y= Ea.-j:c,- + 4 i=1m.
=1

This gives the foliowing algorithm.

Algorithm 1.1.3 (Gaxpy: Row Version) If 4 ¢ R™*", z ¢ R", and
y € IR™, then this algorithm overwrites y with Ax + y.

6 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

fori=1m
for j = 1in
y(i) = A(3, 5)=(7) + v(3)
end
end

An alternative algorithm results if we regard Az as a linear combination of
A's columns, e.g.,

1 2 7 1.7+2-8 1 2 23
3 4 [8]= 3-74+4-8 | =73 |+8| 4 |=|253].
5 6 5-7+6-8 5 6 83

Algorithm 1,1.4 (Gaxpy: Column Version} If A ¢ R™", zreR",
and y € IR™, then this algorithm overwrites y with Az + y.

for j = 1in
fori=1m
y(1) = A(3,5)z(J) + y(3)
end
end

Note that the inner loop in either gaxpy algorithm carries out a saxpy
operation. The column version was derived by rethinking what matrix-
vector multiplication “means” at the vector level, but it could also have
been obtained simply by interchanging the order of the loops in the row
version. In matrix computations, it is important to relate loop interchanges
to the underlying linear algebra.

1.1.7 Partitioning a Matrix into Rows and Columns

Algorithms 1.1.3 and 1.1.4 access the data in A by row and by column
respectively. To highlight these orientations more clearly we introduce the
language of partitioned matrices.

From the row point of view, a matrix is a stack of row vectors:

AeR™" = A= e e R". (1.1.1}

T
Tm

This is called a row partition of A. Thus, if we row partition

12
3 4],
5 6

1.1. BASIC ALGORITHMS AND NOTATION 7

then we are choosing to think of A as a collection of rows with

ri=[1 2], rI=(3 4], and =[5 6].
With the row partitioning (1.1.1) Algorithm 1.1.3 can be expressed as fol-
lows:

fori=1m
vi =1z +y(i)
end

Alternatively, a matrix is a collection of column vectors:
AeR™" <= A=[c,...,cn}, c€R™. (1.1.2)

We refer to this as a column partition of A. In the 3-by-2 example above, we
thus would set ¢; and ¢ to be the first and second columns of 4 respectively:

1 2
=1\ 3 ea=14]|.
5 6
With (1.1.2) we see that Algorithm 1.1.4 is a saxpy procedure that accesses

A by columns:

for j=1mn
¥ =TI;C + ¥
end

In this context appreciate y as a running vector sum that undergoes re-
peated saxpy updates.

1.1.8 The Colon Notation

A handy way to speclfy a column or row of a matrix is with the colon
notation. If 4 € R™*", then A(k,:) designates the kth row, ie.,

Alk,:) = [akty. .. Ckn] -
The kth column is specified by
G1k
Al k) =
Gmk
With these conventions we can rewtite Algorithms 1.1.3 and 1.1.4 as

fori=1m

y(i) = A,)z +y(4)
end

8 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

and

for j=1mn
y=z(f)AG) +y
end

respectively. With the colon notation we are able to suppress iteration
detnils. This frees us to think at the vector level and focus on larger com-
putational issues.

1.1.9 The Outer Product Update

As a preliminary application of the colon notation, we use it to understand
the outer product update

A=A+zyT, AeR™" xcR™ yecR".

The outer product operation zy” “looks funny” but is perfectly legal, e.g.,

1 4 5
[2}[4 5]=[3 10}.
3 12 15

This is because Ty7 is the product of two “skinny” matrices and the sumber
of columns in the left matrix x equals the number of rows in the right matrix
v?. The entries in the outer product update are prescribed by

fori=Llm
for j=1:n
ai; = @y + Tiy;
end
end

The mission of the j loop is to add a multiple of 47 to the i-th row of 4,
i.e.,

for i = 1:m
AQ,:) = AG,) + z(3)yT
end

On the other hand, if we make the i-loop the inner loop, then its task is to
add a multiple of z to the jth column of A:

for j=1mn
AGL) = AG) +y()=
end

Note that both outer product algorithms amount to a set of saxpy updates.

1.1. BASIC ALGORITHMS AND NOTATION 9

1.1.10 Matrix-Matrix Multiplication

Consider the 2-by-2 matrix-matrix multiplication AB. In the dot product
formulation each entry is computed as a dot product:

1 2 5 6] |1-5+2.-7 1-64+2-8
3 4 7 8] [3-5+4-7 3-6+4-8]"

In the saxpy version each column in the product is regarded as a linear
combination of columns of A:

30 e =Tl] E] o[][2]]-

Finally, in the outer product version, the result is regarded as the sum of
outer products:

3200 - Lo) o

Although equivalent mathematically, it turns out that these versions of
matrix multiplication can have very different levels of performance because
of their memory traffic properties. This matter is pursued in §1.4. For now,
it is worth detailing the above three approaches to matrix multiplication
because it gives us a chance to review notation and to practice thinking at
different linear algebraic levels.

1.1.11 Scalar-Level Specifications
To fix the discussion we focus on the following matrix multiplication update:

C=AB+C AeR"™ BeR™" CeR™"
The starting point is the familiar triply-nested loop algorithm:
Algorithm 1.1.5 (Matrix Multiplication: ijk Variant) If A ¢ R™*?,

B € RP*", and € € IR™*" are given, then this algorithm overwrites C with
AB+C.

fori=1m
forj=11n
fork=1p
C(i,7) = AG, F)Bk, §) + C(i, 5)
end
end

end

10 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

This is the “ijk variant” because we identify the rows of C (and A} with i,
the columna of C (and B) with j, and the summation index with k.

We consider the update C' = AB + C instead of just C = AB for two
reasons. We do not have to bother with C' = 0 initializations and updates
of the form C = AB + C arise more frequently in practice.

The three loops in the matrix multiplication update can be arbitrarily
ordered giving 3! = 6 varations. Thus,

for j =1:n
for k=1p
for i =1:m
C(i,7) = A(i, k)B(k, j} + C(i, 5)
end
end
end

is the jki variant. Each of the six possibilities (ijk, 7ik, ikj, jki, kij,
kji} features an inner loop operation (dot product or saxpy) and has its
own pattern of data flow. For example, in the ijk variant, the inner loop
aversees a dot product that requires access to a row of A and a column of
B. The jki variant involves a saxpy that requires access to a column of C
and a column of 4. These attributes are summarized in Table 1.1.1 along
with an interpretation of what is going on when the middle and inner loop
are congidered together. Each variant involves the same amount of floating

Loop Inner Middle Inner Loop

Order Loop Loop Data Access
ijk dot vector X matrix A by row, B by column
jik dot matrix x vector A by row, B by column
ikj Saxpy TOW EBXpYy B by row, C by row
ki saxpy column gaxpy A by column, C by column
kij saxpy row outer product B by row, C by row
kfi saxpy | column ocuter product | 4 by column, € by column

TABLE 1.1.1. Matriz Multiplication: Loop Orderings and Properties

point arithmetic, but accesses the A, B, and C data differently.

1.1.12 A Dot Product Formulation

The usual matrix multiplication procedure regards AB as an array of dot
products to be computed one st a time in left-to-right, top-to-bottom order.

1.1. BASIC ALGORITHMS AND NOTATION 11

This is the idea behind Algorithm 1.1.5. Using the colon notation we can
highlight this dot-product formulation:

Algorithm 1.1.6 (Matrix Multiplication: Dot Product Version)
If Ac B™*P, B ¢ R?*", and C € R™*" are given, then this algorithm
overwrites C with AB +C.

fori=1:m

for j=1n
C(i,5) = A(s,))B(:,7) + C(3, J)
end
end
In the language of partitioned matrices, if
af
A= a; € R

an

and
B=[by,...,0] b, e R
then Algorithm 1.1.6 has this interpretation:
for i = 1:m
for j =Lin
ey =0l by + ¢35
end
end

Note that the “missicn” of the j-loop is to compute the ith row of the
update. To emphasize this we could write
for i=1:m.
o =al B+
end

where
f
C=) :
n
is a row partitioning of C. To say the same thing with the colon notation
we write

fori=1m

C(i,:) = A(i,)B + C,)

end _
Either way we see that the inper two loops of the ijk variant define a
row-oriented gaxpy operation.

12 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

1.1.13 A Saxpy Formulation

Suppose A and C are column-partitioned as follows
A = [ag,...,6p] a; e R™
C = [e1...itn] c; € R™.
By comparing jth columns in C = AB + C we see that

P
¢y = Zbk,’&g + ¢4, j=1mn.
k=1

These vector sums can be put together with a sequence of saxpy updates.
Algorithm 1.1.7 {Matrix Multiplication: Saxpy Version)} If the ma-

trices A € R™"*?, B € R?*", and € € R™*" are given, then this algorithm
overwrites C with AB + C.

for j =1mn
for k= 1:p
C(:,7) = A, k) B(k, 5) + C(:,)
end
end

Note that the k-loop oversees a gaxpy operation:
for j = 1mn

C(:,4) = AB(:,j) + C(:, J)
end

1.1.14 An Outer Product Formulation
Consider the kij variant of Algorithm 1.1.5:

fork=1p
for j=1Lln
fori=1lm
CG.j) = Ali, KIB(k.j) + CG,)
end
end
end

The inner two loops oversee the outer product update

C=ahl +C

1.1. BASIC ALGORITHMS AND NOTATION 13

where
o
A=lay,...,a;] and B=) : (1.1.3)
bT
p
with ax € IR™ and by € R®. We therefore obtain

Algorithm 1.1.8 (Matrix Multiplication: Outer Product Version)
If Ac R™*P, B e RP*™, and C' € R™*" are given, then this algorithm
overwrites C with AB 4+ C.

for k=1:p
C = A(:,k)B(k,:)+C
end

This implementation revolves around the fact that AB is the sum of p cuter
products.

1.1.15 The Notion of “Level”

The dot product and saxpy operations are examples of “level-1” operations.
Level-1 operations involve an amount of data and an amount of arithmetic
that is linear in the dimension of the operation. An m-by-n outer product
update or gaxpy operation involves a quadratic amount of data (O{mn))
and a Quadratic amount of work (O(mn)). They are examples of “level-2”
operations.

The matrix update C = AB + C is a “level-3" operation. Level-3
operations involve a quadratic amount of data and a cubic amount of work.
If A, B, and C are n-by-n matrices, then C = AB + C involves O(n?)
matrix entries and O(n?) arithmetic operations.

The design of matrix algorithms that are rich in high-level linear al-
gebra operations is a recurring theme in the book. For example, 8 high
performance linear equation sclver may require a level-3 organization of
Gaussian elimination. This requires some algorithmic rethinking because
that method is usually specified in level-1 terms, e.g., “multiply row 1 by a
scalar and add the result to row 2.”

1.1.16 A Note on Matrix Equations

In striving to understand matrix multiplication via outer products, we es-
sentially established the matrix equation

p
AB =Y at]
k=1

where the a; and b are defined by the partitionings in (1.1.3).

14 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

Numerous matrix equations are developed in subsequent chapters. Some-
times they are established algorithmically like the above cuter product ex-
pansion and other times they are proved at the ij-component level. As
an example of the latter, we prove an important result that characterizes
transposes of products.

Theorem 1.1.1 If A € R™? and B € RP*", then (AB)T = BT AT.
Proof, If C = (AB)7T, then

e = [(AB)T)yj = [AB)j = Zag‘kbh’ .
k=)

On the other hand, if D = BT AT, then

diy =[BT ATy = Z[BTL:: [A) = Zbk.a,k

k=1 k=l
Since ¢ = di; for all 4 and j, it follows that C = D. O

Scalar-level proofs such as this one are usually not very insightful. However,
they are sometimes the only way to proceed.

1.1.17 Complex Matrices

From time to time computations that involve complex matrices are dis-
cussed. The vector space of m-by-n complex matrices iz designated by
€™*". The scaling, addition, and multiplication of complex matrices corre-
sponds exactly to the real case. However, transposition becomes conjugate
transposition:
C= AH e Cij = ﬁji .

The vector space of complex n-vectors is designated by €*. The dot product
of complex n-vectors x and y is prescribed by

kel
s=xy=> "%u.
imx}

Finally, if A = B +iC € C™*", then we designate the real and imaginary
parts of A by Re(A) = B and Im(A) = C respectively.

Problems

P1.1.1 Suppose A € F**™and z € B" are given. Give a saxpy algorithm for computing
the first columin of M = (A — 1) --- (A — z¢I).

1.1. BAaASIC ALGORITHMS AND NOTATION 15

P1.1.3 In the conventional 2-by-2 matrix multiplication ' = AB, there are eight
multiplications: a11b11, s11813, azubz, 02 bia, a12b3:1, tiabrz, azzby: and azzbza. Make
a table that indicates the order that thess muitiplicationa are performed for the i3k, jik,
kij, iki, jki, and kji matrix muitiply algorithms.

P1.1.3 Give an algorithm for computing C = (zyT)* where = and y are n-vectors.
P1.1.4 Specify an algorithm for computing (XY T)* where X, Y € R**3,

P1.1.5 Formulate an outer product algorithm for the update € = ABT + C where
A€ R™*T B e RP%", and C € R,

P1.1.8 Supposa we have real n-by-n matrices €', D, E, and F. Show how to compute
real n-by-n matrices A and B with just three real n-by-n matrix multiplications so that
{A +iB) = (C+iD)}(E +iF). Hint: Compute W = (C + D)(E — F).

Notes and References for Sec. 1.1

It must be stressed that tha development of quality software from any of our “semi-
formal” algorithmic presentations is a long and arduona task. Even the impiementation
of the level-1,2, and 3 BLAS require care:

C.L. Lawson, R.J. Hanson, , D.R. Kincaid, and F.T. Krogh (1979). “Basic Linear
Algebra Subprograms for FORTRAN Usage,” ACM Trana. Math. Soft. 5, 303-323.

C.L. Lawnon, R.J. Henson, D.R. Kincaid, and F.T. Krogh {1979). “Algorithm 539,
Basic Linear Algebrs Subprograma for FORTRAN Usage,” ACM Trans. Math. Soft.
5, 324-325.

J.J. Dongarrs, J. Du Cros, S. Hammarling, and R.J. Hanson (1988). “An Extended Set
of Fortran Basic Linear Algebra Subprograms,” ACM Truns. Math. Soft. 1§, 1-1T.

J.J. Dongarma, J. Du Crox, 5. Hammarling, and R.J. Hanson (1888). “Algorithm 656 An
Extended Set of Fortran Basic Linear Algebra Subprograms: Model Implementation
and Test Programs,” ACM Trans. Math. Soft. 14, 18-32.

J.J. Dongarea, J. Du Cros, LS. Duff, and S.). Hammarling (1990). “A Set of Leval 3
Basic Linear Algebrs Subprograms,” ACM Trans. Math. Seft. 16, 1-17.

1.J. Dongurrs, J. Du Croz, 1.S. Duff, and S.J. Hammarling (1990}, "Alporithmn 679. A
Set of Level 3 Bamic Linear Algebra Subprograms: Model Implementation and Test
Programs,” ACM Trans, Math. Sgft. 16, 18-28.

Other BLAS references include

B. Kigstrém, P. Ling, and C. Yan Loan (1991). “High-Performance Level-3 BLAS:
Sample Routines for Double Precision Real Data,” in High Performance Computing
I, M. Dursnd and F. El Dabaghi (eds), North-Holland, 269-281.

B. Kégstrém, P. Ling, and C. Van Loan {1995). “GEMM-Bassd Level-3 BLAS: High-
Performance Model Implementations and Performance Evaluation Benchmerk,” in
Paraliel Programming and Applications, P. Fritzon and L. Finmo {(eds), ISO Press,
184-188.

For an appreciation of the subtleties associated with software development we recommmend

J.R. Rice (1981). Matriz Computations and Mathematical Software, Academic Prem,
New York.

and a browse through the LAPACK manual.

16 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

1.2 Exploiting Structure

The efficiency of a given matrix algorithm depends on many things. Most
obvious and what we treat in this section is the amount of required arith-
metic and storage. We continue to use matrix-vector and matrix-matrix
multiplication as a vehicle for introducing the key ideas. As examples of
exploitable structure we have chosen the properties of bandedness and sym-
metry. Band matrices have many zero entries and so it is no surprise that
band matrix manipulation allows for many arithmetic and storage short-
cuts. Arithmetic complexity and data structures are discussed in this con-
text.

Symmetric matrices provide another set of examples that can be used to
illustrate structure exploitation. Symmetric linear systems and eigenvalue
problems have a very prominent role to play in matrix computations and
so it is important to be familiar with their manipulation.

1.2.1 Band Matrices and the x-0 Notation

We say that A € R™*" has lower bandwidth p if a;; = Q whenever i > j+p
and upper bandwidth q if j > i + q implies a;; = 0 . Here is an example of
an 8-by-5 matrix that has lower bandwidth 1 and upper bandwidth 2:

oD X X X X oo

O.QOOOOXX
COOO O X X X
oo X X X X
oo X X X X ©

b -

The x’s designates arbitrary nonzerc entries. This notation is handy to
indicate the zero-nonzero structure of a matrix and we use it extensively.
Band structures that occur frequently are tabulated in Table 1.2.1.

1.2.2 Diagonal Matrix Manipulation

Matrices with upper and lower bandwidth zero are diagonal If D ¢ R™*"
is diagonal, then

D = diag(d,,...,d;), g¢=min{m,n} <= di=dy

If D is diagonal and A is a matrix, then DA is a row scaling of A and AD
is & column acaling of A.

1.2. EXPLOITING STRUCTURE

17

Type Lower Upper
of Matrix Bandwidth | Bandwidth

diagonal 0 0
upper triangular 0 n—1
lower triangular m-1 1]
tridiagonal 1 1
upper bidiagonal 0 1
lower bidiagonal 1 a
upper Hessenberg 1 n—-1
lower Hessenberg m-—1 1

TABLE 1.2.1. Band Terminology for m-by-n Malrices

1.2.3 Triangular Matrix Multiplication

To introduce band matrix “thinking” we look at the matrix multiplication
problem C = AB when A and B are both n-by-n and upper triangular.
The 3-by-3 case ig illuminating:

a1tby anbiz + aiebee ayibyg + arobos +agzbn

c = 0 agabag ag2ba3 + @a3bas

0 a a33b33

It suggests that the product is upper triangular and that its upper trian-
gular entries are the result of abbreviated inner products. Indeed, since
@iibr; = 0 whenever k < ior j < k we see that

j
Gij = Zaikbkj
ki

and so we obtain:

Algorithm 1.2.1 (Triangular Matrix Muitiplication) If A, B € R**"
are upper triangular, then this algorithm computes € = AB.

C=0
fori=1.n
for j =in
for k=1
Cli,7) = A(i, k)B(k, j} + C(i, /)
end
end

end

18 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

To quantify the savings in this algorithm we need some tools for measuring
the amount of work.

1.2.4 Flops

Obviously, upper triangular matrix multiplication involves less arithmetic
than when the matrices are full. One way to quantify this is with the notion
of a flop. A flop! is a floating point operation. A dot product or saxpy
operation of length n involves 2n flops because there are n multiplications
and n adds in either of these vector operations.

The gaxpy y = Az + y where 4 € """ involves 2mn flops as does an
m-by-n outer product update of the form A = A + zyT.

The matrix multiply update C = AB + C where A € R™*?, B ¢ RP*",
and C € R™*™ involves 2mnyp flops.

Flop counts are usually obtained by summing the amount of arithmetic
associated with the most deeply nested statements in an algorithm. For
matrix-matrix multiplication, this is the statement,

C, 7) = A(i, k)B(k, §) + Cli, 5)

which involves two flops and is executed mnp times as a simple loop ac-
counting indicates. Hence the conclusion that general matrix multiplication
requires 2mnyp flops.

Now let us investigate the amount of work involved in Algorithm 1.2.1.
Note that ¢, (i < §) requires 2(j — i + 1) flops. Using the heuristics

Z":p ey ¢

and

p=1
we find that triangular matrix multiplication requires one-sixth the number
of flops as full matrix multiplication:

n n=i4l

Sya-in =3y say Mt a2

i=l i iml jml il i=l

‘We throw away the low order terms since their inclusion does not contribute
to what the flop count “says.” For example, an exact flop count of Algo-
rithm 1.2.1 reveals that precisely n3/3 + r? + 2n/3 flops are involved. For

11n the first edition of this book we defined a flop to be the amount of work associated
with an operation of the form ai; = ay; + aqearj, i-e., a foating point add, a floating
point multiply, and some subacripting. Thus, an “old flop™ involves two “aew flopa.” In
defining a flop to be a singie floating point operation we are opting for a more precise
measure of arithmetic complexity.

1.2. EXPLOITING STRUCTURE 19

large © (the typical situation of interest) we see that the exact Aop count
offers no insight beyond the n3/3 approximation.

Flop counting is a necessarily crude approach to the measuring of pro-
gram efficiency since it ignores subscripting, memory traffic, and the count-
less other overheads associated with program execution. We must not infer
too much from a comparison of flops counts. We cannot conclude, for ex-
ample, that triangular matrix multiplication is six times faster than square
matrix multiplication. Flop counting is just a “quick and dirty” accounting
method that captures only one of the several dimensions of the efficiency
issue.

1.2.5 The Colon Notation—Again

The dot product that the k-loop performs in Algorithm 1.2.1 can be suc-
cinctly stated if we extend the colon notation introduced in §1.1.8. Suppose
A e R™"and the integers p, ¢, and rsatisfy L <p<g<nand1 <r < m.
‘We then define

A1, 1:0) = [Brpy - -, By | € RI*@PHD
Likewise, f 1 <p<g<mand 1 <e¢<n,then
Gpe
Alpg,c)=| @ | e RIPHL
aqc
With this notation we can rewrite Algorithm 1.2.1 as
C(lin,Lin) =0
for s =1:n
for j=1in
C(i, 7} = A(s,1:7) B(iz4, 5) + C(3, 5)
end
and

‘We mention one additional feature of the colon notation. Negative in-
crements are allowed. Thus, if x and y are n-vectors, then s = z7y{n: —1:1)

is the summation n
T
i=1
1.2.6 Band Storage

Suppose 4 € H*"" has lower bandwidth p and upper bandwidth ¢ and
assume that p and g are much smaller than n. Such a matrix can be stored
in a (p+ ¢+ 1)-by-n array A.band with the convention that

a5 = Abandli-j+9+1,7) (1.2.1)

20 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

for all (i, j) that fall inside the band. Thus, if

gy @17 i3 0 0 @
871 a3 o3 ay 0 O
A = 1] 233 G333 O34 435 0

0 G G433 CGq4 Q45 O48
] 0 0 ags ass ass
0 0 0 0 ags Ges

then
0 0 a3 624 ass G
0 a G a a, a
A-bﬂ-ﬂd = 12 23 34 45 56
@11 G2 G33 @44 G55 66
421 433 G43 G54 Ges O

Here, the “0” entries are unused. With this data structure, our column-
oriented gaxpy algorithm transforms to the following:

Algorithm 1.2.2 (Band Gaxpy) Suppose A € R"™™ has lower band-
width p and upper bandwidth ¢ and is stored in the A.band format (1.2.1).
Ifz,y € B”, then this algorithm overwrites y with Az +y.

for j=1mn
Ytop = max(l, j — q)
Ubot = min(ﬂ'!j + P)
Gtop = max(l, g+ 2 ~ j)
Gpot = Gtop + Yoot ~ Ytop
4 W Yiop:Uoor) = 2(F)A.band(arop:apee, i) + Y(Ytop:Ubot)
en

Notice that by storing A by columnp in A.band, we obtain a saxpy, column
access procedure. Indeed, Algorithm 1.2.2 is obtained from Algorithm 1.1.4
by recognizing that each saxpy involves a vector with a amall nuraber of
nonzeros. Integer arithmetic is used to identify the location of these nonze-
ros. As a result of this careful zero/nonzero analysis, the algorithm involves
just 2n{p + g+ 1) flops with the assumption that p and g are much smaller
than n.

1.2.7 Symmetry
We say that A € R**™is symmetric if AT = A. Thus,

1 2 3
A= |2 435
3 5 6

1.2. EXPLOITING STRUCTURE ' 2

is symmetric. Storage requirements can be halved if we just store the lower
triangle of elements, e.g., Avec=[1 2 3 4 5 6 |. In general, with
this data structure we agree to store the a;; as follows:

ai; = Avee((j - ln -G - D/2+i) (i27) (1.22)

Let us look at the column-oriented gaxpy operation with the matrix A
represented in A.vec.

Algorithm 1.2.3 (Symmetric Storage Gaxpy) Suppose A € R**"is
symmetric and stored in the 4.vec style (1.2.2). If 2,y € R", then this
algorithm overwrites y with Az + 3.

for j =1:in
for i = 1:5 -1
y(i) = Avee((i = Dn —i(i = 1)/2 +))z(5) + v(3)
end
for i = :n
. ¥(3) = Awvec((5 — 1)n — 3(F ~ 1)/2 + 1)z(5) + ¥(4)
en
end

This algorithm requires the same 2n? flops that an ordinary gaxpy requires.
Notice that the halving of the storage requirement is purchased with some
awkward subscripting.

1.2.8 Store by Diagonal
Symmetric matrices can also be stored by diagonal. If

1 2 3
A=|245],
356

then in a store-by-diagonal scheme we represent A with the vector
Adiag={1 4 6 2 5 3].
In general, if i > j, then
Aarq = A.diag(i +nk —k(k -1)/2) {k > Q) {1.2.3)

Some notation simplifies the discussion of how to use this data structure in
a matrix-vector multiplication.

If A ¢ R™*", then let D{A, k) € R™*" designate the kth diagonal of A
a3 follows:

ai; j=i+k 1<ig<m, 1<j<n
[D(A.-“)]i.i:{ {}J f;therwise. ’

22 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

Thus,
1 2 3 0 0 3 0 2 0
A = 2 4 5|=[000|+]00 S5
31 5 6 0o 0 0 60
D(A2) DlAL)
1 0 0 000 0 0 0
+]{0 4 0{+12 0 0}+]0 0 O0}.
0 0 o6 0 5 0 3 00
D(4,0) D(A,-1) D(A-~2)

Returning to our store-by-diagonal data structure, we see that the nonzero
parts of D{A,0), D(A,1),..., D(A,n — 1) are sequentially stored in the
A.diag scheme (1.2.3). The gaxpy ¥ = Az + y can then be organized as
follows:

n-1
y = D(A0)z + Y (D(AK) + D4,k)z + y.
k=1

Working out the details we obtain the following algorithm.

Algorithm 1.2.4 (Store-By-Diagonal Gaxpy) Suppose A € R"" is
symmetric and stored in the A.diag style (1.2.3). If z,y € R", then this
algorithm overwrites y with Ax + y.

fori=1mn
y(i} = A.diag(i)z(3) + y(i)
end
fork=1n-1
t=nk—k(k—1)/2
{y = D(A,K)z +y}
fori=1mn-k
y(3) = Adiag(i + t)z(i + k) + (i)
end
{y=D{A,k)Tz + y}
fori=1n—k
y(i + k) = A.dieg(i + t)x(i) + y(i + k)
end
end

Note that the inner loops oversee vector multiplications:

y(1m — k) = A.diag(t + 1:£ +n — k). » (k + Ln) + y(L:n — k)
y(k + 1in) = Adiag(t + 12 + n— k).« z(1in — k) + y(k + 1:n)

1.2. EXPLOITING STRUCTURE 23

1.2.9 A Note on Overwriting and Workspaces

An undercurrent in the above discussion has been the economical use of
storage. Overwriting input data is ancther way to control the amount of
memory that a matrix computation requires. Consider the n-by-n matrix
multiplication problem €' = AB with the proviso that the “input matrix”
B is to be overwritten by the “output matrix” € . We cannot simply
transform

C(lin,1in) =0
for j=1in
for k= 1:n
Clers) = C(J) + A, k)B(K.J)
end -
end
to
for j =1m
for k=1
B(:,3) = B(:, j} + A(:, k}B(k, 7}
end
end

because B(:, j) is needed throughout the entire k-loop. A linear workspace
is needed to hold the jth column of the product until it is “safe” to overwrite

B(:,j):

forj=1m
w(ln) =0
for k= 1L:n

w(:) = w(:) + A(:, k) B(k, §)

end
B(:,7) = w()

end

A linear workspace overhead is ususily not important in a matrix compu-
tation that has a 2-dimensional array of the same order.

Problems

P1.2.1 Give an algorithm that overwrites A with A? where 4 € R**" is {(a) upper
triangular and (b) square. Strive for & minimum workspace in each case.

P1.2.2 Suppose A € R"*® is upper Hessenberg and that scalars Aj,..., A are given,
Give a saxpy algorithm for computing the Rrst column of M = (A — A1 7)---(A— Acd).

P1.2.3 Give a column saxpy algorithm for the n-by-n matrix multiplication problem

24 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

C = AB where A is upper triangular and B is lower trisngular.

Pl.2.4 Extend Algorithm 1.2.2 so that it can handle rectangular band matrices. Be
sure to describe the underlying data structure.

P1.2.5 A€ H**"is Hermitian if A = A, If A= B +iC, then it is easy to show that
BT = B and CT = —C. Suppose we represent A in an array A.herm with the property
that A.herm(i, j) bousen d;; if i = j aad ¢;; if 7 > i. Using this data structure write a
matrix-vector multiply function that computes Re{z) and Im(z) from Re{z} and Im(z)
s0 that z = Ax.

P1.2.8 Suppose X € R**P and 4 € B**™, with A symmetric and stored by diagonal.
Give an algorithm that computes Y = XTAX and stores the result by diagonal. Use
separate arrays for Aand Y.

P1.2.7 Suppose o € R® is given and that A € R*™™ has the property that ay; =
8)i-j|+1- Give an algorithm that overwrites y with Az +y where x,y € R" are given.
P1.2.8 Suppcse a € R™ is given and that A € R™™™ has the property that ay =
O((i+j—1) mod n}+1- Give an algorithm that overwrites y with Ar + y where z,y € R®
are given,

P1.2.9 Develop a compact store-by-diagonal scheme for unsymmetric band matrices
and write the corresponding gaxpy algorithm.

P1.2.10 Suppose p and g are n-vectors and that A = (ay;) is defined by ay; = 2j; = pegy
for 1] <4 £ j < n How many flops are required to compute y = Az where € R™ is
given?

Notes and References for Sec. 1.2

Consult the LAPACK manual for a discussion about appropriate data structures when
symmetry and/or bandedness is present. See also

N. Madsen, G. Roderigue, and J. Karush (1976). “Matrix Multiplication by Disgonals
on a Vector Parallel Processor,” Mmfomation Processing Letters 5, 41-45,

1.3 Block Matrices and Algorithms

Having a facility with block matrix notation is crucial in matrix computa-
tions because it simplifies the derivation of many central algorithins, More-
over, “block algorithms” are increasingly important in high performance
computing. By a block algorithm we essentially mean an algorithm that
is rich in matrix-matrix multiplication. Algorithma of this type turn out
to be more efficient in many computing environments than those that are
organized at a lower linear algebraic level.

1.3.1 Block Matrix Notation

Column and row partitionings are special cases of matrix blocking. In
general we can partition both the rows ard columns of an m-by-n matrix

1.3. BLOCK MATRICES AND ALGORITHMS 25

A to obtain
An L A m
A= | :
Aql e Aqr mq
m iy

where my +---+mg = m, ny +---+n, = n, and A,z designates the
(ex, B) block or submatrix. With this notation, block 4,5 has dimension
Ma-by-ng and we say that 4 = (A,g) is a g-by-r block matrix.

1.3.2 Block Matrix Manipulation
Block matrices combine just like matrices with scalar entries as long as
- _certain dimension requirements are met. For example, if
By ... By my
B = : :)
Bqr ©7 Ber My
ny Ny

then we say that B is partitioned conformably with the matrix A above.
The sum € = A+ B can also be regarded as a ¢g-by-r block matrix:

Cu - Cy Au+Bn - A+ By
o= : =] :
Ca - qu Ap+Bn -+ Ap+ By
The multiplication of block matrices is a little trickier. We start with a pair

of lemmas.

Lemma 1.3.1 If A € R"**, B € RP*",

A'[ml
A= B = [B] 1 t Bf'] +
A | mq ™ nr
then
Cu ... Cyy m
qu ! qu Mg
Tt -

where Cog = AgBg for a = 1:q and g = L:r.

26 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

Proof. First we relate scalar entries in block C,g to scalar entries in C.
Forl<n<gq,1<3<r,1<i<my and]l < j<ngwe have

[Caﬂ]ij = Chpiptj
where

X = midetman
= m+--+ng-.

But

P p
Crtiti = 3 0tikbhusi = 2 [Aadic [Boly; = [AaBsly;-
k=1 k=1

Thus, Cap = AaBg. [

EY

Lemma 1.3.2 If A € R™"*?, B¢ IRP*",

A= [Ar . A,] , and B = .
Fo Ps B’ s

AB=C=iA,,B.,.

y=1

Proof. We set 5 = 2 and leave the general s case to the reader. (See
P13.6.) For1 <i<mand 1 < j<nwehave

P m m+p2
G = Zaikbkj = Zﬂ-ikbkj + Z Gikbry
k] k=1 k=p1+1

[AlBllij + [Asz]ij = [A1B +AQB‘2L~J-.
Thus, C = A1By + A3B,. 0O

For general block matrix multiplication we have the following result:
Theorem 1.3.3 If

A ... Au mi Bu ... By, m
A= : : ’ B = : :

Aql Aqa Mg By "7 By Ps

"M Pa m e

1.3. BLOCK MATRICES AND ALGORITHMS 27

and we partition the product C = AB as follows,
Cll . Clr m
C = E E ¥
Ca " Cq My

then .
Cag =9 AaByg a=1lg, B=1Lr.
=1

Proof. See P1.3.7. O
A very important specialcasearis%sll‘wesets=2, r=1andn; =1
Aun Ap T | _ | Anzr + Az
An Am T3 Anzi + Apaze |’
This partitioned matrix-vector product is used over and over again in sub-
sequent chapters.

1.3.3 Submatrix Designation

As with “ordinary” matrix multiplication, block matrix multiplication can
be organized in several ways. To specify the computations precisely, we
need some notation.
Suppose A € R™*" and that i = (i,...,4,) and j = (J1,...,Jc) are

integer vectors with the property that

Urennsly E {1,2,...,111}

Jueede € {1,2,...,n}.
We let A(i, j) denote the r-by-c submatrix

A(ilijl) L A(illjc)
A(s5) = : :
A(ifljl) o A(ifsjc)

If the entries in the subscript vectors i and j are contiguous, then the
“colon™ notation can be used to define A(, j) in terms of the scalar entries
in A. In particular, f 1 € {) < ip <mand 1 < 7 < j» € n, then
Alfy:4, j1:32) is the submatrix obtained by extracting rows i, through 4
and columns j; through ja, e.g,

a3t a3z
A(3:5,1:2) = | aqy Gaz | .

asy 4s2

28 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

While on the subject of submatrices, recall from §1.1.8 that if i and j are
scalars, then A(%,:) designates the ith row of A and A(:,j) designates the
jth column of A.

1.3.4 Block Matrix Times Vector

An important situation covered by Theorem 1.3.3 is the case of a block
matrix times vector. Let us consider the details of the gaxpy y = Az + y
where A ¢ R™*", z € R", y ¢ R™, and
Ay | om n| m
A= 1 y= |

; Aq Mg yq My
We refer to A; as the ith block row. If m.vec = {m,...,m,} is the vector
of block row “heights”, then from

n A n
REN RN
I. Yo A, Yq
we obtain
last =0
for i = l:g
first = last +1
last = first + m.vec(i) — 1 (1.3.1)
y{ firstlast) = A(first:last,)z + y(first:last)
end

Each time through the loop an “ordinary” gaxpy is performed so Algorithms
1.1.3 and 1.1.4 apply.

Another way to block the gaxpy computation is to partition A and = as
follows:

Iy Lo

A= [A[,...,Ar] x
m i

Iy Tiy

In this case we refer to A; as the jth block column of A. If nwec =
(m1,...,ny) is the vector of block column widths, then from

) r
y=[Al!---!Af] E +y=ZAJIJ+y

Ty j=1

we obtain

1.3. BLOCK MATRICES AND ALGORITHMS 29

last =0
for j = 1ir
SJirst = last + 1
last = first + n.vec(j) ~ 1 (1.3.2)

y = A(:, first:last)z(first:last) + y
end

Again, the gaxpy’s performed each time through the loop can be carried
out with Algorithm 1.1.3 or 1.1.4.

1.3.5 Block Matrix Multiplication

Just as ordinary, scalar-level matrix multiplication can be arranged in sev-
.eral possible ways, so can the multiplication of block matrices. Different
blockings for A, B, and C can set the stage for block versions of the dot
product, saxpy,-and outer product algorithms of §1.1. To iHlustrate this
with a minimum of subscript clutter, we assume that these three matrices
are all n-by-n and that n = N¢ where N and £ are positive integers.

If 4 =(Ang), B =(Bgg), and C = (C,p) are N-by-N block matrices
with £-by-£ blocks, then from Theorem 1.3.3

N
Cap = 3 _AmByg + Cag a=1LN, F=1N.
=1

If we organize a matrix multiplication procedure around this summation,
then we obtain & block analog of Algorithm 1.1.5:

fora=1N
i={a- 1)+ laf
for 3 =1:N
i=B-1E+1:52 (1.3.3)
for y=1N
k={(y—1)¢+ 1L
CG,j) = A(i,K)B(k,j) + C(i,J)
end
end
end

Note that if £ = 1, ther @« =1, § = j, and ¥ = k and we revert to Algorithm
1.1.5.
To obtain a block saxpy matrix multiply, we write C = AB + C as
By -+ By
[C1,...,CN}=[A1,...,AN] +[C‘1,...,CN]
Byy -+ Bywn

where A,,C, € R™*, and B,g € R**%. From this we obtain

30 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

for 8=1:N
i=({8-1t+1:5¢
for a = I:N
i=(a—1)f+ 1!t (1.3.4)
C(:,7) = A,)B(,5) + CG.)
end
end

This is the block version of Algerithm 1.1.7.
A block outer product scheme results if we work with the blockings

BY
A=[A,...,Ay] B=| :
B

where A, B, € R**‘. From Lemma 1.3.2 we have

N
C=3 ABT+C
=)
and so
for v= LN
k={(y-1)f+1:yf
C=A(k)B(k,:)+C {1.3.5)
end

This is the block version of Algorithm 1.1.8.

1.3.6 Complex Matrix Multiplication
Consider the complex matrix multiplication update
CL+1iCqy = (A], + iAg)(B1 +iB2) + (Cy + iCh)

where all the matrices are real and 2 = —1. Comparing the real and
imaginary parts we find

Cy = AsBi—AB:+C
Cy = A1Ba+ AB1+Ca

and thiz can be expreased as follows:

al-1a ®ln]-1a]

1.3. BLOCK MATRICES AND ALGORITHMS K1l

This suggests how real matrix software might be applied to sclve complex
matrix problems. The only snag is that the explicit formation of

= _| A& -4
i-4 o]

requires the “double storage” of the matrices A, and Aj.

1.3.7 A Divide and Conquer Matrix Multiplication

We conclude this section with a completely different approach to the matrix-
matrix multiplication problem. The starting point in the discussion is the
2-by-2 block matrix muitiplication

Cu Cl2 Ay A12 By Big
Cn Azt By, Bm

where each block is square. In the ordinary algorithm, C; = AaBy; +
A;2By;. There are 8 multiplies and 4 adds. Strassen (1969) has shown how
to compute C' with just 7 multiplies and 18 adds:

Pi = (Au + Ax)(By + Bxn)
Pr = (A2 + Axn)Bn

Py = Ay(Byy - Ba)

Py = Axp(Bj — Bu)

Ps = (An +An)Bn

Fs = (An—An}Bu + Bi2)
P, = (A — An}Bxn + Bax)
Ch = PA+P-B+5

Ca = P+5

Cu = BR+5A

Conn = P+B-FP+P5

These equations are easily confirmed by substitution. Suppose n = 2m so
that the blocks are m-by-m. Counting adds and multiplies in the compu-
tation C = AB we find that conventional matrix multiplication involves
(2m)® multiplies and (2m)* — (2m)? adds. In contrast, if Strassen’s al-
gorithm is applied with conventional multiplication at the block level, then
Tm® multiplies and 7m® + 11m? adds are required. if m >» 1, then the
Strassen method involves about 7/8ths the arithmetic of the fully conven-
tional algorithm.

Now recognize that we can recur on the Strassen idea. In particular, we
can apply the Strassen algorithm to each of the half-sized block multiplica-
tions associated with the P;. Thus, if the original A and B are n-by-n and
n = 29, then we can repeatedly apply the Strassen multiplication algorithm.
At the bottom “level,” the blocks are 1-by-1. Of course, there is no need to

32 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

recur down to the n =1 level. When the block size gets sufficiently small,
(n € Nmin), it may be sensible to use conventional matrix multiplication
when finding the F; . Here is the overall procedure:

Algorithm 1.3.1 (Strassen Multiplication) Suppose n = 2? and that
AcR"™™ and B € B™"™. If Nmin = 2% with d < g, then this algorithm
computes C = AB by applying Strassen procedure recursively ¢ — d times.

function: C = strass(A, B, n, niyin)

if n < npun
C =AB

else
m=n/2;u= l:m;jpr=m+ L:n;
P, = strass(A(u, u) + A(v, v}, B(u,) + B(v, v}, m, tmin)
P, = strass(A{v, u) + A(v,v), B(u, ¢), M, Nimin)
Py = strass(A(u, u), B(u,v) — B(v,v),m, fipan)
Py = strass(A(v,v), B(v,u) — B(u, u),m, nmin)
P = strass(A(u, v) + A(u,v), B(v, v}, m, fmin)
P = SthB(A(U, 'll.) - A(uv u)l B(ur u) + B(uv ‘U), m, ﬂ'wﬂ.in)
P; = strass(A(u, v) — A(v,v), B{v,u) + B(v,v), M, nmin)
Cluu}=P+ P -P+ P
Clu,v)y =P; + By
Clv,u) = Py + By
C(‘U,U) =P+P-PA+PF

end

Unlike any of our previous algorithms strass is recursive, meaning that
it calls itself. Divide and conquer algorithms are often best described in
this manner. We have presented this algorithm in the style of a MATLAB
function so that the recursive calls can be stated with precision.

The amount of arithmetic associated with strass is a complicated func-
tion of n and Rmin. If Bmin 3 1, then it suffices to count multiplications
as the number of additions is roughly the same. If we just count the mul-
tiplications, then it suffices to examine the deepest level of the recursion
as that is where all the multiplications occur. In strass there are ¢ — d
subdivisions and thus, 79-¢ conventional matrix-matrix multiplications to
perform. These multiplications have size R, and thus strass involves
about s = (2%)377"9 multiplications compared to ¢ = (27), the number
of multiplications in the conventional approach. Notice that

-0

1.3. BLOCK MATRICES AND ALGORITHMS 33
Ifd =0, i.e., we recur on down to the 1-by-1 level, then
7 q
$ = (5) ¢ =T = nofal xn?80T,

Thus, asymptotically, the number of multiplications in the Strassen proce-
dure is O(n?>#07). However, the number of additions (relative to the number
of multiplications) becomes significant a8 Ry gets small.

Example 1.3.1 IIn = 1024 and Ny, = 64, then strass involves (7/8}19-% =2 .6 the
arithmetic of the conventional algorithm,

Problems

P'1.3.1 Generalize (1.3.3) so that it can handle the variable block-size problem covered
by Theorem 1.3.3. *

P1.3.2 Generalize (1.3.4) and (1.3.5) 80 that they can handle the variable block-size
case,

P1.3.3 Adapt strass so that it can handie square matrix multiplication of any order.
Hint: If the “current” A has odd dimension, append a zero row and columna.

P1.3.4 Prove that if

An - A
A= N :
Ag o Ag
is a blocking of the matrix A, then
A’{l A:.l
AT = .
ATr AI"

P1.3.5 Suppose n is even and define the following function from R™ to R-
n/2
Mz} = 2(1:2m)Tz(2n) = sz—lzzi
=1
{a) Show that if x,y € R™ then
nfi
2Ty = Y (@t +voilzs +vmie1) - fl2) — flg)
i=l
(b) Now consider the n-by-n matrix multiplication ¢ = AB. Give s algorithm for
computing this product that requires n /2 multiplies once f is applied to the rows of A
and the columns of B. See Winograd (1968) for details.
P1.3.8 Prove Lemma 1.3.2 for general 5. Hint, Set

pr=pt- 4Py y=1ls+1

and show that
F Pu+l

Cij”z Z ainbys.

yul kepe 1

34 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

P1.3.7 Use Lemmas 1.2.1 and 1.3.2 to prove Theorem 1.3.3. In particular, set
Ary
Ay=| and By ={ Bu - By]
Agy
and note from Lermma 1.3.2 that

a=1

Now analyze each AyB., with the help of Lemma 1.3.1.

Notes and Rafarences for Sec. 1.3

For quite some time fast methods for matrix multiplication have attracted a lot of at-
tention within computer science. See

S. Winogred (1963). “A New Algorithm for Inner Product,” !EEE Trons. Comp. C-I7,
693-694.

V. Strassen (1969). “Gaussian Elimination is Not Optimal,” Numer. Math. 13, 354-356.

V. Pan (1984). “How Can We Speed Up Matrix Multiplication?,” SIAM Review 26,
393-416.

Many of these methods have dubious practical value. However, with the publication of

D. Bailey (1988). “Extra High Speed Matrix Multiplication on the Cray-2," SIAM J.
Sei. and Stat. Comp. 9, 603-607.

it ig clear that the blanket dismissal of these fast procedures is unwise. The “stability”
of the Strassen algorithm is discussed in §2.4.10. See also

N.J. Highamn (1990). “Exploiting Fast Matrix Muitiplication within the Level 3 BLAS,”
ACM Trans, Math. Soft. 16, 352-368.

C.C. Douglas, M. Heroux, G, Slishman, and R.M. Smith (1994). “GEMMW: A Portable
Level 3 B Winograd Variant of Strassen’s Matrix-Matrix Multiply Algorithm,”
J. Comput. Phys. 110, 1-10.

1.4 Vectorization and Re-Use Issues

The matrix manipulations discussed in this book are mostly built upon
dot products and saxpy operations. Vector pipeline computers are able
to perform vector operations such as these very fast because of special
hardware that is able to exploit the fact that a vector operation is a very
regular sequence of scalar operations. Whether or not high performance
is extracted from such a computer depends upon the lergth of the vector
operands and a number of other factors that pertain to the movement of
data such as vector stride, the number of vector loads and stores, and
the level of data re-use. Our goal is to build a useful awareness of these
issues. We are not trying to build a comprehensive model of vector pipeline

1.4. VECTORIZATION AND RE-USE ISSUES 35

computing that might be used to predict performance. We simply want to
identify the kind of thinking that goes into the design of an effective vector
pipeline code. We do not mention any particular machine. The literature
is filled with case studies.

1.4.1 Pipelining Arithmetic Operations

The primary reason why vectar computers are fast has to do with pipelin-
ing. The concept of pipelining is best understood by making an analogy to
assembly line production. Suppose the assembly of an individual automo-
bile requires one minute at each of sixty workstations along an assembly
line. If the line is well staffed and able to initiate the assembly of a new car
every minute, then 1000 cars can be produced from scratch in about 1000
+ 60 = 1060 minutes. For a work order of this size the line has an effective
“vector speed” of 1000/1060 automobiles per minute. On the other hand,
if the assembly line is understaffed and a new assembly can be initiated
just once an hour, then 1000 hours are required to produce 1000 cars. In
this case the line has an effective “scalar speed” of 1/60th automobile per
minute.

So it is with a pipelined vector operation such as the vector add 2 = z+y.
The scalar operations z; = z; + y; are the cars. The number of elements
is the size of the work order. If the start-to-finish time required for each
z; is 7, then a pipelined, length n vector add could be completed in time
much less than nr. This gives vector speed. Without the pipelining, the
vector computation would proceed at a scalar rate and would approximately
require time nr for completion.

Let us see how a sequence of floating point operations can be pipelined.
Floating point operations usually require several cycles to complete. For
example, a 3-cycle addition of two scalars z and y may proceed as in
F1G.1.4.1. To visualize the operation, continue with the above metaphor

T — Adjust
y — Exponents

Add Normalize b— 2

FI1G. 1.4.1 A 3-Cycle Adder

and think of the addition unit as an assembly line with three “work sta.
tions”. The input scalars z and y proceed along the assembly line spending
one cycle at each of three stations. The sum » emerges after three cycles.

36 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

Adjust .
Exponents Add Normalize
- X
10 —+ Xy Ia Zr | zg oo
Y —= Y s

F1G. 1.4.2 Pipelined Addition

Note that when a single, “free standing” addition is performed, only one of
the three stations is active during the computation.

Now consider a vector addition ¥ = z +y . With pipelining, the z and y
vectors are streamed through the addition unit. Once the pipeline is filled
and steady state reached, a z; is produced every cycle. In F1¢.1.4.2 we
depict what the pipeline might look like once this steady state is achieved.
In this case, vector speed is about three times scalar speed because the time
for an individual add is three cycles.

1.4.2 Vector Operations

A vector pipeline computer comes with a repertoire of vector instructions,
such as vector add, vector multiply, vector scale, dot product, and saxpy.
We assume for clarity that these operations take place in vector registers.
Vectors travel between the registers and memory by means of vector load
and vector store instructions.

An important attribute of a vector processor iz the length of its vector
registers which we designate by v,. A length-n vector operation must be
broken down,into subvector operations of length v, or less. Here is how such
a partitioning might be managed in the case of a vector addition z = z +y
where z and y are n-vectors:

first=1
while first <n
last = min{n, first +v, — 1}
Vector load x{first:last).
Vector load y(first:last).
Vector add: z(first:last) = z{ first:last) + y{ first:last).
Vector store 2(first:last).
first =last+1
end

A reasonable compiler for a vector computer would automatically generate
these vector instructions from a programmer specified z = = + y command.

1.4. VECTORIZATION AND RE-UsE ISsUES 37

1.4.3 The Vector Length Issue

Suppose the pipeline for the vector operation op takes ., cycles to “set
up.” Assume that one component of the result is obtained per cycle once
the pipeline is filled. The time required to perform an n-dimensional op is
then given by
Top(n)=(7p+nlp n<y,

where u is the cycle time and v, is the length of the vector hardware.

If the vectors to be combined are longer than the vector hardware length,
then as we have seen the overall vector operation must be broken down into
hardware-manageable chunks. Thus, if

n=mv. +np 0D<nro <y,

then we assume that

To(n) = N {Top + Ve Jb ng=90

°p (niTop + V) +Top+n0)t 19 #0
specifies the overall time required to perform a length-n op. This simplifies
to
Top(n) = (n + Topeeil(n/ve)) 4

where ceil(cx) is the smallest integer such that & < ceil{a). If p flops per
component are involved, then the effective rate of computation for general
n is given by

B S T T ATy e ()

(If 4 is in seconds, then R,y is in flops per second.) The asymptotic rate of
performance is given by

. _ 1 p
2 Bl = T

As a way of assessing how serious the start-up overhead is for a vector
operation, Hockney and Jesshope (1988) define the quantity n,/; to be the
smallest n for which half of peak performance is achieved, i.e.,

myr lp
Top(nyy2) 2p
Machines that have big n,/» factors do not perform well on short vector
operations.

Let us see what the above performance model says about the design
of the matrix multiply update C = AB + C where A € R™*?, B ¢ RP*",
and ' € R™*", Recall from §1.1.11 that there are six possible versions of

the conventional algorithm and they correspond to the six possible loop
orderings of

38 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

for i=1m
for 3 =1n
for k= 1:p
C(i!j) = A(ii k)B(k-J) + C(i,j)
end
end
end

This is the ijk variant and its innermost loop oversees a length-p dot prod-
uet. Thus, our performance model predicts that

Tijk = mnp + mn - cell(p/v,)i

cycles are required. A similar analysis for each of the other variants leads
to the following table:

Variant Cycles
ijk mnp + M - Tdee{p/vL)
jik | mnp +mn . Taa(p/v.)
ikj mnp + mp - Tyex(n/v.)
jki | mnp+ np- Toe(m/,)
kij | mnp+mp- Tsz(n/ve)
kji mnp + np - Tyaz(M/v1)

We make a few observations based upon some elementary integer arithmetic
manipulation. Assume that 14, and 1y, are roughly equal. If m, n, and
p are all less than v, , then the most efficient variants will have the longest
inner loops. If m, », and p are much bigger than v,, then the distinction
between the six options is small.

1.4.4 The Stride Issue

The “layout” of a vector operand in memory often has a bearing on execu-
tion speed. The key factor is stride. The stride of a stored floating point
vector is the distance (in logical memory locations) between the vector’s
components. Accessing a row in a two-dimensional Fortran array is not a
unit stride operation because arrays are stored by column. In C, it is just
the opposite ss matrices are stored by row. Nonurit stride vector opera-
tions may interfere with the pipelining capability of a computer degrading
performance.

To clarify the stride issue we consider how the six variants of matrix
multiplication “pull up” data from the A, B, and C matrices in the inner
loop. This is where the vector calculation occurs {dot product or saxpy)
and there are three possibilities:

1.4. VECTORIZATION AND RE-USE ISSUES ag

jki or kji: fori=1m
C(i,5) = C(i,5) + AG, k) B(k, 5)
end
ikj or kij: for j=1in
C(3,7) = C(i,j) + A(i, k) B(k, 5)
end
ifk or jik: for k=1:p
C(‘aJ} = C(i:j) + A(i, k)B(kJ)
end

Here is a table that specifies the A, B, and C strides associated with each
of these possibilities:

Variant | A Stride | B Stride | C Stride
jki or kji Unit 0 Unit
ikj or kij 0 Non-Unit | Non-Unit
ijk or jik | Non-Unit Unit 0

Storage in column-major order is assumed. A stride of zero means that only
a single array element is accessed in the inner loop. From the stride point
of view, it is clear that we should favor the jki and kji variants. This may
not coincide with a preference that is based on vector Jength considerations.
Dilemmas of this type are typical in high performance computing. One goal
{maximize vector length) can confiict with another (impose unit stride).
Sometimes a vector stride/vector length conflict can s be resolved through
the intelligent choice of data structures. Consider the gaxpy y = Az + y
where A € R**" is symmetric. Assume that n < v, for simplicity. If
A is stored conventionally and Algorithm 1.1.4 is used, then the central
computation entails n, unit stride saxpy’s each having length n:

for j=1lmn
y= A)z} + v
end
Our simple execution model tells us that
T = n{Teaz + 1)
cycles are required.

In §1.2.7 we introduced the lower triangular storage scheme for sym-
metric matrices and obtained this version of the gaxpy:

40 CBAPTER 1. MATRIX MULTIPLICATION PROBLEMS

for j=1:n
fori=1:7-1
y(3) = Awvee((i — Ln — i(i — 1)/2 + 5)z(5) + y(5)
end
for i = j:n
y(i) = Awvee((j — D)n — j(7 —- 1)/2 +)=(5) + ¥(3)
end
end

Notice that the first i-loop does not define a unit stride saxpy. If we assume
that a length n, nonunit stride saxpy is equivalent to n unit-length saxpys
(8 worst case scenario), then this implementation involves

n
Ty =n (51',“ + n)
cycles.

In §1.2.8 we developed the store-by-diagonal version:

fori=1n
y(3) = A.diag(i)x(i) + y(i)
end

fork=1ln-1
t =nk - k(k-1)/2
{y = D(A,k)x + y}
fori=1:n-%
y(i) = A.diag(i + t)z(i + k) + y(3)
end
{y = D(4,k)z + y}
fori=1ln—-k
y(i+ k) = Adiag(i +)z(d) + y(i + k)
end
end

In this case both inner loops define & unit stride vector multiply (vm) and
our mode] of execution predicts

T3 =n(27gm + 1)

cycles,

The example showa how the choice of data structure can effect the stride
attributes of an algorithm. Store by diagonal seems attractive because it
represents the matrix compactly and has unit stride. However, a careful
which-is-best analysis would depend upon the values of 7yazr and 1y and
the precise penalties for nonunit stride computation and excess storage.
The complexity of the situation would call for careful benchmarking.

1.4. VECTORIZATION AND RE-UsEg ISsuUEs 41

1.4.5 Thinking About Data Motion

Another important attribute of a matrix algorithm concerns the actual vol-
ume of data that has to be moved around during execution. Matrices sit
in memory but the computations that involve their entries take place in
functional units. The control of memory traffic i8 crucial to performance
in many computers. To continue with the factory metaphor used at the
beginning of this section: Can we keep the superfast arithmetic units busy
with enough deliveries of matriz data and can we ship the results back to
memory fast enough to avoid backlog? ¥i1G.1.4.3 depicts the typical situa-
tion in an advanced uniprocessor environment. Details vary from machine

| Functional Units |

[! Cache I]
i

L Main Memolry]

1

| Disk |

Fi1G. 1.4.3 Memory Hierarchy

to machine, but two “axioms;; prevail:

o Each level in the hierarchy has a limited capacity and for economic
reasons this capacity is usually smaller as we ascend the hierarchy.

o There is & cost, sometimes relatively great, associated with the moving
of data between two levels in the hierarchy.

The design of an efficient matrix algorithm requires careful thinking about
the flow of data in between the various levels of storage. The vector touch
and data re-use issues are important in this regard.

1.4.6 The Vector Touch Issue

In many advanced computers, data is moved around in chunks, e.g., vectors.
The time required to read or write a vector to memory is comparable to
the time required to engage the vector in a dot product or saxpy. Thus, the
number of vector touches associated with a matrix code is & very important
statistic. By a “vector touch” we mean either a vector load or store.

42 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

Let’s count the number of vector touches associated with an m-by-n
outer product. Assume that m = m v, and n = njv, where v,1s the vector
hardware length. (See §1.4.3.) In this environment, the outer product
update A = A + zyT would be arranged as follows:

for a = Lmy
it =(a- 1y +Lav,
for =1
i=(F -1, +1:8u,
A(4,5) = AG, 5) + z(D()T
end
end

Each column of the submatrix A(i, 7) must be loaded, updated, and then
stored. Not forgetting to account for the vector touches associated with =
and y we see that approximately

i (1 +i(1+2ub)) ~ 2mn

a=l Ax=1

vectol touches are required. {Low order terms do not contribute to the
analysis.)

Now consider the gaxpy update y = Az + y where y € R™, z ¢ R” and
A e R™*? Breaking this computation down into segments of length v,
gives

for o = 1im,
t=(a-1)v, + Lav,
for 3=1m
J=(8~1ve+1:8u.
v(8) = y(3) + Al 1)z ()
aend
end

Again, each column of submatrix A{{, 7) must be read but the only writing
to memory involves subvectors of y. Thus, the number of vector touches
for an m-by-n gaxpy is

i (2+ ﬂzt(l +tn_)) M omyn.

a=l fA=1

This is half the number required by an identically-sized the auter product.
Thus, if a computation can be arranged in terms of either cuter products
or gaxpys, then the former is preferable from the vector touch standpoint.

1.4. VECTORIZATION AND RE-USE IsSSUES 43

1.4.7 Blocking and Re-Use

A cache is a small high-speed memory situated in between the functional
units and main memory. See F16.1.4.3. Cache utilization colors perfor-
mance because it has a direct bearing upon how data Bows in between the
functional units and the lower levels of memory.

To illustrate this we consider the computation of the matrix multiply
update C = AB + C where A, B,C € R*™" reside in main memory?. All
data must pass through the cache on its way to the functional units where
the floating point computations are carried out. If the cache is small and
n is big, then the update must be broken down into smaller parts so that
the cache can “gracefully” process the flow of data.

One strategy is to block the B and C matrices,

B= [By, By] C={Ci,...Cn]
¢ ¢ t t

where we assume that n = {N. From the expansion

Ca = ABo+Co =) A(;,k)Ba(k,:) + Ca
k=1

we obtain the following computational framework:

fora=1LN
Load B, and C, inta cache.
for k= 1:in
Load A(:, k) into cache and update Cl:
Cq = A(:, k) Ba(k,:) + Cq
end
Store C, in main memory.
end

Note that if M is the cache size measured in floating point words, then we
must have
2nd+n< M. (1.4.1)

Let Iy be the number of floating point numbers that Aow (in either direc-
tion) between cache and main memory. Note that every entry in B is loaded
into cache once, every entry in C is loaded into cache once and stored back
in main memory once, and every entry in A is loaded into cache N = n/!
times. It follows that

3
r1=3ﬂ2+2£—.

2The discussion which follows wouid also apply if the matrices were on a disk and
needed ta be brought into main memary.

44 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

In the interest of keeping data moticn to a minimum, we choose £ to be as
large as possible subject to the constraint (1.4.1). We therefore set

1 /M

nt

M-n’
(We use “~" to emphasize the approximate nature of our analysis.) If cache
is large enough to house the entire B and C matrices with room left over
for a column of A, then £ = n and I'; = 4n?. At the other extreme, if we
can just fit three columns in cache, then £ = 1 and T') = r3.

Now let us regard A = (A,g) , B = (Bag), and C = (C,p) a8 N-by-N
block matrices with uniform block size £ = n/N. With this blocking the
computation of

obtaining
Pl B 3112 +

N
Cap=9 AgyBys a=1N, f=1N

=]
can be arranged as follows:

for a =1:N
for 3 =1:N
Load €y into cache.
for y=1:N
Load A, and B.,s into cache.
Cap = Cag + AayByp
end
Store Cypg in main memory.
end
end

In this case the main memory/cache traffic sums to

3
I'z= m? + 2_1‘!."
£

because each entry in A and B is loaded N = n/¢ times and each entry

in C is loaded once and stored once. We can minimize this by choosing £

to be as large as possible subject to the constraint that three blocks fit in
cache, i.e.,

<M

{3
2 3
s 2 2n° 4 20% —.

Setting £ = /M /3 gives

1.4. VECTORIZATION AND RE-USE ISSUES 45

A manipulation shows that
4 2
3n% + 20— 3+2%
Iy -n_ . M

r 3 = ’
oy 24055

The key quantity here is n?/M, the ratio of matrix size (in floating point
words) to cache size. As this ratio grows the we find that

r, _n
Fa V3M

showing that the second blocking strategy is superior from the standpoint
of data motion to and from the cache. The fundamental conclusion to be
reached from all of this is that blocking effects date motion.

1.4.8 Block Matrix Data Structures

We conclude this section with a discussion about block data strucfures. A
programming language that supports two-dimensional arrays must have a
convention for storing such a structure in memory. For example, Fortran
stores two-dimensional arrays in column major order. This means that the
entries within a column are contiguous in memory. Thus, if 24 storage
locations are allocated for A € R**®, then in traditional store-by-column
format the matrix enirieg are “lined up” in memory as depicted in F1G.
1.4.4. In other words, if A € R™*" is stored in v(1:mn), then we identify

I | by
an T| G2 13 a14 o185 Gle
az1 a2z az3 24 azs a2
a3 asz az3 Q34 ass aas
241 a43 G43 44 ass (1)

I I l

Fig. 1.4.4 Store by Column ({-by-6 case}

A(i, 7) with v{(j — 1)m +i). For algorithms that access matrix data by
column this is a good arrangement since the column entries are contiguous
in memory.

46 CHAPTER 1. MATRIX MULTIPLICATION PROBLEMS

l 1 } S
a @12 a3 314 ais ae
a31 an 5 <) G324 a2s a8
L L L |
! [} [}
as) 33z 333 Gaq Qazg ass
a4l G413 @43 G44 a4y a4a
I L | |

FIG. 1.4.5 Store-by-Blocks ({-by-6 case with 2-by-2 Blocks)

In certain block matrix algorithms it is sometimes useful to store matri-
ces by blocks rather than by column. Suppose, for example, that the matrix
A above is a 2-by-3 block matrix with 2-by-2 blocks. In a store-by-column
black scheme with store-by-column within each block, the 24 entries are
arranged in memory as shown in Fig. 1.4.5. This data structure can be
attractive for block algorithms because the entries within a given block are
contiguous in memory.

Problems

Pl.4.1 Consider the matrix product D = ABC where A€ R™*" B e ™™ and
C € B*"*%_ Asgume that all the matrices are stored by column and that the time required
to execute a unit-stride saxpy operation of length k is of the form i{k) = {L+k)u where L
i & constant and u is the cycle time. Based on this model, when s it more economical to
compute [an D = (AB)C instead of as D = A(BC)? Assume that all matrix multiplies
are done using the jii, (gaxpy) algorithm.

P1.4.2 What is the total time spent in jki variant on ths saxpy operations assuming
that all the matrices are stored by column and that the tima required to execute & unit-
stride saxpy operation of length & is of the form i(k) = (L 4+ k)u where L is a constant
and ;s is the cycle time? Specialize the algorithm so that it efficiently handles the case
when A and B are n-by-n and upper triangular. Does it follow that the triangular
implementation is gix timen fagier as the flop count suggests?

P1.4.5 Give an algorithm for computing ¢ = AT BA where A and B are n-by-n and
B 18 symmetric. Arrays should be accessed in unit stride fashion within all innermost
loops.

Pl.4.4 Suppose A € R™*" i5 stored by column in A.col(1:mn}. Assume that m = 1 M

1.4. VECTORIZATION AND RE-USE ISSUES 47

and n = £2N and that we regard A as an M-by-N block matrix with £1-by-f2 blocks.
Civeni, j, &, a0d Sthat satisfy 1 €4 < £, 1 Sj<h, l<a<M mmdl<FLEN
determine & 30 that A.col{k) houses the (i,j) entry of A,5. Give an algorithm that
overwrites A.col with A stored by block an in Figure 1.4.5. How big of & work array ia
required?

Notes and References for Sec. 1.4
Two excellent expoaitions abount vector computation are

1.J. Dongarra, F.G. Gustaveon, and A. Karp (1984). “Implementing Linear Algebrs
Algorithms for Dense Matrices on a Vector Pipeline Machine,” S/AM Review 26,
91-112.

JLM. Ortega and R.G. Voigt (1985). “Solution of Partial Differential Equations on Vector
and Parallel Computers,” SIAM Review £7, 149-240.

A very detailed look at matrix computations in hierarchical memory systems can be
found in

K. Gallivan, W. Jalby, U. Meier, and A.H. Sameh (1988). “Impact of Hierarchical Mem-
ory Systems on Linear Algebra Algorithm Design,” Inil J. Supercomputer Applic.
2, 1248

See also

W. Schonsuer (1987). Scientific Computing on Vector Computers, North Holland, Am-
sterdam.

R.W. Hockney and C.R. Jesshope (1988). Paruile! Computers 2, Adam Hilger, Bristol
and Philadelphia.

where various models of vector processor performance are set forth, Papers on the prac-

tical aspects of vector comaputing include

L] Dongarrs and A. Hinds (197%). “Unrolling Loops in Fortran,” Softwere Pruoctice
and Experience 9, 219-229,

I.J. Dongexrs and S. Eisenstat {1984). “Squeezing the Most Out of an Algorithm in
Cray Fortran” ACM Twms. Math Soft. 10, 221-230.

B.L. Buzbee (1986) “A Strategy for Vectorization,” Parailel Computing 3, 187-152,

K. Gallivan, W. Jalby, and U. Meier (1987). “The Use of BLAS3 in Linear Algebes on &
Parallel Procemor with a Hierarchical Memory,” SIAM J. Sci and Stat. Comp. 8,
1079-1084.

J.J. Dongarra and D. Walker (1995). “Software Libraries for Linear Algebra Computa-
tions on High Performance Computers,” SIAM Review 37, 151-180.

Chapter 2

Matrix Analysis

§2.1 Basic Ideas from Linear Algebra

§2.2 Vector Norms

§2.3 Matrix Norms

§2.4 Finite Precision Matrix Computations
§2.5 Orthogonality and the SVD

§2.6 Projections and the CS Decomposition
§2.7 The Sensitivity of Square Linear Systems

The analysis and derivation of algorithms in the matrix computation
area requires a facility with certain aspects of linear algebra. Some of the
hasics are reviewed in §2.1. Norms and their manipulation are covered in
§2.2 and §2.3. In §2.4 we develop a model of finite precision arithmetic and
then use it in a typical roundoff analysis.

The next two sections deal with orthogonality, which has a prominent
role to play in matrix computations. The singular value decomposition
and the CS decomposition are a pair of orthogonal reductions that provide
critical insight into the important notions of rank and distance between
subspaces. In §2.7 we examine how the solution of a linear system Az =
b changes if A and b are perturbed. The important concept of matrix
condition is introduced.

Before You Begin
References that complement this chapter include Forsythe and Moler

(1967), Stewart (1973), Stewart and Sun (1990), and Higham (1996).
2.1 Basic Ideas from Linear Algebra

This section is a quick review of linear algebra. Readers who wish a more
detailed coverage should consuit the references at the end of the section.

AQ

2.1. Basic IDEAS FROM LINEAR ALGEBRA 49

2.1.1 Independence, Subspace, Basis, and Dimension

A set of vectors {ay,...,a,} in R™ is {inearly independent ifzzl aja; =0
implies a(1:n) = 0. Otherwise, a nontrivial combination of the a; is zero
and {ai,...,8,} i3 said to be linecarly dependent .

A subspace of R™ is a subset that is also a vector space. Given a
collection of vectors ay,...,an € ™, the set of all linear combinations of
these vectors is a subspace referred to as the spon of {a1,...,8p}:

span{ai,...,0n} = {Zﬁjﬂj 105 €]R} .
Jm=l
If {a1,...,an} is independent and b € span{a1,...,an}, then b is a unique
linear combination of the a;.

If S1,..., Sk are subspaces of R™, then their sum is the subspace defined
by S={a1+az+---+ar:ai €9, i=1:k} 5 issaid to be a direct sum
if each v € S has a unique representation v = ay + --- + ay with a; € S;.
In this case we write § = S @ --- @ J;. The intersection of the S; is also
a subspace, S=5N5%MN---N 5.

The subset {ay,,...,8,} i8 & maximal linearly independent subset of
{ay,...,8,} if it is linearly independent and is not properly contained in any
linearly independent subset of {a;,...,a,}. If {a;,,...,08; } is maximal,
then span{a;,...,an} = span{ay,,...,6,} and {@;,...,qi } is a basis
for spanf{ai,...,ap} . If § € R™ s a subspace, then it is possible to find
independent basic vectors ar,...,8; € S such that § = span{a;,....ac} .
All bases for a subspace S bave the same number of elements. This number
is the dimension and is denoted by dim(5).

2.1.2 Range, Null Space, and Rank

There are two important subspaces associated with an m-by-n matrix A.
The range of A is defined by

ran(A) = {y € R™ : y = Az for some z ¢ R"},
and the null space of A is defined by
null(A) = {z € R" : Az = 0}.
If A=&1,...,0n] is a column partitioning, then
ran(A) = span{ay,...,a,} .
The rank of a matrix A is defined by
rank{ A) = dim (ran{A}).

It can be shown that rank(A) = rank{AT). We say that A € R™*" is rank
defictent if rank(A) < min{m, n}. If A € R™*", then

dim(null(A)) + rank(A) = n.

50 CHAPTER 2. MATRIX ANALYSIS

2.1.3 Matrix Inverse
The n-by-n identity matriz I, is defined by the column partitioning

In={e1,...,en]
where ey is the kth “canonical” vector:

e =(0,...,0,1,0,...,0)T.
N e’ e et
k-1 n—k

The canonical vectors arise frequently in matrix analysis and if their di-
mension is ever ambiguous, we use superscripts, i.e., ei“) € R".

If A and X are in IR™*"™ and satisfy AX = I, then X is the inverse of
A and is denoted by A~!. If A~! exists, then A is said to be nongingular.
Otherwise, we say A is singular.

Several matzix inverse propertiez have an important role to play in ma-
trix computations. The inverse of a product is the reverse product of the
inverses:

(AB)"' = B4~ (2.1.1)
The transpose of the inverse is the inverse of the transpose:
(A Y =(aT)1=4T. (2.1.2)
The identity
B! = A7l -BY{B-AA! (2.1.3)

shows how the inverse changes if the matrix changes.
The Sherman-Morrison- Woodbury formulas gives a convenient expres-
sion for the inverse of (A+UVT) where A € R**" and U and V are n-by-k:

(A+UVTD)y 1= A7 A~ + VT A-IU)~vT AL, (2.1.4)

A rank k correction to a matrix results in a rank k& correction of the inverse.
In (2.1.4) we assume that both A and (f + VT A~1U) are nonsingular.

Any of these facts can be verified by just showing that the “proposed”
inverse does the job. For example, here is how to confirm (2.1.3):

B(AT'-B Y (B-AJA™)=BA' - (B-A)A™ ' =1T.

2.1.4 The Determinant

If A = () € R*™!, then its determinant is given by det{4d) = 4. The
determinant of A € R**" is defined in terms of order n — 1 determinants:

det(4) =) (~1Y* a1 det(Ay;).
i=1

2.1. BasiC IDEAS FROM LINEAR ALGEBRA 51

Here, Ay is an (n — 1)-by-(n — 1) matrix obtained by deleting the first row
and jth column of A. Useful properties of the determinant include

det(AB) = det(A)det(B) A BeRY"
det(AT}) = det(4) Ae R
det(cA) = c"det(A) ceR,Ac RV"
det(A) #0 & A is nonsingular A4 € R**"

2.1.5 Differentiation

Suppose o is a scalar and that A(a) is an m-by-n matrix with entries a,;{a).
If ayy(c) is a differentiable function of a for all i and j, then by A(a) we
mean the matrix

Ao = 7A@ = (au(@) = Gu(a)-

The differentiation of a parameterized matrix turns out to be a handy way
to examine the sensitivity of various matrix problems.

Problems

P2.1.1 Show that if A € R™**™ has rank p, then there exists an X € B™*P and a
Y € R**P such that A = XY7T, where rank{X) = rank(Y) = p.

P3.1.3 Suppose A{a) € R™*" and B{a) € K ™ are matricen whose entries are differ-
entiable functions of the scalar a. Show

ZelAB@)] = [2 Aa)] Ba) + Ae) |5 B(a)] -

P32.1.3 Suppoee Ala) € R"*™ has entries that are differentiable functions of the scalar
a. Assuming A(a) is always nonsingular, show

1= (407 =~ A [L At@)] 4@,

P2.1.4 Suppose A € B**™, b€ K" and that ¢(x) = JT Az — £Tb. Show that the
gradient of ¢ is given by Vé{z) = (AT + A}z ~b.

P2.1.5 Assume that both A snd A-+uvrT sre nonsingular where A € B*** and 6, v € It
Show that if r solvew (A + wo”)x = b, then it also solven a perturbed right hand side
problem of the furm Az = b+ aw. Give an axpression for @ in terms of A, 4, and v.

Notes and References for Sec. 2.1

There ars many introductory lineer algebra texts. Among them, the following are par-
ticularly useful:

P.R. Halmos (1958). Finite Dimensional Vector Spaces, 2nd od., Van Nostrand-Reinhold,
Princeton.

52 CHAPTER 2. MATRIX ANALYSIS

S.). Leon (1980). Linear Algebra with Applications. Macmillan, New York
G. Stra.ng (1993). Introduction to Linear Algebrn, Wellesloy-Cambridge Preas, Wellealey

b. Lay {1994) Linear Alyebm and Jts Applications, Addison-Wealey, Reading, MA.
C. Meyer (1997). A Course in Appliad Linear Algebra, SIAM Publications, Philadelphia,
PA.

More advanced trestments include Gantmacher (1959}, Horn and Johnson {1985, 1991},
and

A.S. Householder (1964). The Theory of Matrices in Numerical Analysis, Ginn (Blais-
dell), Boaton.

M. Marcus and H. Mine (1964). A Survey of Matriz Theory and Matriz Inequalities,
Allyn and Bacon, Boston.

JN. Franklin (1968). Matriz Theory Prentica Hall, Englowood Cliffs, NJ.

R Bellman (1970). /nivoduction to Matriz Analysis, Seeeomd Edition, McGraw-Hill, New
York,

P. Lancaster and M. Tismenetoky (1985). The Theory of Matrices, Second Edition,
Academic Press, New York.

J.M. Ortegs (1987). Matriz Theory: A Second Course, Plenum Press, New York.

2.2 Vector Norms

Norms serve the same purpose on vector spaces that absolute value does
on the real line: they furnish a measure of distance. More precizely, R"
together with a norm on R" defines a metric space. Therefore, we have the
familiar notions of neighborhood, open sets, convergence, and continuity
when working with vectors and vector-valued functions.

2.2.1 Definitions

A vector norm on R” is a function f:IR® — R that satisfies the following
properties:

flz) 20 : zeR®, (f(z)=0iffz=0)
flz+y) £ f{z)+f(yv) zyeR"
flazx) = |a|f(z) aceRzeR"

We denote such a function with a double bar notation: f(z} = ||z ||. Sub-
scripts on the double bar are used to distinguish between various norms.
A useful class of vector norms are the p-norms defined by
Nzll, =021+ +izal®)s p21. (22.1)
Of these the 1, 2, and 00 norms are the most importaat:
N=ly, = leal+-r +lzal
[E (21l + - + zal?)t = (2T2)}

2 e max |z
I<i<n

2.2. VECTOR NORMS 53

A unit vector with respect to the norm]| - || is a vector x that satisfies
lzl=1

2.2.2 Some Vector Norm Properties
A classic result concerning p-norms is the Holder inequality:

1 1
=Tyl < I=l vl S*o=L (2.2.2)
A very important special case of this is the Cauchy-Schwertz inequality:
=7yl < = llally la- (2.2.3)
All norms on R" are equivalent , ie., if || - ||, and || - |4 are norms on

R", then there exist positive constants, ¢; and ¢z such that
allzii, €zl cealzl, (2.2.4)

for all £ € R™. For example, if £ € R", then

I=ll; < l=l, vl z 2 (2.2.5)
Hzlle < Hzllz € VAllzl, (2.2.6)
lzlle = Izl < nlizi,. (2.2.7)

2.2.3 Absolute and Relative Error

Suppose £ € R" is an approximation to z € R". For a given vector norm
[- || we say that

o = |2 -z
is the absolute error in . If T 3 0, then

o, o 12z
N EY

prescribes the relative error in #. Relative error in the oo-norm can be
translated into a statement about the number of correct significant digits
in #. In particular, if X
" I =X Hm = 1077,
I = Hoo
then the largest component of # has approximately p correct significant
digits.

Example 2.2.1 Ifz = {1.234 .05674)T and 2 = (1.235 .05128)T, then {2 — = ||,/ T oo
=3 0043 = 10~2, Note than), has about three significant digits that are correct while
ounly one significant digit in £3 is correct.

54 CHAPTER 2. MATRIX ANALYSIS

2.2.4 Convergence
We say that a sequence {x'*!} of n-vectors converyes to = if

lim ||z -z | =0.
k—oco

Note that because of (2.2.4), convergence in the o-norm implies convergence
in the S-norm and vice versa.

Problems

P32.2.1 Show that if z € R", then limyoo [Z |, = § Z lloo-

P2.2.2 Prove the Cauchy-Schwarts inequality (2.2.3) by considering the inequality
0 < (ax +)T (az + by) for suitable scalars o and 5 .

P2.2.3 Verify that || - [|,, || + {l, and || -]|, are vector norms.

P2.2.4 Verify (2.2.5)-(2.2.7). When is equality achieved in each result?

P2.2.5 Show that in R*, (! — z if and only if z{) — 2z, for k = I'n.

P2.2.8 Show that any wector norm on M™ is uniformiy continuous by verifying the
inequality ||zl - liv i< iz -vl.

P2.2.7 Let || . || be & vector norm on H™ and amume A € K™*™ . Show that if
rank(A) =n, then ||z |, = || Az]| is a vector norm on R”.

P2.2.8 Let z and y be in R™ and define :R — R by ¥(a) = [z — ay |2. Show that
+ ia minimized when a = =7 y/yTy.

P2.2.9 (a) Verify that |z |}, = (|=l|r+..,+|=“|r')i‘ is a vector norm on €". (b) Show
that if z € € then kz|l, < ¢{ll Re{z) J, + || Imtz)),))- {c) Find = constant cn such
that cu (|| Re{z) |2 + || Im(z} li2} < || z ||z for all z & C".

P2.2.10 Prove or dizprove:

Ve R = Hullvie < 220,

Notes and References for Sec. 2.2

Although a vector norm is “just” a generalization of the shaclute value concept, there
are somas noteworthy subtleties:

J.D. Pryce (1984)., “A New Measure of Relative Ervor for Vectors,” SIAM J. Num.
Anal 21, 202-21.

2.3 Matrix Norms

The analysis of matrix algorithms frequently requires use of matrix norms,
For example, the quality of a linear system solver may be poor if the ma-
trix of coefficients is “nearly singular.” To quantify the notion of near-
singularity we need a measure of distance on the space of matrices. Matrix
norms provide that measure.

2.3. MATRriXx NORMS 55

2.3.1 Definitions

Since R™*™ is isomorphic to R™®, the definition of a matrix norm should be
equivalent to the definition of a vector norm. In particular, f:R™*™ — R
is a matrix norm if the following three properties hold:

f(A) 2 0 AcR™™ (f(A)=0if A=0)
f(A+B) < f(A)+ f(B) ABeR™™,
flaA) = |a|f(A) aceR A B,

As with vector norms, we use a double bar notation with subscripts to
designate matrix norms, i.e., | A | = f(A4).
The most frequently used matrix norms in numerical linear algebra are

the Frobenius norm,
m ”
N4l = |22 laisi? (2.3.1)
=] jml

Az,

I=l, -
Note that the matrix p-norms are defined in terms of the vector p-norms
that we discussed in the previous section. The verification that (2.3.1) and

(2.3.2) are matrix norms is left as an exercise. It is clear that | A ||, is
the p-norm of the largest vector obtained by applying A to a unit p-norm

vector:
x
“(uzu,) i

It is important to understand that (2.3.1) and (2.3.2) define families
of norms—the 2-norm on F**3 ix 4 different function from the 2-norm on
R°*¢, Thus, the easily verified inequality

|ABI, < WAl NB], AcR™"BeR™ (2.3.3)

and the p-norms

Al = (2.3.2)

= max |4z,

Bxl,=1

A = Bui
N4l = sup

is really an observation about the relationship between three different norms.
Formally, we say that norms f;, fa, and fy on R™*¢, R™*" and F"*? are
mutually consistent if for all A € R™* " and B € R**? we have f,(AB) <
f2(A) f»(B).

Not all matrix norms satisfy the submultiplicative property

NAB| < JAINEB]. (2.3.4)

56 CHAPTER 2. MATRIX ANALYSIS

For example, if || A ||, = max |a;;{ and

11
A=B=[1 1]’

then | AB || > [l Allsll Blls. For the most part we work with norms that
satisfy (2.3.4).

The p-norms have the important property that for every A € R™*" and
zeR® we have || Az |, < [All,l= [, More geperally, for any vector
norm | - ||, on B and || - ||, on B™ we bave | Az |5 < | All, 5l 2,
where || A || ,p 18 @ matrix norm defined by

Al ;= sup 1Az iy : (2.3.5)
' w0 [zlla
We say that || - ||, 4 is subordinate to the vector norms || - ||, and || - ||4-
Sioce the set {z € R" |z iy =1} is compact and || - |4 is continuous, it
follows that
I Allss = max | Az)y = || Az |lg (2.3.6)
2lla=

for some z* € IR™ having unit a-norm.

2.3.2 Some Matrix Norm Properties

The Frobenius and p-norras (especially p = 1, 2, 0o) satisfy certain inequal-
ities that are frequently used in the analysis of matrix computations. For
A € R™*" we have

ANz < | Allp < VAl Alla 23.7)
max laijl < | Allz2 € vmn max a5 (2.3.8)
H w2

hal, = max ;llaul (23.9)
14l = max E;a., (2.3.10)
14l < 1412 < VA AL, (2.3.11)

1
TENAIII < Allz < vnil Al (2.3.12)

2.3. MATRIX NORMS 57

HFAeR™™ 1<4; $ig<m,and 1< €2 <n, then
| Adiazig, juzi2) i, S A (2.3.13)

The proofs of these relations are not hard and are left as exercises.
A sequence {A™} € R™*™ converges if limj .o || A®) — Al = 0.
Choice of norm is irrelevant since all norms oo R™*™ are equivalent.

2.3.3 The Matrix 2-Norm

A nice feature of the matrix 1-norm and the matrix co-norm is that they
are easily computed from (2.3.9) and (2.3.10). A characterization of the
2-norm is considerably more complicated.

Theorem 2.3.1 If A c R™*", then there exists a unit 2-norm n-vector z
such thet ATAz = 2z where u =< || A2

Proof. Suppose z € R" is a unit vector such that || Az]z = || Alla. Since
z maximizes the function

2 T
o) = L1413 _1274TAz

T2z T2 2Tz

it follows that it satisfies Vg(z) = 0 where Vg is the gradient of ¢. But a
tedious differentiation shows that for i = lin

a—g(zf—) = 1(z72) i(ATA)i:'zj - (ZTATAZ)G} /(ZTZ)Z'

=1

In vector notation this says AT Az = (zT AT Az)z. The theorem follows by
setting ju = || Az 3. O

The theorem implies that || A [|]3 is 8 zero of the polynomial p{A) =
det(AT A — AI). In particular, the 2-norm of A is the square root of the
largest eigenvalue of AT A. We have much more to say about eigenvalyes in
Chapters 7 and 8. For now, we merely observe that 2-norm computation
is iterative and decidedly more complicated than the computation of the
matrix 1-norm or co-norm. Fortunately, if the object is to obtain an order-
of-magnitude estimate of || A [}z, then (2.3.7), (2.3.11), or (2.3.12) can be
used.

As another example of “norm analysis,” here is a handy result for 2-
norm estimation.

Corollary 2.3.2 If A€ R™", then || A ll2 < 1/l All, | Al -

Proof. If z # 0 is such that ATAz = p®z with u = || A ||z, then p¥|| z ||, =
HATAz ||, < AT LN ANN 2zl = Al AllLNl 21}y ©

58 CHBAPTER 2. MATRIX ANALYSIS

2.3.4 Perturbations and the Inverse

We frequently use norms to quantify the effect of perturbations or to prove
that & sequence of matrices comverges to a specified limit. As an illustration
of these norm applications, let us quantify the change in A~! as a function
of change in A.

Lemma 2.3.3 If FERY™" and | F|, < 1, then I — F is nonsingular

gnd o
2
k=0

-
1= F,

Proof. Suppose I — F is singular. It follows that (I — F)z = 0 for some
nonzero . But then || z||, = || Fz ||, implies {| F ||, > 1, a contradiction.
Thus, I — F is nonsingular. To chtain an expression for its inverse consider

the identity
N
(Z F") (I-F) = I -FN+,
k=l

Since || F ||, < 1 it follows that lim F* = 0 because || F* |, < [l

Thus,
(hm ZF“) I-F)=1.

k=0

(I-Fy!

I

with
tI-F), <

It follows that (I — F)~! = lun ZF" From this it is easy to show that
k:ﬂ

ha~Fy, ZnFu, = “_uﬁ“

Note that || (I — F)"' =If, < [IF|,/(1 - | Fl,) s a consequence

of the lemma. Thus, 1f € «: 1, then O(J pe.rturbauons in I induce Ofe)
perturbations in the inverse. We next extend this result to general matrices.

Theorem 2.3.4 If A is nonsingular andr = | AT'E |, <1, then A+ E
is nonsingulor and || (A+ E)™' - A7 ||, < ||4'5'||,,||fi"1 /(=)

Proof. Since A is nonsingular A + E = A(I — F) where F = —A~'E .
Since || F||, = r < 1it follows from Lemma 2.3.3 that I — F is nonsingular
and || (I - FY' Y, < 1/(1 —r). Now (A +Eyl=(I-F)'A"! and 0

HAH,

=1 <
HA+E)), § T

2.4. FINITE PRECISION MATRIX COMPUTATIONS 59

Equation (2.1.3) says that (A + E)~! — A~! = —A~1E(A + E)~! and so
by taking norms we find
I(A+E)y" -4,

1A

FATHG U E N, I (A+E)7H,

—1 %
NA™ 10 B I!,,_ g
1-r

Problems

P12.3.1 Show [AB|l, <J All,]] B, where 1 <p < oo,

P1.3.2 Let B be any submatrix of A. Show that {| B{l, < AY,.

P2.3.3 Show that if D = disg(ui,...,pr) € R™*" with k = min{m, n}, then || D,
= max |-

P2.3.4 Verify (2.3.7) snd (2.3.8).

P2.3.5 Verify (2.3.9) and (2.3.10).

P2.3.6 Verify (2.3.11) and (2.3.12).

P2.3.7 Vesify (2.3.13).

P2.3.8 Show that if 0 # s € K" and E € R**", then

asT
P2.3.9 Suppose u € ™ and v € R*. Show that if E = uvT then [Eflp = | Ellz =
| lizil v liz and thet | Efy < lullgll v ;-
P2.3.10 Suppose A € R™*™ y € R™, and 0 # s € R". Show that B = (y— As)sT /5T s
has the smallest 2-norm of all m-by-n matrices £ that satiafy (A + E)a=yp.

|} Es |3
=B} - —=2.
1E1e aTs

2
F

Notes and Referances for Sec. 2.3
hdmmmsmm/mmm

‘F.L. Baver and C.T. Fike (1860). “Norma and Exclusion Theorema,” Numer. Math. £,
137-44.

L. Mirsky (1960). “Symmetric Gauge Functions and Unitarily [nvariant Norma," Quart.
J. Math. 11, 50-50.

A.3. Householder (1964). The Theory of Mairices m Numerical Analysis , Dover Pub-
licationa, New York.

N.J. Higham (1992). “Estimating the Matrix p-Norm,” Numer. Math &2, 539-556.

2.4 Finite Precision Matrix Computations

In part, rounding errors are what makes the matrix computation area so
nontrivial and interesting. In this section we set up a model of floating point
arithmetic and then use it to develop error bounds for floating point dot
products, saxpy's, matrix-vector products and matrix-matrix products. For

60 CHAPTER 2. MATRIX ANALYSIS

a more comprehensive treatment than what we offer, see Higham (1996) or
Wilkinson {(1965). The coverage in Forsythe and Moler (1967) and Stewart
(1973) is also excellent.

2.4.1 The Floating Point Numbers

When calculations are performed on a computer, each arithmetic opera-
tion is generally affected by roundoff error. This error arises because the
machine hardware can only represent a subset of the real numbers. We
denote this subset by F and refer to its elements as floating point numbers.
Following conventions set forth in Forsythe, Malcolm, and Moler (1977, pp.
10-29), the floating point number system on & particular computer is char-
acterized by four integers: the base 3, the precision t, and the ezponent
range [L, U/]. In particular, F conaists of all numbers f of the form

f==xdidy...d x 8° 0<d; <P, d#0, L<e<U

together with zero. Notice that for a nonzero f € F wehavem < |f| < M
where

m=pg"" and M=g%0-8". (2.4.1)

As an example, f 3=2,1=3, L =0, and U = 2, then the non-negative
elements of F are represented by hash marks on the axis displayed in F1G.
2.4.1. Notice that the floating point numbers are not equally spaced. A

FIGURE 2.4.1 Sample Floating Point Number System

typical value for (8,t, L, U) might be (2, 56, -64, 64).

2.4.2 A Model of Floating Point Arithmetic

To make generai pronouncements about the effect of rounding errors on a
given algorithm, it is necessary to have a model of computer arithmetic on
F. To this end define the set G by

G={zeR:m<|z{<M}u{0} (2.4.2)

2.4. FINITE PRECISION MATRIX COMPUTATIONS 61

and the operator fi: G — F by

fi(z) = nearest ¢ € F to z with ties handled
"]| by rounding away from zero.

The fl operator can be shown to satisfy
JUz)=z(l+¢) ¢ <nu (24.3)
where u is the unit roundoff defined by

u = %ﬁ“'. (2.4.4)

Let a and b be any two Boating point numbers and let “op” denote any

of the four arithmetic operations +, —, x, +. Ifaop b € G, then in our

model of floating point arithmetic we assume that the computed version of

(a op b) 1s given by fl{a op b). It follows that fi{a op &) = {6 op b)(I + ¢)
with |¢| < u. Thus,

|fi{a op b) ~ (a op b)|
a op &

<u aopb#0 (2.4.5)

showing that there is small relative error associated with individual arith-
metic operations!. It is important to realize, however, that this is not
necessarily the case when a sequence of operations is involved.

Example 2.4.1 If 8 =10, ¢t = 3 floating point arithmetic is used, then it can be shown
that fI[fi(10~* + 1) — 1] = 0 implying a relstive error of 1. On the other hand the
exact answer is given by FI[fI{(10~* + fI{1 - 1)] = 10~*. Floating point arithmetic is
not always associative

If ¢ op b & G, then an arithmetic ezception occurs. Cverflow and
underflow results whenever |a op 8 > M or 0 < |a op b] < m respectively.
The handling of these and other exceptions is hardware/system dependent.

2.4.3 Cancellation

Another important aspect of finite precision arithmetic is the phenomenon
of catastrophic cancellation. Roughly speaking, this term refers to the ex-
treme loss of correct significant digits when small numbers are additively
computed from large numbers. A well-known example taken from Forsythe,
Malcolm and Moler (1977, pp. 14-16) is the computation of e™* via Tay-
lor series with @ > 0. The roundoff error associated with this method is

1There are important examples of machines whose sdditive floating point operations
satisfy flla+d) = (1 + e1)a 4 (1 + eg)d where ||, €2 € w In such an environment,
the inaquality |fi{a & &) — (a & b)| < ula £ & need not bold.

62 CHAPTER 2. MATRIX ANALYSIS

approximately u times the largest partial sum. For large a, this error can
actually be larger than the exact exponential and there will be no correct
digits in the answer no matter how many terms in the series are summed.
On the other hand, if enough terms in the Taylor series for £* are added and
the result reciprocated, then an estimate of e~* to full precision is attained.

2.4.4 The Absolute Value Notation

Before we proceed with the roundoff analyzis of some basic matrix calcu-
lations, we acquire some useful notation. Suppose A € IR™*™ and that we
wish to quantify the errors associated with its floating point representation.
Denoting the stored version of A by fl(A), we see that

[Fi(A)i; = fl(ais} = ai{l +e5) les| S (2.4.6)

for all i and j. A better way to say the same thing resuits if we adopt two
conventions. If 4 and B are in R™*", then

B=|A = bkj=lay,i=Lm, j=1n
BSA = b.;,-f;a..-,-,izl:m,jzl:n.
With this notation we see that (2.4.6) has the form
[fi(4) - Al < ujAl.
A relation such as this can be easily turned into a norm inequality, e.g.,
| fi(A) - A)l; < u]| A||,. However, when quantifying the rounding errors

in 8 matrix manipulation, the absolute value notation can be a lot more
informative because it provides a comment on each (i, §) entry.

2.4.5 Roundoff in Dot Products

‘We begin our study of finite precision matrix computations by considering
the rounding errors that result in the standard dot product algorithm:

s=10
for k=1mn

TEXEY TET (2.4.7)
and

Here, z and y are n-by-1 floating point vectors.

In trying to quantify the rounding errors in this algorithm, we are
immediately confronted with a notational problem: the distinction be-
tween computed and exact quantities. When the underlying computations
are clear, we shall use the fi{-) operator to signify computed quantities.

2.4. FINITE PRECISION MATRIX COMPUTATIONS 63

Thus, fi(zTy) denotes the computed output of (2.4.7). Let us bound

T y) - Tyl K .
=fl (szyh) ,
k=]

then 81 = 1 (1 + 6;) with |§] £ u and for p = 2:n

fsp—1 + fl{zpyp))
= (spr +Tup(1 4+ 6)) (14 6) Iphlepl <u. (2.48)

3p
A little algebra shows that

fUzTy) = sn = izm(l +)

k=1

where
n
(1+7)=0+8&) [0 +e¢)
juk
with the convention that ¢; = 0. Thus,
ATy -2yl <Y lzeuelinl. (24.9)

k=1

To proceed further, we must bound the quantities [ye| in terms of u. The
following result is useful for this purpose.

i
Lemma 2.4.1 Jf{1+a) = [](1+au) where |ax| < u and nu < .01, then

k1
|a| < 1.01nu.

Proof. See Higham (1996, p. 75). O
Applying this result to (2.4.9) under the “reasonable” assumption nu < .01
Eives

[fi(zTy) — zTy| < 1.01nujz|T |yl (2.4.10)
Notice that if [zTy| < |z|T|yl, then the relative error in fl(z7y) may not
be small.
2.4.6 Alternative Ways to Quantify Roundoff Error

An easier but less rigorous way of bounding o in Lemma 2.4.1 mtoaay
|of € nu + O(u?). With this convention we have

LFi{zTy) — 2Tyl < nujz|7 |yl + Ofu?). (2-4.11)

64 CHAPTER 2. MATRIX ANALYSIS

Other ways of expressing the same result include

|Fi(zTy) — 27yl < (n)ulz|Tly] (2.4.12)

and
IF1(Ty) — 27 y| < enulziTly, (2.4.13)

where in (2.4.12) ¢(r) is a “modest” function of n and in (2.4.13) cis a
constant of order unity.

We shall not express a preference for any of the error bounding styles
shown in {2.4.10)-(2.4.13). This spares us the necessity of transiating the
roupdoff results that appear in the literature into a fixed format. Moreover,
paying overly close attention to the details of an error bound is inconsistent
with the “philosophy” of roundoff analysis. As Wilkinson (1971, p. 567)
5ays,

There is still a tendency to attach too much importance to the
precise error hounds obtained by an & priori error analysis. In
my opinion, the bound itself is usually the least impartant part
of it. The main object of such an analysis is to expose the
potential instabilities, if any, of an algorithm so that hopefully
from the insight thus obtained one might be led to improved al-
gorithms, Usually the bound itseif is weaker than it might have
been because of the necessity of restricting the mass of detail
to a reasonable level and because of the limitations imposed by
expressing the errors in terms of matrix norms. A priori bounds
are not, in general, quantities that should be used in practice.
Practical error bounds should usually be determined by some
form of A posteriori error analysis, since this takes full adven-
tage of the statistical distribution of rounding errors and of any
special features, such as sparseness, in the matrix.

It is important to keep these perspectives in mind.

2.4.7 Dot Product Accumulation

Some computers have provision for accumulatipg dot products in double
precision. This means that if and y are floating point vectors with length
¢t mantiseas, then the running sum s in (2.4.7) is built up in a register with
a 2¢ digit mantissa. Since the multiplication of two t-digit floating point
numbers can be stored exactly in a double precision variable, it is only
when # is written to single precision memory that any roundoff occurs. In
this situation one can usually assert that a computed dot product has good
relative error, i.e., fl(zTy) = zTy(1 + 6) where |5| ~ u. Thus, the ability
to accumulate dot products is very appealing.

2.4. FINITE PRECISION MATRIX COMPUTATIONS 65

2.4.8 Roundoff in Other Basic Matrix Computations

It is easy to show that if A and B are floating point matrices and ar is a
floating point number, then

fllad)=aA+ E |E| € ulaA| (2.4.14)
and
fllA+B)y=(A+B)+ E |E| € u|A+ Bl {2.4.15)

As a consequence of these two results, it is easy to verify that computed
saxpy’'s and outer product updates satisfy

fllaz+y)=az+y+z |z Su(lazi+ly)) +0(u?) (24.16)

fUC+uw T =C+wT+E |E| < u(|C] +2luvT|) + O(u?). (2.4.17)

Using (2.4.10) it i3 easy to show that a dot produet based multiplication of
two floating point matrices A and B satisfies

fABY=AB+E |E| < nul4||B| + O(u?). (2.4.18)

The same result applies if a gaxpy or cuter product based procedure is used.
Notice that matrix multiplication does not necessarily give small relative
error since |AB) may be much smaller than |A|| B}, e.g.,

11 103 _ 101 0
00 -9 o0} | 0 0O}
It is easy to obtain norm bounds from the roundoff results developed thus
far. If we look at the 1-norm error in floating point matrix multiplication,
then it is easy to show from (2.4.18) that
| F(AB) ~ AB), < nul A|l,] BIl, +O(u?). (2.4.19)

2.4.9 Forward and Backward Error Analyses

Each roundoff bound given above is the consequence of a forward error
analysis. An alternative style of characterizing the roundoff errors in an
algorithm is accomplished through a technique known as backward error
analysis. Here, the rounding errors are related to the data of the problem
rather than to its solution. By way of illustration, consider the n = 2
verzion of triangular matrix multiplication. It can be shown that:

ap b (I + e1) (@rabia(l + €3) + a12baz(1 + €3))(1 + €4)
fi(AB) =
0 ax2b32(1 + ¢5)

66 CHAPTER 2. MATRIX ANALYSIS

where |¢;] < u, for i = 1:5. However, if we define
. [a1y ﬂlg(l + 63)(1 +€4)]
A=

a azn(l + €5)

0 bz
then it is easily verified that fI{AB) = AB. Moreover,

- [n(lt+ea) bha(l+ea)(i+e)]
B = 3

i=A+E |E| <2ujA|+0(u?)
B=B+F |F|<2u|B|+0u?.

In gther words, the computed product is the exact product of slightly per-
turbed A and B.

2.4.10 Error in Strassen Multiplication

In §1.3.8 we outlined an unconventional matrix multiplication procedure
due to Strassen (1969). It is instructive to compare the effect of roundoff
in this method with the effect of roundoff in any of the conventional matrix
multiplication methods of §1.1.

It can be shown that the Strassen approach (Algorithm 1.3. 1} produces
al = fl{AB) that satisfies an inequality of the form (2.4.19). This is
perfectly satisfactory in many applications. However, the C that Strassen’s
method produces does not always satisfy an inequality of the form (2.4.18).
To see this, suppose

99 0010

A=25B ‘[.0010 99 }

and that we execute Algorithm 1.3.1 using 2-digit foating point arithmetic.
Among other things, the following quantities are computed:

Py = fI(.99(.001 — .99)) = —.98

B FI((.99 + .001).99) =

é1z iR+ B5) =
Now in exact arithmetic ¢12 = 2(.001){.99) = .00198 and thus Algorithm 1.3.1
produces a éj3 with Do correct significant digits. The Strassen spproach gets
into trouble in this example because small off-diagonal entries are combined

with large diagonal entries. Note that in conventional matrix multiplication
neither by and byg nor ayy and aj9 are summed. Thus the contribution of

2.4. FINTTE PRECISION MATRIX COMPUTATIONS 67

the small off-disgonal elements is not lost. Indeed, for the sbove A and B
a conventional matrix multiply gives &3 = .0020.

Failure to produce a componentwise accurate C can be a serious short-
coming in some applications. For example, in Markov processes the ayy,
bij, and c;; are transition probabilities and are therefore nonnegative. It
may be critical to compute ¢;; accurately if it reflects a particularly im-
portant probability in the modeled phenomena. Note that if A > 0 and
B > 0, then conventionsl matrix multiplication produces a product ¢ that
has small componentwise relative error:

|IC —C| < nulAl|B| + O(?) = nuiC| + O(u?).

This follows from (2.4.18). Because we cannot say the same for the Strassen
approach, we conclude that Algorithm 1.3.1 is not attractive for certain
nonnegative matrix multiplication problems if relatively accurate &;; are
required.

Extrapolating from this discussion we reach two faitly obvious but im-
portant conclusions:

e Different methods for computing the same gquantity can produce sub-
stantially different results.

e Whether or pot an algorithm produces satisfactory results depends
upon the type of problem soived and the goals of the user.

These observations are clarified in subsequent chapters and are intimately
related to the concepts of algorithm atability and problem condition.

Problems

P2.4.1 Show that if (2.4.7) is applied with y = z, then fi(xTz) = z72(1 + a) where
laf € au + O{u?).

F2.4.3 Prove (2.4.3).

P2.4.3 Show that if E € R™*™ with m > n, then {| |[E] {a < Al E 2. This result is
useful when deriving norm bounds from abeclute value bounds.

P2.4.4 Assume the existence of a square roct function satisfying fI(v/Z) = VZ(1 + ¢}
with |¢f < u. Give an slgorithm for computing ff # [z and bound the rcunding errars.
P2.45 Suppass A and B are n-by-n upper triangular floeting point matrices. if & =
JI{AR) i computed using ono of the conventional §1.1 algorithma, does it follow that
€ = AB where A and B wre close to A and B?

P2.4.8 Supposs A and B are n-by-n foeting point matrices and that A is nonsingular
with § |4~ |A] oo = 7. Show that if & = fl(AB) is cbtained wsing say of the
algorithme in §1.1, then thete exists 3 B 00 &' = AB and | B = B oo < nurf Blles +
Ofu?). ,

P2.4.7 Prove (2.4.18).

68 CHAPTER 2. MATRIX ANALYSIS

Notes and References for Sec. 1.4
For n general introduction to the effecta of roundoff error, we recommend

1.H. Wilkinson (1963). Rounding Brrors in Algebraic Processes, Prentics Hall, Engle-
wood Cliffls, NJ.

I.H. Wilkinson (1971). “Modern Error Analysin" SIAM Rewiew I3, 548-68.

D. Kahaner, C.B. Moler, and S. Nash (1688). Numerical Methods and Software, Prentice-
Hall, Englewood Cliffa, NJ.

F. Chaitin-Chatelin and V. Frayseé (1996). Lectures on Finite Precision Compulations,
SIAM Publications, Philadeiphia.

More recent developments in error analysis involve interval analysis, the building of ata-
tistical models of roundoff error, and the automating of the anailysis itseif:

T.E. Hull and J.R. Swensen (1866). “Tests of Probabilistic Models for Propagation of
Roundoff Errors,” Comm. ACM. 9, 108-13,

J. Larson and A. Sameh (1978). “Efficient Calculation of the Effects of Roundoff Exrors,”
ACM Trans. Math. Soft §, 228-36.

W. Millar and D. Spooner (1978). “Software for Roundoff Analysis, [1,* ACM Trass.
Math. Soft. {, 369-90.

J.M. Yohe (1979). “Soitware for Interval Arithmetic: A Reasonable Portabie Paciage,”
ACM Trans. Math. Soft 5, 50-83.

Anyone engaged in serious software development needs a thorough understanding of
floating point arithmetic. A good way to begin acquiring knowledge in this direction is
to read about the IEEE floating point standard in

D. Goldberg (1991). “What Every Computer Scientist Should Kuow About Floating
Point Arithmetic,” ACM Surveys 23, 5-48.

See also

R.P. Brent (1878). “A Fortran Muitiple Precisicn Arithmetic Package,” ACM Trana,
Math. Soft. 4, 5T-70.

R.P. Brent (1978). “Algorithm 524 MP, & Fortran Multiple Precision Arithmetic Pack-
age,” ACM Trana. Math. Soft. 4, T1-81.

J.W. Demmel (1984). “Underflow and the Reliability of Numerical Software,” STAM J.
Sci ond Stat. Comp. 5, 387-919.

U.W. Kulisch and W .L. Miranker (1985). “The Arithmetic of the Digital Computer,”
SIAM Review £8, 1-40.

W.1. Cody (1988). *ALGORITHM 665 MACHAR: A Subroutine t0 Dynamically De-
termine Machine Paurnmeters™ ACM Trans. Math. Soft. 14, 303-311.

D.H. Bailey, H.D. Simon, J. T. Barton, M.J. Fouts (1989). “Floating Point Arithmetic
in Future Supercomputers,” Int’l J. Supercomputing Appl. 3, 86900,

D.H. Bailey (1993). *Algorithm T19: Multiprecision Translation and Execution of FOR-
TRAN Programe,” ACM Trans. Math. Soft. 19, 288-319.

The subtleties associated with the development of high-quality software, even for “sim-
ple” problems, are immense. A good example in the deign of a subroutins to compute
2-norma

J.M. Blue (1978). *A Portable FORTRAN Program to Find the Euclidean Norm of a
Vector,” ACM Trans. Math. Soft. {, 15-23.

For an analysis of the Strassen algorithm and other “fagt” linear algebra procedures sea

2.5. ORTHOGONALITY AND THE SVD 60

RLP. Brent (1970). “Exrar Analysis of Algorithrme for Matrix Multiplication and Trian-
gular Decomposition Using Winograd’s Identity,” Numer. Math. I6, 145-156.
W, Miller (1975). “Computational Complexity and Numerical Stability,* SIAM J. Com-

puting 4, 97-10T.
N.J. Higham (1992). “Stability of a Method for Multiplying Compiex Mstrices with
Three Ranl Matrix Multiplicationa,” SIAM J. Motriz Anal. Appl. 13, 681-€87.
J.W. Demmei and N.J. Higham (1992). “Stability of Block Algorithms with Fast Level-3
BLAS," ACM Trans. Math. Soft. 18, 2T4-291.

2.5 Orthogonality and the SVD

Orthogonality has a very prominent role to play in matrix computations.
After establishing n few definitions we prove the extremely useful singular
value decomposition (SVD). Among other things, the SVD enabies us to
intelligently handle the matrix rank problem. The concept of rank, though
perfectly clear in the exact arithmetic context, is tricky in the presence of
roundoff error and fuzzy data. With the SYD we can introduce the practical
notion of numerical rank.

2.5.1 Orthogonality

A set of vectors {zy,...,%,} in R™ is orthogonal if z7x; = 0 whenever
i # j and orthonormal if z7z; = 6;;. Intuitively, orthogonal vectors are
maximally independent for they point in totally different directions.

A collection of subspaces §i,...,5; in R™ is mutually orthogonal if
zTy = 0 whenever z € S; and y € S; for i # j. The orthogonal compiement
of a subspace § C R™ is defined by

St={yeR™:yTx=0forall z € 5}

and it is not hard to show that ran(A)" = null(AT). The vectors vy, ..., v
form an orthonormal basia for a subspace § C R™ if they are orthonormal
and span S.

A matrix Q€ R™*™ is said to be orthogonal ¥ QTQ =1. f Q =
{a1,...,9m] is orthogonal, then the ¢; form an arthonormal basis for R™.
It is always possible to extend such a basis to a full orthonormal baesis
{v,..., 0} for R™:

Theorem 2.5.1 If V; ¢ B™*" has orthonormal columna, then there exists
Va e B sueh that
V=[W¥h]

is orthogonal. Note that ran(Vi)' = ran(Va).

Proof. This is a standard resuit from introductory linear algebra. It is
also a corollary of the QR [actorization that we present in §5.2. O

70 CHAPTER 2. MATRIX ANALYSIS

2.5.2 Norms and Orthogonal Transformations

The 2-norm is invariant under orthogonal transformation, for if QTQ =1,
then |[Qz |2 = z7QTQz = zTz = | z|3. The matrix 2-norm and
the Frobenius norm are also invariant with respect to orthogonal transfor-
mations. In particular, it is easy to show that for all orthogonal Q and 2
of appropriate dimensions we have

HQAZ{r=1Allp (2.5.1)

and

I QAZ lla = Allz- (2.5.2)

2.5.3 The Singular Value Decomposition

The theory of norma developed in the previous two sections can be used to
prove the extremely useful singular value decompoeition.

Theorem 2.5.2 (Singular Value Decomposition (SVD)})} If A is a real
m-by-n matriz, then there erist orthogonal mairices

U={u....,um | ER™™ and V ={v,...,vn] e R*"
such that
UT AV = diag(o1,...,0,) € R™™ p= min{m,n}
whereoy 2 g 2 ... 20, 20,

Proof. Let z € R™ and y € R™ be unit 2-norm vectors that satisfy Az =
oy with ¢ = || A||z. From Theorem 2.5.1 there exist V5 € R**{"~1) and
Up e R0 00V = {2 V3] € R and U/ = [y U] € R™™ are
orthogonal. It is not hard to show that U7 AV has the following structure:

g wi] _
UTAV=[0 B]:Al.
2 (¢ +vTw)?

(LD

we have | A1 I3 > (e + wTw). Buto? = | A3 =| A1 }}3 , and s0o we
must have w = 0. An obvious induction argument completes the proof of
the theorem. O

2

The o; are the stngular values of A and the vectors u; and v; are the
ith left singular vector and the ith right singular vector respectively. It

2.5. ORTHOGONALITY AND THE SVD 71

is easy to verify by comparing columns in the equations AV = UL and
ATU = VIT that
Aﬂi

ATy,

= OJjUy s o Vvl
- aw; }1—1.mm{m,n}

It is convenient to have the following notation for designating singular val-
ues:
ai(A) the ith largest aiegular value of A,
Omaz{A) the largest singular value of A,
Omin{Ad) = the smallest singular value of A.

The singular values of a matrix A are precisely the lengths of the semi-axes
of the hyperellipsoid E defined by £ = { Ax: f[z]ls=1}.

Example 1.5.1

[9 1127 _ r_[6 -81[3 o][.8 81T
A= 208 .%]‘UEV ‘[.s .s][u 1][.5 -.a] :

The SVD reveals a great deal about the structure of a matrix. If the
SVD of A is given by Theorem 2.5.2, and we define r by

1220, > 0= -=0p=0,
then
rank(d} = r {2.5.3)
null(A) = span{v,41,...,u} {2.5.4)
- ran{A) = span{uy,...,u.}, {2.5.5)

and we have the SVD erpansion
-
A= Zo.-uwf' . (2.5.6)
im1

Various 2-norm and Frobenius norm properties have connections to the
SVD. If A € R™*", then

NAl: = o}+-+d? p=min{ma} (257)
lAlla = a1 (2.5.8)
min lAzl Tn (m>n}. (2.5.9)

%0 N Zlz2

T2 CHAPTER 2. MATRIX ANALYSIS

2.5.4 The Thin SVD
If A=UZVT € R™*" is the SVD of A and m > n, then

A = U121VT

where
U, = UG 1n) = [ug,..., u] € R®*"

and

L, = E(iin,I:in) = diag(oy,...,0n) € "™

We refer to this much-used, trimmed down version of the SVD as the thin
SVD,

2.5.5 Rank Deficiency and the SVD

One of the most valuable aspects of the SVD is that it enables us to deal
sengibly with the concept of matrix rank. Numerous theorems in linear
algebra have the form “if such-and-such a matrix has full rank, then such-
and-such a property holds.” While neat and aesthetic, results of this flavor
do not help us address the numerical difficulties frequently encountered in
situations where near rank deficiency prevails. Rounding errors and fuzzy
data make rank determination a nontrivial exercise. Indeed, for some small
¢ we may be interested in the e-rank of 8 matrix which we define by

rank({4, ¢} = min rank{B).
HA-Blla<e

Thus, if A is obtained in a laboratory with each a¢; correct to within +.001,
then it might make sense to look at rank(4,.001). Along the same lines, if
A is an m-by-n floating point matrix then it is reasonable to regard A as
numerically rank deficient if rank(A, ¢) < min{m,n} with ¢ = ulj A |2.

Numerical rank deficiency and e-rank are nicely characterized in terms
of the SVD because the singular values indicate how near a given matrix is
to a matrix of lower rank,

Theorem 2.5.3 Let the SVD of A € R™™™ be given by Theorem 2.5.2. If
k < r = rank(A) and

k
A = Za,—mvf . (2.5.10)
iml
then
mn JA-Bfs = |A-Axllz = or41- (2.5.11)

rank({B)=%

2.5. ORTHOGONALITY AND THE SVD 73

Proof. Since UT A,V =diag(oy, ..., 0,...,0) it follows that rank(A4;) =
k and that UT(A-AL)V = disg(0,...,0,0%41,-..,0,) s0d 80 || A - Ay [l =
The41-

Now suppose rank(B) = k for some B ¢ R™*". It follows that we coan
find orthonormal vectors zy,...,2,_k 30 null{B} = span{zy,...,2, s} .
A dimension argument shows that

span{z),...,2p_k} N span{n,...,%a} # {0}

Let z be a unit 2-norm vector in this intersection. Since Bz = 0 and

k+1
Az = Y ool z)u
fml
we have

ki
NA-BUZ 2 I(A-B)z i} =14z} = 3 oi(ef2) 2 o}y,

iml
corapleting the proof of the theorem. O

Theorem 2.5.3 says that the smallest singular value of A is the 2-norm
distance of A to the set of all rank-deficient matrices. It also follows that

the set of full rank matrices in R™*" is both open and dense.
Finally, if r¢ = rank(A, ¢}, then

T1 2 " 2 Tpe > €2 Opeql 2 -7 2 0p p = min{m, n}.

We have more to say about the numerical rank issue in §5.5 and §12.2.

2.5.6 Unitary Matrices

Over the complex Seld the unitary matrices correspond to the orthogonal
matrices. In particular, @ € C**™ is unitary if Q7 Q = QQ# = I,,. Unitary
matrices preserve 2-norm. The SVD of a complex matrix involves unitary
matrices. If A € €™*", then there exist unitary matrices IV € ¢™*™ and
V € U"*" such that

UH AV = diag{oy,...,0,) € R**® p= min{m,n}
where gy > 032 ... 20, = 0.

Problems

P2.5.1 Show that if S is real and ST = ~ 8, then J ~ § is nonsingular and the matrix
{I - 8)-(1 + S) is orthogonal. Thin is known na the Capley tranaform of 3.

74 CHAPTER 2. MATRIX ANALYSIS

P21.5.2 Show that a triangular orthogonal matrix is disgonal,
P2.5.3 Show that if Q = Q) + i@ is unitary with @1, Q2 € E**™, then the 2n-by-In
rool matrix Q1 -2
Z= [Q:]
is orthogonal.
P2.5.4 Establish properties (2.5.3)-(2.5.9).
P2.5.5 Prove that

OCmax{A) =

T

max _v Az
peR"zeR" Nzl
P2.5.6 For the 2-by-2 matrix A = [‘: ’z‘
TminlA) that are functions of w, z, y, and =z.
P2.5.7 Show that any mairix in RR™*™ is the limit of a sequence of full rank matrices.
P2.5.8 Show thet if A € R™*™ has rank n, then || A(ATA)~1AT ||z = 1.
1" M
0 1

], derive expressions for Pmax(A) and

P2.5.0 What is the nearest mank-one matrix to A = [] in the Frobenius norm?

P2.5.10 Show that if A € R"*" then || A ||z < /rank(A) || A ||z, thereby sharpening
(2.3.7).

Notes and References for Sec. 1.5

Forsythe and Moler {1967) offer a good account of the SVD'’s role in the analysis of the
Az = b problem. Their proof of the dacomposition is more traditional than ours in that
it maken use of the eigenvalue theory for symmetric matrices, Historical SVD references
include

E. Beitrami {1873). “Sulle Funzioni Bilineari,” Gionale di Mathematiche 11, 98-106.

C. Eclart and G. Young (1939). “A Principal Axis Transformation for Non-Hermitian
Matrices,” Bull. Amer. Math. Soc. 4§, 118-21.

G.W. Stewart (1993). “On the Early History of the Singuiar Value Decompesition,”
SIAM Review 35, 551-386.

Ome of the most significant developmeants in scientific comnputation has been the increassd
use of the SVD in application areas that require the intelligent handling of matrix rank.
The range of applications is impressive. One of the moat intexvesting is

C.B. Moler and D). Morrison (1983). *Singular Value Analyxis of Cryptograms,” Amer.
Math. Monthly 90, T8-87.

For generalizations of the SVD to infinite dimensional Hilbert space, see
L.C. Gohberg and M.G. Krein (1969). Introduction o the Theory of Linear Non-Seif

Adjoint Operators , Amer. Math. Soc., Providencs, R I
F. Smithies (1970). Integral Equations, Cambridge University Press, Cambridge.
Reducing the rank of & matrix as in Theorem 2.5.3 when the perturbing matrix s con-
ined is di {in

J.W. Demmal (1987). “The smalleat perturbation of a submatrix which lowers the rank
and constrained total least squares problems, SIAM J. Numer. Anal 2{, 199-206.

2.6. PROJECTIONS AND THE CS DECOMPOSITION 75

G.H. Golub, A. Hoffman, and G.W. Stewart (1958). A Generalization of the Eclout-
Young-Mirsky Approximation Theorem.” Lin. Alp. and fis Applic. 88/8%, 31T-318.

G.A. Wataon (1988). “The Smallest Perturbation of a Submatrix which Lowers the Rank
of the Matrix,” ITMA J. Numer. Anal 8, 205-304.

2.6 Projections and the CS Decomposition

If the object of a computation is to compute a matrix or a vector, then
norms are useful for assessing the accuracy of the answer or for measuring
progress during an iteration. If the object of a computation is to compute
a subspace, then to make similar comments we need to be able to quantify
the distance between two subspaces. Orthogonal projections are critical in
this regard. After the elementary concepts are established we discuss the
CS decomposition. This is an SVD-like decomposition that is handy when
having to compare a pair of subspaces. We begin with the notien of an
orthogonal projection.

2.6.1 Orthogonal Projections

Let S C IR™ be a subspace. P € R™™™ is the orthogonal projection onto
S ifran(P) = S, P? = P, and PT = P. From this definition it is easy to
show that if z € R", then Pz € S and (I — P)z € S*.

If P, and P; are each orthogonal projections, then for any z € " we
have

(P = Pz} = (P2)T(= Pz +(Pa2)T{I - Py)a.

If ran{P;) = ran{P;) = 5, then the right-hand side of this expression is
zero showing that the orthogonal projection for a subspace is unique. If the
colurns of V = [vy,..., vy | are an orthonormal basis for a subspace S, then
it is easy to show that P = VV7T is the unique orthogonal projection onto
S. Note that if v € R", then P = w7 /vTv is the orthogonal projection
onto S = span{v}.

2.6.2 SVD-Related Projections

There are several important orthogonal projections associated with the sin-
gular value decomposition. Suppase 4 = ULZV7T € R™*™ ig the SVD of A
and that r = rank(A). If we have the U and V partitionings

Uv=[(U U] V=(V. V|
r m-r r on—r
then
V.¥T = Dprojection on to null{A)" = ran(AT)
V.VT = projection on to null(4)
UUT = projection on to ran{A)

U.UF = projection on to ran(4)" = null(AT)

76 CHAPTER 2. MATRIX ANALYSIS

2.6.3 Distance Between Subspaces

The one-to-one correspondence between subspaces and orthogonal projec-
tions enables us to devise a notion of distance between subspaces. Suppose
8, and S3 are subspaces of R" and that dim($;) = dim(S;). We define the
distance between these two spaces by

dist($1,52) = | A — P2 |, (2.6.1)

where F; is the orthogonal projection onto S;. The distance between a
pair of subspaces can be characterized in terms of the blocks of a certain
orthogonal matrix.

Theorem 2.6.1 Suppose

W=[W W] Z =12 Z; |
k n-k k n-k

are n-by-n orthogonal matrices. If Sy = ran{W,) and Ss = ran(Z,), then
dist(S1,52) = |W] Zz{la = | Z] Wa [la-
Proof.
dist(51,52) = |WWT ~Zi 2] ||, = | WTWWT - 2,272 |,

0 wiz,
-wTz, o

Note that the matrices WY Z) and WFZQ are submatrices of the orthogonal
matrix

2

_fQu @ua] _ [Wiz Wirzz]__ T
Q= Qn Qn]_[wirzl W5 Za =Wz

Our goal is to show that || Q21 ll, = || @12 [}, Since Q is orthogonsl it

follows from
ofi]- (32
0 in'

1= QuI"g + 1 Quz |3
far all unit 2-norm r € R*. Thus,

that

]

2 . 2
max [[Quzf, =1 - min || Quxij;
EFPT I z flz=1

1- amin(Qll)z-

QI3

2.6. PROJECTIONS AND THE CS DECOMPOSITION T

Analogously, by working with QT (which is also orthogonal) it is possible
to show that
19T 12 = 1 - omen(QT1)™.
and therefore
1Quz i3 =1 - omin(Qu)?
Thus, | Qn li; = | @iz ll,-O
Note that if §; and S; are subspaces in R"™ with the same dimension, then

0 < diSt(S[,Sg) < 1.

The distance is zero if §; = $; and one if 8; [} S5 # {0}.

A more refined analysis of the blocks of the ¢ matrix above sheds more
light on the difference between a pair of subspaces. This requires a special
SVD-like decompoeition for orthogonal matrices.

2.6.4 The CS Decomposition

The blocks of an orthogonal matrix partitioned into 2-by-2 form have highly
related SVDs. This is the gist of the CS decompesition. We prove a very
useful special case first.

Theorem 2.6.2 {The CS Decomposition (Thin Version)) Consider the
matriz
Q2

where m1 > n and mg > n. If the columna of Q are orthonormal, then there
exist orthogonal matrices Il € R™>*™ Uy € R™*™2 and V; € B®*" such

Q‘: [Ql] Ql € an‘xn‘ Q2 e |Rmaxn

that r

{5 al [&]n-15]
where

C = diag(cos(8y),...,o08(6,)),

§ = diag(sin(8,),...,5in(6.)),
and

0<6 <L <0<

| 5

Proof. Since || @ "2 <iQ ".2 = 1, the singular values of @,; are all in
the interval [0,1]. Let
. I 0 t
U;rQ[‘,l-"—"Czdl&g(C],...,C“) = [(; E] ml_t'
tn—t

78 CHAPTER 2. MATRIX ANALYSIS

be the SVD of Q; where we assuma
I=a=-=a>c412- 2,20

To complete the proof of the theorem we must construct the orthogonal
matrix U, If
Q?VI = [W‘l W‘J]
t na-t '

o a g[8 2]

Since the columns of this matrix have unit 2-norm, W, = 0. The columns
of W are nonzero and mutually orthogonal because

WIWy =l - ETE = disg(1 — ,,,...,1 — &)
is nonsingular, If s = /1 - ?k for k = 1:n, then the columns of
Z = W3 diag(1/s¢41,...,1/n)

are orthonormal. By Theorem 2.5.1 there exists an orthogonal matrix
Uz € R™*™2 with Ug(:, t + 1:n) = Z. It is easy to verify that

Ug'ngl = diag(s