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RANDOMIZED ITERATIVE METHODS FOR LINEAR SYSTEMS∗

ROBERT M. GOWER† AND PETER RICHTÁRIK†

Abstract. We develop a novel, fundamental, and surprisingly simple randomized iterative
method for solving consistent linear systems. Our method has six different but equivalent inter-
pretations: sketch-and-project, constrain-and-approximate, random intersect, random linear solve,
random update, and random fixed point. By varying its two parameters—a positive definite matrix
(defining geometry), and a random matrix (sampled in an independent and identically distributed
fashion in each iteration)—we recover a comprehensive array of well-known algorithms as special
cases, including the randomized Kaczmarz method, randomized Newton method, randomized co-
ordinate descent method, and random Gaussian pursuit. We naturally also obtain variants of all
these methods using blocks and importance sampling. However, our method allows for a much wider
selection of these two parameters, which leads to a number of new specific methods. We prove ex-
ponential convergence of the expected norm of the error in a single theorem, from which existing
complexity results for known variants can be obtained. However, we also give an exact formula for
the evolution of the expected iterates, which allows us to give lower bounds on the convergence rate.
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1. Introduction. The need to solve linear systems of equations is ubiquitous
in essentially all quantitative areas of human endeavor, including industry and sci-
ence. Linear systems are a central problem in numerical linear algebra and play an
important role in computer science, mathematical computing, optimization, signal
processing, engineering, numerical analysis, computer vision, machine learning, and
many other fields. For instance, in the field of large scale optimization, there is a grow-
ing interest in inexact and approximate Newton-type methods for [7, 11, 1, 40, 39, 13],
which can benefit from fast subroutines for calculating approximate solutions of linear
systems. In machine learning, applications arise for the problem of finding optimal
configurations in Gaussian Markov random fields [32], in graph-based semisupervised
learning and other graph-Laplacian problems [2], in least-squares SVMs, in Gaussian
processes, and in others.

In a large scale setting, direct methods are generally not competitive when com-
pared to iterative approaches. While classical iterative methods are deterministic,
recent breakthroughs suggest that randomization can play a powerful role in the de-
sign and analysis of efficient algorithms [38, 19, 22, 9, 41, 18, 21, 29] which are in
many situations competitive or better than existing deterministic methods.

1.1. Contributions. Given a real matrix A ∈ R
m×n and a real vector b ∈ R

m,
in this paper we consider the linear system

(1.1) Ax = b.
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RANDOMIZED ITERATIVE METHODS FOR LINEAR SYSTEMS 1661

We shall assume throughout that the system is consistent: there exists x∗ for which
Ax∗ = b.

We now comment on the main contributions of this work.
1. New method. We develop a novel, fundamental, and surprisingly simple ran-

domized iterative method for solving (1.1).
2. Six equivalent formulations. Our method allows for several seemingly different

but nevertheless equivalent formulations. First, it can be seen as a sketch-and-project
method, in which the system (1.1) is replaced by its random sketch, and then the
current iterate is projected onto the solution space of the sketched system. Second,
we can view it as a constrain-and-approximate method, where we constrain the next
iterate to live in a particular random affine space passing through the current iterate
and then pick the point from this subspace which best approximates the optimal
solution. Third, the method can be seen as an iterative solution of a sequence of
random (and simpler) linear equations. Fourth, the method also allows for a simple
geometrical interpretation: the new iterate is defined as the unique intersection of two
random affine spaces which are orthogonal complements. Fifth, a closed form formula
for the random update is given which needs to be applied to the current iterate in
order to arrive at the new one. Finally, the method can be seen as a random fixed
point iteration.

3. Special cases. These multiple viewpoints enrich our interpretation of the
method and enable us to draw previously unknown links between several existing
algorithms. Our algorithm has two parameters: an n × n positive definite matrix
B defining geometry of the space, and a random matrix S. Through combinations
of these two parameters, in special cases our method recovers several well-known al-
gorithms. For instance, we recover the randomized Kaczmarz method of Strohmer
and Vershynin [38], the randomized coordinate descent method of Leventhal and
Lewis [19], random pursuit [25, 35, 36, 37] (with exact line search), and the stochastic
Newton method recently proposed by Qu et al. [29]. However, our method is more
general and leads to (i) various generalizations and improvements of the aforemen-
tioned methods (e.g., block setup, importance sampling), and (ii) completely new
methods. Randomness enters our framework in a very general form, which allows us
to obtain a Gaussian Kaczmarz method, Gaussian descent, etc.

4. Complexity: General results. When A has full column rank, our framework
allows us to determine the complexity of these methods using a single analysis. Our
main results are summarized in Table 1, where {xk} are the iterates of our method,
and Z is a random matrix dependent on the data matrix A, parameter matrix B, and
random parameter matrix S, defined as

(1.2) Z
def
= ATS(STAB−1ATS)†STA,

where † denotes the (Moore–Penrose) pseudoinverse.1 Moreover, ‖x‖B def
=
√〈x, x〉B,

where 〈x, y〉B def
= xTBy for all x, y ∈ R

n. It can be deduced from the properties of the
pseudoinverse that Z is necessarily symmetric and positive semidefinite.2

As we shall see later, we will often consider setting B = I, B = A (if A is positive
definite), or B = ATA (if A is of full column rank). In particular, we first show that

1Every (not necessarily square) real matrix M has a real pseudoinverse. In particular, in this
paper we will use the following properties of the pseudoinverse: MM†M = M , M†MM† = M†,
(MTM)†MT = M†, (MT )† = (M†)T , and (MMT )† = (M†)TM†.

2 Indeed, it suffices to use the identity (MMT )† = (M†)TM† with M = STAB−1/2.
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1662 ROBERT M. GOWER AND PETER RICHTÁRIK

Table 1

Our main complexity results. The convergence rate is ρ = 1− λmin(B
−1/2E [Z]B−1/2).

E
[
xk+1 − x∗] =

(
I −B−1E [Z]

)
E
[
xk − x∗] Theorem 4.4

‖E [
xk+1 − x∗] ‖B ≤ ρ · ‖E [

xk − x∗] ‖B Theorem 4.4

E
[‖xk+1 − x∗‖2B

] ≤ ρ · E
[‖xk − x∗‖2B

]
Theorem 4.6

the convergence rate ρ is always bounded between zero and one. We also show that
as soon as E [Z] is invertible (which can only happen if A has full column rank, which
then implies that x∗ is unique), we have ρ < 1, and the method converges. Besides
establishing a bound involving the expected norm of the error (see the last line of
Table 1), we also obtain bounds involving the norm of the expected error (second line
of Table 1). Studying the expected sequence of iterates directly is very fruitful, as
it allows us to establish an exact characterization of the evolution of the expected
iterates (see the first line of Table 1) through a linear fixed point iteration.

Both of these theorems on the convergence of the error can be recast as iteration
complexity bounds. For instance, using standard arguments, from Theorem 4.4 in
Table 1 we observe that for a given ε > 0 we have that

(1.3) k ≥ 1

1− ρ
log

(
1

ε

)
⇒ ‖E [xk − x∗] ‖B ≤ ε‖x0 − x∗‖B.

5. Complexity: Special cases. Besides these generic results, which hold without
any major restriction on the sampling matrix S (in particular, it can be either discrete
or continuous), we give a specialized result applicable to discrete sampling matrices
S (see Theorem 5.2). In the special cases for which rates are known, our analysis
recovers the existing rates.

6. Extensions. Our approach opens up many avenues for further development
and research. For instance, it is possible to extend the results to the case when A is
not necessarily of full column rank. Furthermore, as our results hold for a wide range
of distributions, new and efficient variants of the general method can be designed for
problems of specific structure by fine-tuning the stochasticity to the structure. Similar
ideas can be applied to design randomized iterative algorithms for finding the inverse
of a very large matrix.

1.2. Background and related work. The literature on solving linear systems
via iterative methods is vast and has a long history [17, 33]. For instance, the Kacz-
marz method, in which one cycles through the rows of the system and each iteration
is formed by projecting the current point to the hyperplane formed by the active row,
dates back to the 1930’s [16]. The Kaczmarz method is just one example of an array
of row-action methods for linear systems (and also, more generally, feasibility and
optimization problems) which were studied in the second half of the 20th century [4].

Research on the Kaczmarz method was in 2009 reignited by Strohmer and Ver-
shynin [38], who gave a brief and elegant proof that a randomized variant enjoys an
exponential error decay (also know as “linear convergence”). This has triggered much
research into developing and analyzing randomized linear solvers.

It should be mentioned at this point that the randomized Kaczmarz (RK) method
arises as a special case (when one considers quadratic objective functions) of the
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RANDOMIZED ITERATIVE METHODS FOR LINEAR SYSTEMS 1663

stochastic gradient descent (SGD) method for convex optimization which can be traced
back to the seminal work of Robbins and Monro on stochastic approximation [31].
Subsequently, intensive research went into studying various extensions of the SGD
method. However, to the best of our knowledge, no complexity results with exponen-
tial error decay were established prior to the aforementioned work of Strohmer and
Vershynin [38]. This is the reason behind our choice of [38] as the starting point of
our discussion.

Motivated by the results of Strohmer and Vershynin [38], Leventhal and Lewis [19]
utilize similar techniques to establish the first bounds for randomized coordinate de-
scent methods for solving systems with positive definite matrices and systems arising
from least-squares problems [19]. These bounds are similar to those for the RK
method. This development was later picked up by the optimization and machine
learning communities, and much progress has been made in generalizing these early
results in countless ways to various structured convex optimization problems. For a
brief up to date account of the development in this area, we refer the reader to [12, 28]
and the references therein.

The RK method and its analysis have been further extended to the least-squares
problem [22, 41] and the block setting [23, 24]. In [21] the authors extend the ran-
domized coordinate descent and the RK methods to the problem of solving under-
determined systems. The authors of [21, 30] analyze side-by-side the randomized
coordinate descent and RK method, for least-squares, using a convenient notation
in order to point out their similarities. Our work takes the next step, by analyzing
these and many other methods, through a genuinely single analysis. Also in the spirit
of unifying the analysis of different methods, in [26] the authors provide a unified
analysis of iterative Schwarz methods and Kaczmarz methods.

Using random Gaussian directions as search directions in zero-order (derivative-
free) minimization algorithms was recently suggested [25]. More recently, Gaussian
directions have been combined with exact and inexact line-search into a single ran-
dom pursuit framework [37] and further utilized within a randomized variable metric
method [36, 35].

2. One algorithm in six disguises. Our method has two parameters: (i) an
n× n positive definite matrix B which is used to define the B-inner product and the
induced B-norm by

(2.1) 〈x, y〉B def
= 〈Bx, y〉, ‖x‖B def

=
√
〈x, x〉B ,

where 〈·, ·〉 is the standard Euclidean inner product, and (ii) a random matrix S ∈
R

m×qwhich is drawn in an independent and identically distributed (i.i.d.) fashion at
each iteration. We stress that we do not restrict the number of columns of S; indeed,
we even allow q to vary (and hence q is a random variable).

2.1. Six viewpoints. Starting from xk ∈ R
n, our method draws a random

matrix S and uses it to generate a new point xk+1 ∈ R
n. This iteration can be

formulated in six seemingly different but equivalent ways:
1. Sketching viewpoint: Sketch-and-project. xk+1 is the nearest point to xk which

solves a sketched version of the original linear system:

(2.2) xk+1 = arg min
x∈Rn

‖x− xk‖2B subject to STAx = ST b

This viewpoint arises very naturally. Indeed, since the original system (1.1) is assumed
to be complicated, we replace it by a simpler system—a random sketch of the original
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1664 ROBERT M. GOWER AND PETER RICHTÁRIK

system (1.1)—whose solution set {x | STAx = ST b} contains all solutions of the
original system. However, this system will typically have many solutions, so in order
to define a method, we need a way to select one of them. The idea is to try to
preserve as much of the information learned so far as possible, as condensed in the
current point xk. Hence, we pick the solution which is closest to xk.

2. Optimization viewpoint: Constrain-and-approximate. xk+1 is the best approx-
imation of x∗ in a random space passing through xk:

(2.3) xk+1 = arg min
x∈Rn

‖x − x∗‖2B subject to x = xk +B−1ATSy, y is free

The above step has the following interpretation.3 We choose a random affine space
containing xk and constrain our method to choose the next iterate from this space.
We then do as well as we can on this space; that is, we pick xk+1 as the point which
best approximates x∗. Note that xk+1 does not depend on which solution x∗ is used in
(2.3) (this can be best seen by considering the geometric viewpoint, discussed next).

3. Geometric viewpoint: Random intersect. xk+1 is the (unique) intersection of
two affine spaces:

(2.4) {xk+1} =
(
x∗ +Null

(
STA

)) ⋂ (
xk +Range

(
B−1ATS

))
First, note that the first affine space above does not depend on the choice of x∗ from
the set of optimal solutions of (1.1). A basic result of linear algebra says that the
nullspace of an arbitrary matrix is the orthogonal complement of the range space of
its transpose. Hence, whenever we have h ∈ Null

(
STA

)
and y ∈ R

q, where q is the
number of rows of S, then 〈h,ATSy〉 = 0. It follows that the two spaces in (2.4)
are orthogonal complements with respect to the B-inner product and, as such, they
intersect at a unique point (see Figure 1).

4. Algebraic viewpoint: Random linear solve. Note that xk+1 is the (unique)
solution (in x) of a linear system (with variables x and y):

(2.5) xk+1 = solution of STAx = ST b, x = xk +B−1ATSy

This system is clearly equivalent to (2.4) and can alternatively be written as

(2.6)

(
STA 0
B −ATS

)(
x
y

)
=

(
ST b
Bxk

)
.

Hence, our method reduces the solution of the (complicated) linear system (1.1) into
a sequence of (hopefully simpler) random systems of the form (2.6).

3Formulation (2.3) is similar to the framework often used to describe Krylov methods [20, Chapter
1], which is

xk+1 def
= arg min

x∈Rn
‖x− x∗‖2B subject to x ∈ x0 + Kk+1,

where Kk+1 ⊂ Rn is a (k + 1)-dimensional subspace. Note that the constraint x ∈ x0 + Kk+1 is
an affine space that contains x0, as opposed to xk in our formulation (2.3). The objective ‖x −
x∗‖2B is a generalization of the residual, where B = ATA is used to characterize minimal residual
methods [27, 34] and B = A is used to describe the conjugate gradient method [15]. Progress from
iteration to the next is guaranteed by using expanding nested search spaces at each iteration, that
is, Kk ⊂ Kk+1. In our setting, progress is enforced by using xk as the displacement term instead
of x0. This also allows for a simple recurrence for updating xk to arrive at xk+1, which facilitates
the analyses of the method. In the Krylov setting, to arrive at an explicit recurrence, one needs to
carefully select a basis for the nested spaces that allows for short recurrence.
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RANDOMIZED ITERATIVE METHODS FOR LINEAR SYSTEMS 1665

·
x∗

x∗ +Null
(
STA

)

·xk+1

·xk

xk +Range
(
B−1ATS

)

Fig. 1. The geometry of our algorithm. The next iterate, xk+1, arises as the intersection of
two random affine spaces: xk + Range

(
B−1ATS

)
and x∗ + Null

(
STA

)
(see (2.4)). The spaces

are orthogonal complements of each other with respect to the B-inner product, and hence xk+1 can
equivalently be written as the projection, in the B-norm, of xk onto x∗ + Null

(
STA

)
(see (2.2)),

or the projection of x∗ onto xk +Range
(
B−1ATS

)
(see (2.3)). The intersection xk+1 can also be

expressed as the solution of a system of linear equations (see (2.5)). Finally, the new error xk+1−x∗
is the projection, with respect to the B-inner product, of the current error xk−x∗ onto Null

(
STA

)
.

This gives rise to a random fixed point formulation (see (2.8)).

5. Algebraic viewpoint: Random update. By plugging the second equation in (2.5)
into the first, we eliminate x and obtain the system (STAB−1ATS)y = ST (b−Axk).
Note that for all solutions y of this system we must have xk+1 = xk + B−1ATSy.
In particular, we can choose the solution y = yk of minimal Euclidean norm, which
is given by yk = (STAB−1ATS)†ST (b − Axk), where † denotes the Moore–Penrose
pseudoinverse. This leads to an expression for xk+1 with an explicit form of the random
update which must be applied to xk in order to obtain xk+1:

(2.7) xk+1 = xk −B−1ATS(STAB−1ATS)†ST (Axk − b)

In some sense, this form is the standard: it is customary for iterative techniques to
be written in the form xk+1 = xk + dk, which is precisely what (2.7) does.

6. Analytic viewpoint: Random fixed point. Note that iteration (2.7) can be
written as

(2.8) xk+1 − x∗ = (I −B−1Z)(xk − x∗)

where Z is defined in (1.2) and where we used the fact that Ax∗ = b. Matrix Z plays
a central role in our analysis and can be used to construct explicit projection matrices
of the two projections depicted in Figure 1.

The equivalence between these six viewpoints is formally captured in the next
statement.

Theorem 2.1 (equivalence). The six viewpoints are equivalent: they all produce
the same (unique) point xk+1.

Proof. The proof is simple and follows directly from the above discussion. In
particular, see the caption of Figure 1.

2.2. Projection matrices. In this section we state a few key properties of
matrix Z. This will shed light on the previous discussion and will also be useful later
in the convergence proofs.
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1666 ROBERT M. GOWER AND PETER RICHTÁRIK

Recall that S is an m × q random matrix (with q possibly being random) and
that A is an m× n matrix. Let us define the random quantity

(2.9) d
def
= Rank

(
STA

)
and notice that d ≤ min{q, n},
(2.10) dim

(
Range

(
B−1ATS

))
= d, and dim

(
Null

(
STA

))
= n− d.

Lemma 2.2. With respect to the geometry induced by the B-inner product, we
have that
(i) B−1Z projects orthogonally onto d-dimensional subspace Range

(
B−1ATS

)
and

(ii) (I−B−1Z) projects orthogonally onto (n−d)-dimensional subspace Null
(
STA

)
.

Proof. For any matrixM , the pseudoinverse satisfies the identityM †MM † = M †.
Using this with M = STAB−1ATS, we get

(B−1Z)2
(1.2)
= B−1ATS(STAB−1ATS)†STAB−1ATS(STAB−1ATS)†STA

= B−1ATS(STAB−1ATS)†STA
(1.2)
= B−1Z,(2.11)

and thus both B−1Z and I −B−1Z are projection matrices. It is easy to see that in
order to establish that B−1Z is an orthogonal projection with respect to the B-inner
product (from which it follows that I −B−1Z is), we only need to show that

B−1Z(B−1ATS) = B−1ATS and B−1Zy = 0 ∀y ∈ Null
(
STA

)
.

The second relation is trivially satisfied. In order to establish the first relation, it is
enough to use two further properties of the pseudoinverse: (MTM)†MT = M † and
MM †M = M , both with M = B−1/2ATS. Indeed,

B−1Z(B−1ATS)
(1.2)
= B−1/2M(MTM)†MTM

= B−1/2MM †M
= B−1/2M = B−1ATS.

This lemma sheds additional light on Figure 1, as it gives explicit expressions
for the associated projection matrices. The result also implies that I − B−1Z is a
contraction with respect to the B-norm, which means that the random fixed point
iteration (2.8) has only very little room not to work. While I −B−1Z is not a strict
contraction, under some reasonably weak assumptions on S it will be a strict con-
traction in expectation, which ensures convergence. We shall state these assumptions
and develop the associated convergence theory for our method in sections 4 and 5.

3. Special cases: Examples. In this section we briefly mention how by select-
ing the parameters S and B of our method we recover several existing methods. The
list is by no means comprehensive and merely serves the purpose of an illustration of
the flexibility of our algorithm. All the associated complexity results we present in
this section can be recovered from Theorem 5.2, presented later in section 5.

3.1. The one step method. When S is an m × m invertible matrix with
probability one, then the system STAx = ST b is equivalent to solving Ax = b,
and thus the solution to (2.2) must be xk+1 = x∗, independently of matrix B. Our
convergence theorems also predict this one step behavior, since ρ = 0 (see Table 1).
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RANDOMIZED ITERATIVE METHODS FOR LINEAR SYSTEMS 1667

3.2. Random vector sketch. When S = s ∈ R
m is restricted to being a

random column vector, then from (2.7) a step of our method is given by

(3.1) xk+1 = xk − sT (Axk − b)

sTAB−1AT s
B−1AT s

if AT s 
= 0 and xk+1 = xk otherwise. This is because the pseudoinverse of a scalar
α ∈ R is given by

α† =

{
1/α if α 
= 0,

0 if α = 0.

Next we describe several well-known specializations of the random vector sketch and,
for brevity, we write the updates in the form of (3.1) and leave implicit that when
the denominator is zero, no step is taken.

3.3. Randomized Kaczmarz. If we choose S = ei (the unit coordinate vector
in R

m) and B = I (the identity matrix), in view of (2.2) we obtain the following
method:

(3.2) xk+1 = arg min
x∈Rn

‖x− xk‖22 subject to Ai:x = bi.

Using (2.7), these iterations can be calculated with

(3.3) xk+1 = xk − Ai:x
k − bi

‖Ai:‖22
(Ai:)

T

Complexity. When i is selected at random, this is the randomized Kaczmarz
(RK) method [38]. A specific nonuniform probability distribution for S can yield a
simple and easily interpretable (but not necessarily optimal) complexity bound. In
particular, by selecting i with probability proportional to the magnitude of row i of A,
that is, pi = ‖Ai:‖22/‖A‖2F , it follows from Theorem 5.2 that RK enjoys the following
complexity bound:

(3.4) E
[‖xk − x∗‖22

] ≤
(
1− λmin

(
ATA

)
‖A‖2F

)k

‖x0 − x∗‖22.

This result was first established by Strohmer and Vershynin [38]. We also provide
new convergence results in Theorem 4.4, based on the convergence of the norm of the
expected error. Theorem 4.4 applied to the RK method gives

(3.5) ‖E [xk − x∗] ‖22 ≤
(
1− λmin

(
ATA

)
‖A‖2F

)2k

‖x0 − x∗‖22.

Now the convergence rate appears squared, which is a better rate, though the expec-
tation has moved inside the norm, which is a weaker form of convergence.

Analogous results for the convergence of the norm of the expected error holds for
all the methods we present, though we only illustrate this with the RK method.
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1668 ROBERT M. GOWER AND PETER RICHTÁRIK

Reinterpretation as stochastic gradient descent (SGD) with exact line search. Us-
ing the constrain-and-approximate formulation (2.3), the RK method can also be
written as

xk+1 = arg min
x∈Rn

‖x− x∗‖22 subject to x = xk + y(Ai:)
T , y ∈ R,

with probability pi. Writing the least-squares function f(x) = 1
2‖Ax− b‖22 as

f(x) =

m∑
i=1

pifi(x), fi(x) =
1

2pi
(Ai:x− bi)

2,

we see that the random vector ∇fi(x) =
1
pi
(Ai:x− bi)(Ai:)

T is an unbiased estimator

of the gradient of f at x. That is, E [∇fi(x)] = ∇f(x). Notice that RK takes a
step in the direction −∇fi(x). This is true even when Ai:x − bi = 0, in which case
RK does not take any step. Hence, RK takes a step in the direction of the negative
stochastic gradient. This means that it is equivalent to the SGD method. However,
the stepsize choice is very special: RK chooses the stepsize which leads to the point
which is closest to x∗ in the Euclidean norm.

3.4. Randomized coordinate descent: Positive definite case. If A is sym-
metric positive definite, then we can choose B = A and S = ei in (2.2), which results
in

(3.6) xk+1 def
= arg min

x∈Rn
‖x− xk‖2A subject to (Ai:)

Tx = bi,

where we used the symmetry of A to get (ei)TA = Ai: = (A:i)
T . The solution to the

above, given by (2.7), is

(3.7) xk+1 = xk − (Ai:)
Txk − bi
Aii

ei

Complexity. When i is chosen randomly, this is the randomized CD method (CD-
pd). Applying Theorem 5.2, we see the probability distribution pi = Aii/Tr (A)
results in a convergence with

(3.8) E
[‖xk − x∗‖2A

] ≤ (1− λmin (A)

Tr (A)

)k

‖x0 − x∗‖2A.

This result was first established by Leventhal and Lewis [19].
Interpretation. Using the constrain-and-approximate formulation (2.3), this meth-

od can be interpreted as

(3.9) xk+1 = argmin ‖x− x∗‖2A subject to x = xk + yei, y ∈ R,

with probability pi. Using the identity Ax∗ = b, it is easy to check that the function
f(x) = 1

2x
TAx−bTx satisfies ‖x−x∗‖2A = 2f(x)+bTx∗. Therefore, (3.9) is equivalent

to

(3.10) xk+1 = argmin f(x) subject to x = xk + yei, y ∈ R.

The iterates (3.7) can also be written as

xk+1 = xk − 1

Li
∇if(x

k)ei,

where Li = Aii is the Lipschitz constant of the gradient of f corresponding to coor-
dinate i and ∇if(x

k) is the ith partial derivative of f at xk.
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RANDOMIZED ITERATIVE METHODS FOR LINEAR SYSTEMS 1669

3.5. Randomized block Kaczmarz. Our framework also extends to new block
formulations of the RK method. Let R be a random subset of [m], and let S = I:R
be a column concatenation of the columns of the m×m identity matrix I indexed by
R. Further, let B = I. Then (2.2) specializes to

xk+1 = arg min
x∈Rn

‖x− xk‖22 subject to AR:x = bR.

In view of (2.7), this can be equivalently written as

(3.11) xk+1 = xk − (AR:)
T (AR:(AR:)

T )†(AR:x
k − bR)

Complexity. From Theorem 4.6 we obtain the following new complexity result:

E
[‖xk − x∗‖22

] ≤ (1− λmin

(
E
[
(AR:)

T (AR:(AR:)
T )†AR:

]))k ‖x0 − x∗‖22.
To obtain a more meaningful convergence rate, we would need to bound the

smallest eigenvalue of E
[
(AR:)

T (AR:(AR:)
T )†AR:

]
. This has been done in [23, 24]

when the image of R defines a row paving of A. Our framework paves the way for
analyzing the convergence of new block methods for a large set of possible random
subsets R, including, for example, overlapping partitions.

3.6. Randomized Newton: Positive definite case. If A is symmetric posi-
tive definite, then we can choose B = A and S = I:C , a column concatenation of the
columns of I indexed by C, which is a random subset of [n]. In view of (2.2), this
results in

(3.12) xk+1 def
= arg min

x∈Rn
‖x− xk‖2A subject to (A:C)

Tx = bC .

In view of (2.7), we can equivalently write the method as

(3.13) xk+1 = xk − I:C((I:C)
TAI:C)

−1(I:C)
T (Axk − b)

Complexity. Clearly, iteration (3.13) is well defined as long as C is nonempty with
probability 1. Such a C is in [29] referred to by the name “non-vacuous” sampling.
From Theorem 4.6 we obtain the following convergence rate:

E
[‖xk − x∗‖2A

] ≤ ρk‖x0 − x∗‖2A
=
(
1− λmin

(
E
[
I:C((I:C)

TAI:C)
−1(I:C)

TA
]))k ‖x0 − x∗‖2A.(3.14)

The convergence rate of this particular method was first established and studied
in [29]. Moreover, it was shown in [29] that ρ < 1 if one additionally assumes that the
probability that i ∈ C is positive for each column i ∈ [n], i.e., that C is a “proper”
sampling.

Interpretation. Using formulation (2.3), and in view of the equivalence between
f(x) and ‖x− x∗‖2A discussed in section 3.4, the randomized Newton method can be
equivalently written as

xk+1 = arg min
x∈Rn

f(x) subject to x = xk + I:C y, y ∈ R
|C|.

The next iterate is determined by advancing from the previous iterate over a subset
of coordinates such that f is minimized. Hence, an exact line search is performed in
a random |C|-dimensional subspace.

c© 2015 Robert M. Gower and Peter Richtárik. Published by SIAM under the terms of the Creative
Commons 4.0 license

D
ow

nl
oa

de
d 

10
/0

9/
18

 to
 1

07
.7

7.
20

8.
14

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



1670 ROBERT M. GOWER AND PETER RICHTÁRIK

Method (3.13) was fist studied by Qu et al. [29] and referred to therein as
“Method 1” or the randomized Newton method. The name comes from the obser-
vation that the method inverts random principal submatrices of A and that in the
special case when C = [n] with probability 1, it specializes to the Newton method
(which in this case converges in a single step). The expression ρ defining the conver-
gence rate of this method is rather involved, and it is not immediately obvious what is
gained by performing a search in a higher-dimensional subspace (C > 1) rather than
in the one-dimensional subspaces (C = 1), as is standard in the optimization litera-
ture. Let us write ρ = 1− στ in the case when the C is chosen to be a subset of [n] of
size τ , uniformly at random. In view of (1.3), the method takes Õ(1/στ ) iterations to
converge, where the tilde notation suppresses logarithmic terms. It was shown in [29]
that 1/στ ≤ 1/(τσ1). That is, one can expect to obtain at least superlinear speedup
in τ—this is what is gained by moving to blocks/higher-dimensional subspaces. For
further details and additional properties of the method we refer the reader to [29].

3.7. Randomized coordinate descent: Least-squares version. By choos-
ing S = Aei =: A:i as the ith column of A and B = ATA, the resulting iterates (2.3)
are given by

(3.15) xk+1 = arg min
x∈Rn

‖Ax− b‖22 subject to x = xk + y ei, y ∈ R.

When i is selected at random, this is the randomized coordinate descent method
(CD-LS ) applied to the least-squares problem: minx ‖Ax − b‖22. Using (2.7), these
iterations can be calculated with

(3.16) xk+1 = xk − (A:i)
T (Axk − b)

‖A:i‖22
ei

Complexity. Applying Theorem 5.2, we see that selecting i with probability pro-
portional to the magnitude of column i of A, that is, pi = ‖A:i‖22/‖A‖2F , results in a
convergence with

(3.17) E
[‖xk − x∗‖2ATA

] ≤ ρk‖x0 − x∗‖2ATA =

(
1− λmin

(
ATA

)
‖A‖2F

)k

‖x0 − x∗‖2ATA.

This result was first established by Leventhal and Lewis [19].
Interpretation. Using the constrain-and-approximate formulation (2.3), the CD-

LS method can be interpreted as

(3.18) xk+1 = arg min
x∈Rn

‖x− x∗‖2ATA subject to x = xk + yei, y ∈ R.

The CD-LS method selects a coordinate to advance from the previous iterate xkand
then performs an exact minimization of the least-squares function over this line. This
is equivalent to applying coordinate descent to the least-squares problem minx∈Rn f(x)
def
= 1

2‖Ax− b‖22. The iterates (3.15) can be written as

xk+1 = xk − 1

Li
∇if(x

k)ei,

where Li
def
= ‖A:i‖22 is the Lipschitz constant of the gradient corresponding to coordi-

nate i and ∇if(x
k) is the ith partial derivative of f at xk.
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RANDOMIZED ITERATIVE METHODS FOR LINEAR SYSTEMS 1671

4. Convergence: General theory. We shall present two complexity theorems:
we first study the convergence of ‖E [xk − x∗] ‖ , and then we move on to analyzing

the convergence of E
[‖xk − x∗‖].

4.1. Two types of convergence. The following lemma explains the relation-
ship between the convergence of the norm of the expected error and the expected
norm of the error.

Lemma 4.1. Let x ∈ R
n be a random vector, let ‖ · ‖ be a norm induced by an

inner product, and fix x∗ ∈ R
n. Then∥∥E [x− x∗]
∥∥2 = E

[
‖x− x∗‖2

]
−E

[
‖x−E [x]‖2

]
.

Proof. Note that E
[‖x−E [x] ‖2] = E

[‖x‖2]−‖E [x] ‖2. Adding and subtracting
‖x∗‖2 − 2 〈E [x] , x∗〉 from the right-hand side and grouping the appropriate terms
yields the desired result.

To interpret this lemma, note that E
[‖x−E [x] ‖2] =∑n

i=1 E
[
(xi −E [xi])

2
]
=∑n

i=1 Var(xi), where xi denotes the ith element of x. This lemma shows that the
convergence of x to x∗ under the expected norm of the error is a stronger form of
convergence than the convergence of the norm of the expected error, as the former
also guarantees that the variance of xi converges to zero for i = 1, . . . , n.

4.2. The rate of convergence. All of our convergence theorems (see Table 1)
depend on the convergence rate

(4.1) ρ
def
= 1− λmin(B

−1E [Z]) = 1− λmin(B
−1/2E [Z]B−1/2).

To show that the rate is meaningful, in Lemma 4.2 we prove that 0 ≤ ρ ≤ 1. We also
provide a meaningful lower bound for ρ.

Lemma 4.2. The quantity ρ defined in (4.1) satisfies

(4.2) 0 ≤ 1− E [d]

n
≤ ρ ≤ 1,

where d = Rank
(
STA

)
.

Proof. Recalling from Lemma 2.2 that B−1Z is a projection, we get

B−1/2ZB−1/2(B−1/2ZB−1/2) = B−1/2ZB−1/2,

whence the spectrum of B−1/2ZB−1/2 is contained in {0, 1}. Using this, combined
with the fact that the mapping A �→ λmax(A) is convex on the set of symmetric
matrices and Jensen’s inequality, we get

(4.3) λmax(B
−1E [Z]) = λmax(B

−1/2E [Z]B−1/2) ≤ E
[
λmax(B

−1/2ZB−1/2)
]
≤ 1.

The inequality λmin(B
−1E [Z]) ≥ 0 can be shown analogously using convexity of the

mapping A �→ −λmin(A). Thus, λmin(B
−1E [Z]) = λmin(B

−1/2E [Z]B−1/2) ∈ [0, 1],
which implies 0 ≤ ρ ≤ 1. We now refine the lower bound. As the trace of a matrix is
equal to the sum of its eigenvalues, we have

(4.4) E
[
Tr
(
B−1Z

)]
= Tr

(
E
[
B−1Z

]) ≥ nλmin(E
[
B−1Z

]
).

Since B−1Z projects onto a d-dimensional subspace (Lemma 2.2), we haveTr
(
B−1Z

)
=

d. Thus rewriting (4.4) gives 1−E [d] /n ≤ ρ.
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1672 ROBERT M. GOWER AND PETER RICHTÁRIK

The lower bound on ρ in (4.2) has a natural interpretation which makes intuitive
sense. We shall present it from the perspective of the constrain-and-approximate
formulation (2.3). As the dimension (d) of the search space B−1ATS increases (see
(2.10)), the lower bound on ρ decreases, and a faster convergence is possible. For
instance, when S is restricted to being a random column vector, as it is in the RK (3.3),
CD-LS (3.16), and CD-pd (3.8) methods, the convergence rate is bounded with 1 −
1/n ≤ ρ. Using (1.3), this translates into the simple iteration complexity bound of
k ≥ n log(1/ε). On the other extreme, when the search space is large, then the lower
bound is close to zero, allowing room for the method to be faster.

We now characterize circumstances under which ρ is strictly smaller than one.
Lemma 4.3. If E [Z] is invertible, then ρ < 1, A has full column rank, and x∗ is

unique.
Proof. Assume that E [Z] is invertible. First, this means that B−1/2E [Z]B−1/2

is positive definite, which in view of (4.1) means that ρ < 1. If A did not have full
column rank, then there would be 0 
= x ∈ R

n such that Ax = 0. However, we
then have Zx = 0 and also E [Z]x = 0, contradicting the assumption that E [Z] is
invertible. Finally, since A has full column rank, x∗ must be unique (recall that we
assume throughout the paper that the system Ax = b is consistent).

4.3. Exact characterization and norm of expectation. We now state a
theorem which exactly characterizes the evolution of the expected iterates through a
linear fixed point iteration. As a consequence, we obtain a convergence result for the
norm of the expected error. While we do not highlight this in the text, this theorem
can be applied to all particular instances of our general method we detail throughout
this paper.

For any M ∈ R
n×n let us define

(4.5) ‖M‖B def
= max

‖x‖B=1
‖Mx‖B.

Theorem 4.4 (norm of expectation). For every x∗ ∈ R
n satisfying Ax∗ = b we

have

(4.6) E
[
xk+1 − x∗] = (I −B−1E [Z]

)
E
[
xk − x∗] .

Moreover, the spectral radius and the induced B-norm of the iteration matrix I −
B−1E [Z] are both equal to ρ:

λmax(I −B−1E [Z]) = ‖I −B−1E [Z] ‖B = ρ.

Therefore,

(4.7) ‖E [xk − x∗] ‖B ≤ ρk‖x0 − x∗‖B.
Proof. Taking expectations conditioned on xk in (2.8), we get

(4.8) E
[
xk+1 − x∗ | xk

]
= (I −B−1E [Z])(xk − x∗).

Taking expectation again gives

E
[
xk+1 − x∗] = E

[
E
[
xk+1 − x∗ | xk

]]
(4.8)
= E

[
(I −B−1E [Z])(xk − x∗)

]
= (I −B−1E [Z])E

[
xk − x∗] .
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RANDOMIZED ITERATIVE METHODS FOR LINEAR SYSTEMS 1673

Applying the norms to both sides we obtain the estimate

‖E [xk+1 − x∗] ‖B ≤ ‖I −B−1E [Z] ‖B ‖E [xk − x∗] ‖B.
It remains to prove that ρ = ‖I − B−1E [Z] ‖B and then unroll the recurrence. Ac-
cording to the definition of operator norm (4.5), we have

‖I −B−1E [Z] ‖2B = max
‖B1/2x‖2=1

‖B1/2(I −B−1E [Z])x‖22.

Substituting B1/2x = y in the above gives

‖I −B−1E [Z] ‖2B = max
‖y‖2=1

‖B1/2(I −B−1E [Z])B−1/2y‖22
= max

‖y‖2=1
‖(I −B−1/2E [Z]B−1/2)y‖22

= λ2
max(I −B−1/2E [Z]B−1/2)

=
(
1− λmin(B

−1/2E [Z]B−1/2)
)2

= ρ2,

where in the third equality we used the symmetry of (I − B−1/2E [Z]B−1/2) when
passing from the operator norm to the spectral radius. Note that the symmetry of
E [Z] derives from the symmetry of Z.

4.4. Expectation of norm. We now turn to analyzing the convergence of the
expected norm of the error, for which we need the following technical lemma.

Lemma 4.5. If E [Z] is positive definite, then

(4.9) 〈E [Z] y, y〉 ≥ (1 − ρ)‖y‖2B ∀y ∈ R
n.

Proof. As E [Z] and B are positive definite, we get

1− ρ = λmin(B
−1/2E [Z]B−1/2) = max

t

{
t | B−1/2E [Z]B−1/2 − t · I � 0

}
= max

t
{t | E [Z]− t · B � 0} .

Therefore, E [Z] � (1 − ρ)B, and the result follows.
Theorem 4.6 (expectation of norm). If E [Z] is positive definite, then

(4.10) E
[‖xk − x∗‖2B

] ≤ ρk‖x0 − x∗‖2B,
where ρ < 1 is given in (4.1).

Proof. Let rk = xk − x∗. Taking expectation in (2.8) conditioned on rk gives

E
[‖rk+1‖2B | rk] (2.8)

= E
[‖(I −B−1Z)rk‖2B | rk] (2.11)

= E
[〈
(B − Z)rk, rk

〉 | rk]
= ‖rk‖2B − 〈E [Z] rk, rk

〉 (Lemma 4.5)
≤ ρ · ‖rk‖2B.

Taking expectation again and unrolling the recurrence gives the result.
The convergence rate ρ of the expected norm of the error is “worse” than the ρ2

rate of convergence of the norm of the expected error in Theorem 4.4. This should
not be misconstrued as Theorem 4.4 offering a “better” convergence rate than The-
orem 4.6, because, as explained in Lemma 4.1, convergence of the expected norm of
the error is a stronger type of convergence. More importantly, the exponent is not of
any crucial importance; clearly, an exponent of 2 manifests itself only in halving the
number of iterations.
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1674 ROBERT M. GOWER AND PETER RICHTÁRIK

5. Methods based on discrete sampling. When S has a discrete distribution,
we can establish under reasonable assumptions when E [Z] is positive definite (Propo-
sition 5.1), we can optimize the convergence rate in terms of the chosen probability
distribution, and, finally, we can determine a probability distribution for which the
convergence rate is expressed in terms of the scaled condition number (Theorem 5.2).

Assumption 5.1. The random matrix S has a discrete distribution. In particular,
S = Si ∈ R

m×qi with probability pi > 0, where ST
i A has full row rank and qi ∈ N for

i = 1, . . . , r. Furthermore, S
def
= [S1, . . . , Sr] ∈ R

m×∑r
i=1 qi is such that ATS has full

row rank.
For simplicity, sampling S satisfying the above assumption will be called a com-

plete discrete sampling. We now give an example of such a sampling. If A has full
column rank and each row of A is not strictly zero, S = ei with probability pi = 1/n
for i = 1, . . . , n, and S = I, then S is a complete discrete sampling. In fact, from any
basis of Rn we can construct a complete discrete sampling in an analogous way.

When S is a complete discrete sampling, then STA has full row rank and

(STAB−1ATS)† = (STAB−1ATS)−1.

Therefore we replace the pseudoinverse in (2.7) and (2.8) by the inverse. Furthermore,
using a complete discrete sampling guarantees convergence of the resulting method.

Proposition 5.1. If S is a complete discrete sampling, E [Z] is positive definite.
Proof. Let

(5.1) D
def
= diag

(√
p1((S1)

TAB−1ATS1)
−1/2, . . . ,

√
pr((Sr)

TAB−1ATSr)
−1/2

)
,

which is a block diagonal matrix, and is well defined and invertible, as ST
i A has full

row rank for i = 1, . . . , r. Taking the expectation of Z (1.2) gives

E [Z] =

r∑
i=1

ATSi(S
T
i AB

−1ATSi)
−1ST

i Api

= AT

(
r∑

i=1

Si
√
pi(S

T
i AB

−1ATSi)
−1/2(ST

i AB
−1ATSi)

−1/2√piS
T
i

)
A

=
(
ATSD

) (
DSTA

)
,(5.2)

which is positive definite because ATS has full row rank and D is invertible.
With E [Z] positive definite, we can apply the convergence Theorems 4.4 and 4.6,

and the resulting method converges.

5.1. Optimal probabilities. We can choose the discrete probability distri-
bution that optimizes the convergence rate. For this, according to Theorems 4.6
and 4.4 we need to find p = (p1, . . . , pr) that maximizes the minimal eigenvalue of
B−1/2E [Z]B−1/2. Let S be a complete discrete sampling, and fix the sample matri-
ces S1, . . . , Sr. Let us denote Z = Z(p) as a function of p = (p1, . . . , pr). Then we
can also think of the spectral radius as a function of p where

ρ(p) = 1− λmin(B
−1/2E [Z(p)]B−1/2).

If we let Δr = {p = (p1, . . . , pr) ∈ R
r :

∑r
i=1 pi = 1, p ≥ 0}, the problem of min-

imizing the spectral radius (i.e., optimizing the convergence rate) can be written as

ρ∗ def
= min

p∈Δr

ρ(p) = 1− max
p∈Δr

λmin(B
−1/2E [Z(p)]B−1/2).
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RANDOMIZED ITERATIVE METHODS FOR LINEAR SYSTEMS 1675

This can be cast as a convex optimization problem, by first rewriting

B−1/2E [Z(p)]B−1/2 =

r∑
i=1

pi

(
B−1/2ATSi(S

T
i AB

−1ATSi)
−1ST

i AB
−1/2

)

=

r∑
i=1

pi
(
Vi(V

T
i Vi)

−1V T
i

)
,

where Vi = B−1/2ATSi. Thus

(5.3) ρ∗ = 1− max
p∈Δr

λmin

(
r∑

i=1

piVi(V
T
i Vi)

−1V T
i

)
.

To obtain p that maximizes the smallest eigenvalue, we solve

max
p,t

t

subject to

r∑
i=1

pi
(
Vi(V

T
i Vi)

−1V T
i

) � t · I,(5.4)

p ∈ Δr.

Despite (5.4) being a convex semidefinite program,4 which is apparently a harder
problem than solving the original linear system, investing the time into solving (5.4)
using a solver for convex conic programming such as cvx [14] can pay off, as we show
in section 7.4. However, for a practical method based on this, we would need to
develop an approximate solution to (5.4) which can be efficiently calculated.

5.2. Convenient probabilities. Next we develop a choice of probability dis-
tribution that yields a convergence rate that is easy to interpret. This result is new
and covers a wide range of methods, including randomized Kaczmarz and randomized
coordinate descent, as well as their block variants. However, it is more general and
covers many other possible particular algorithms, which arise by choosing a particular
set of sample matrices Si for i = 1, . . . , r.

Theorem 5.2. Let S be a complete discrete sampling such that S = Si ∈ R
m

with probability

(5.5) pi =
Tr
(
ST
i AB

−1ATSi

)
‖B−1/2ATS‖2F

for i = 1, . . . , r.

Then the iterates (2.7) satisfy

(5.6) E
[‖xk − x∗‖2B

] ≤ ρkc ‖x0 − x∗‖2B,

where

(5.7) ρc = 1− λmin

(
STAB−1ATS

)
‖B−1/2ATS‖2F

.

4When preparing a revision of this paper, we have learned about the existence of prior work [6]
where the authors have also characterized the probability distribution that optimizes the convergence
rate of the RK method as the solution to an SDP.
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1676 ROBERT M. GOWER AND PETER RICHTÁRIK

Proof. Let ti = Tr (Si)
T
AB−1ATSi, and with (5.5) in (5.1) we have

D2 =
1

‖B−1/2ATS‖2F
diag

(
t1(S

T
1 AB

−1ATS1)
−1, . . . , tr(S

T
r AB

−1ATSr)
−1
)
,

and thus

(5.8) λmin(D
2) =

1

‖B−1/2ATS‖2F
min
i

{
ti

λmax(ST
i AB

−1ATSi)

}
≥ 1

‖B−1/2ATS‖2F
.

Applying the above in (5.2) gives

λmin

(
B−1/2E [Z]B−1/2

)
= λmin

(
B−1/2ATSD2STAB−1/2

)
= λmin

(
STAB−1ATSD2

)
≥ λmin

(
STAB−1ATS

)
λmin(D

2)(5.9)

≥ λmin

(
STAB−1ATS

)
‖B−1/2ATS‖2F

,

where in the first step we used the fact that for arbitrary matrices B,C of appropriate
sizes, λmin(BC) = λmin(CB), and in the first inequality the fact that if B,C ∈ R

n×n

are positive definite, then λmin(BC) ≥ λmin(B)λmin(C). Finally,

(5.10) 1− λmin

(
B−1/2E [Z]B−1/2

)
≤ 1− λmin

(
STAB−1ATS

)
‖B−1/2ATS‖2F

.

The result (5.6) follows by applying Theorem 4.6.
The convergence rate λmin

(
STAB−1ATS

)
/‖B−1/2ATS‖2F is known as the scaled

condition number and naturally appears in other numerical schemes, such as matrix
inversion [10, 8]. When Si = si ∈ R

n is a column vector,

pi =
(
(si)

TAB−1AT si
)
/‖B−1/2ATS‖2F

for i = 1, . . . , r. In this case, the bound (5.8) is an equality and D2 is a scaled
identity, so (5.9) and consequently (5.10) are equalities. For block methods, it is a
different story, and there is much more slack in the inequality (5.10). There is so
much slack that the convergence rate (5.7) does not indicate any advantage of using
a block method (contrary to numerical experiments). To see the advantage of a block
method, we need to use the exact expression for λmin(D

2) given in (5.8). Though this
results in a somewhat harder to interpret convergence rate, a matrix paving could
be used explore this block convergence rate, as was done for the block Kaczmarz
method [24, 23].

By appropriately choosing B and S, this theorem applied to RK method (3.2),
the CD-LS method (3.15), and the CD-pd method (3.6) yields the convergence re-
sults (3.4), (3.17), and (3.8), respectively, for single column sampling or block methods
alike.

This theorem also suggests a preconditioning strategy, in that a faster convergence
rate will be attained if S is an approximate inverse of B−1/2AT . For instance, in the
RK method where B = I, this suggests that an accelerated convergence can be
attained if S is a random sampling of the rows of a preconditioner (approximate
inverse) of A.
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RANDOMIZED ITERATIVE METHODS FOR LINEAR SYSTEMS 1677

6. Methods based on Gaussian sampling. In this section we shall describe
variants of our method in the case when S is a Gaussian vector with mean 0 ∈ R

m

and a positive definite covariance matrix Σ ∈ R
m×m. That is, S = ζ ∼ N(0,Σ). This

applied to (2.7) results in iterations of the form

(6.1) xk+1 = xk − ζT (Axk − b)

ζTAB−1AT ζ
B−1AT ζ

Unlike the discrete methods in section 3, to calculate an iteration of (6.1) we
need to compute the product of a matrix with a dense vector ζ. This significantly
raises the cost of an iteration. However, in our numeric tests in section 7, the faster
convergence of the Gaussian method often pays off for its high iteration cost.

To analyze the complexity of the resulting method let ξ
def
= B−1/2ATS, which is

also Gaussian, distributed as ξ ∼ N(0,Ω), where Ω
def
= B−1/2ATΣAB−1/2. In this

section we assume A has full column rank, so that Ω is always positive definite. The
complexity of the method can be established through

ρ = 1− λmin

(
E
[
B−1/2ZB−1/2

])
= 1− λmin

(
E

[
ξξT

‖ξ‖22

])
.(6.2)

We can simplify the above by using the lower bound

E

[
ξξT

‖ξ‖22

]
� 2

π

Ω

Tr (Ω)
,

which is proven in Lemma A.1 in Appendix A. Thus

(6.3) 1− 1

n
≤ ρ ≤ 1− 2

π

λmin(Ω)

Tr (Ω)
,

where we used the general lower bound in (4.2). Lemma A.1 also depicts E
[
ξξT /‖ξ‖22

]
being positive definite, and thus Theorem 4.6 guarantees that the expected norm of
the error of all Gaussian methods converges exponentially to zero. This bound is tight
up to a constant factor. For an illustration of this, in the setting with A = I = Σ we
have ξ ∼ N(0, I) and E

[
ξξT /‖ξ‖22

]
= 1

nI, which yields

1− 1

n
≤ ρ ≤ 1− 2

π
· 1
n
.

When n = 2, then in Lemma B.1 of Appendix B we prove that

E

[
ξξT

‖ξ‖22

]
=

Ω1/2

Tr
(
Ω1/2

) ,
which yields a very favorable convergence rate.

6.1. Gaussian Kaczmarz. Let B = I, and choose Σ = I so that S = η ∼
N(0, I). Then (6.1) has the form

(6.4) xk+1 = xk − ηT (Axk − b)

‖AT η‖22
AT η
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1678 ROBERT M. GOWER AND PETER RICHTÁRIK

which we call the Gaussian Kaczmarz (GK) method, for it is the analogous method
to the RK method in the discrete setting. Using the formulation (2.3), for instance,
the GK method can be interpreted as

xk+1 = arg min
x∈Rn

‖x− x∗‖2 subject to x = xk +AT ηy, y ∈ R.

Thus at each iteration a random normal Gaussian vector η is drawn and a search
direction is formed by AT η. Then, starting from the previous iterate xk, an exact line
search is performed over this search direction so that the Euclidean distance from the
optimal is minimized.

6.2. Gaussian least-squares. Let B = ATA, and choose S ∼ N(0,Σ) with
Σ = AAT . It will be convenient to write S = Aη, where η ∼ N(0, I). Then method
(6.1) has the form

(6.5) xk+1 = xk − ηTAT (Axk − b)

‖Aη‖22
η

which we call the Gauss-LS method. This method has a natural interpretation
through formulation (2.3) as

xk+1 = arg min
x∈Rn

1

2
‖Ax− b‖22 subject to x = xk + yη, y ∈ R.

That is, starting from xk, we take a step in a random (Gaussian) direction and then
perform an exact line search over this direction that minimizes the least-squares error.
Thus the Gauss-LS method is the same as applying the random pursuit method [36]
with exact line search to the least-squares function.

6.3. Gaussian positive definite. When A is positive definite, we achieve an
accelerated Gaussian method. Let B = A, and choose S = η ∼ N(0, I). Method (6.1)
then has the form

(6.6) xk+1 = xk − ηT (Axk − b)

‖η‖2A
η

which we call the Gauss-pd method.

Using formulation (2.3), the method can be interpreted as

xk+1 = arg min
x∈Rn

{
f(x)

def
= 1

2x
TAx− bTx

}
subject to x = xk + yη, y ∈ R.

That is, starting from xk, we take a step in a random (Gaussian) direction and
then perform an exact line search over this direction. Thus the Gauss-pd method is
equivalent to applying the random pursuit method [36] with exact line search to f(x).

All the Gaussian methods can be extended to block versions. We illustrate this
by designing a block Gauss-pd method where S ∈ R

n×q has i.i.d. Gaussian normal
entries and B = A. This results in the iterates

(6.7) xk+1 = xk − S(STAS)−1ST (Axk − b).
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RANDOMIZED ITERATIVE METHODS FOR LINEAR SYSTEMS 1679

7. Numerical experiments. We perform some preliminary numeric tests. Ev-
erything is coded and run in MATLAB R2014b. Let κ2 = ‖A‖‖A†‖ be the 2-norm
condition number, where A† is a pseudoinverse of A. In comparing different methods
for solving overdetermined systems, we use the relative error measure ‖Axk−b‖2/‖b‖2,
while for positive definite systems we use ‖xk − x∗‖A/‖x∗‖A as a relative error mea-
sure. We run each method until the relative error is below 10−4 or until 300 seconds
in time is exceeded. We use x0 = 0 ∈ R

n as an initial point. In each figure we
plot the relative error in percentage on the vertical axis, starting with 100%. For the
horizontal axis, we use either wall-clock time measured using the tic-toc MATLAB
function or the total number of floating point operations (flops).

In implementing the discrete sampling methods we used the convenient probabil-
ity distributions (5.5).

All tests were performed on a Desktop with 64bit quad-core Intel Core i5-2400S
CPU @2.50GHz with 6MB cache size with a Scientific Linux release 6.4 (Carbon)
operating system.

Consistently across our experiments, the Gaussian methods almost always require
more flops to reach a solution with the same precision as their discrete sampling
counterparts. This is due to the expensive matrix-vector product required by the
Gaussian methods. Meanwhile, the results are more mixed when measured in terms of
wall clock time. This is because MATLAB performs automatic multithreading when
calculating matrix-vector products, which was the bottleneck cost in the Gaussian
methods. As our machine has four cores, this explains some of the differences observed
when measuring performance in terms of number of flops and wall clock time.

7.1. Overdetermined linear systems. First we compare the Gauss-LS, CD-
LS, GK, and RK methods on synthetic linear systems generated with the matrix
functions rand and sprandn; see Figure 2. The high iteration cost of the Gaussian
methods resulted in poor performance on the dense problem generated using rand in
Figure 2a. In Figure 2b we compare the methods on a sparse linear system gener-
ated using the MATLAB sparse random matrix function sprandn(m,n,density,rc),
where density is the percentage of nonzero entries and rc is the reciprocal of the
condition number. On this sparse problem the Gaussian methods are more efficient
and converge at a rate similar to that of the discrete sampling methods.

In Figure 3 we test two overdetermined linear systems taken from the the Matrix
Market collection [3]. The collection also provides the right-hand side of the linear
system. Both of these systems are very well conditioned, but do not have full column
rank, and thus Theorem 4.6 does not apply. The four methods have a similar per-
formance on Figure 3a, while the Gauss-LS and CD-LS methods converge faster on
Figure 3b as compared to the GK and Kaczmarz methods.

Finally, we test two problems, the SUSY problem and the covtype.binary prob-
lem, from the library of support vector machine problems LIBSVM [5]. These prob-
lems do not form consistent linear systems, and thus only the Gauss-LS and CD-LS
methods are applicable; see Figure 4. This is equivalent to applying the Gauss-pd and
CD-pd methods to the least-squares system ATAx = AT b, which is always consistent.

Despite the higher iteration cost of the Gaussian methods, their performance, in
terms of the wall clock time, is comparable to the performance of the discrete methods
when the system matrix is sparse.

7.2. Bound for Gaussian convergence. Now we compare the error over the
number of iterations of the Gauss-LS method to the theoretical rate of convergence
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(a) rand
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(b) sprandn

Fig. 2. The performance of the Gauss-LS, CD-LS, GK, and RK methods on synthetic MATLAB
generated problems (a) rand(n,m) with (m;n) = (1000, 500) and (b) sprandn(m,n, density,rc) with
(m;n) = (1000, 500), density= 1/ log(nm), and rc= 1/

√
mn. In both experiments dense solutions

were generated with x∗ =rand(n, 1) and b = Ax∗.

given by the bound (6.3). For the Gauss-LS method, (6.3) becomes

1− 1

n
≤ ρ ≤ 1− 2

π
λmin

(
ATA

‖A‖2F

)
.

In Figures 5a and 5b we compare the empirical convergence and theoretical bound
on a random Gaussian matrix and the liver-disorders problem [5]. Furthermore,
we ran the Gauss-LS method 100 times and plot as dashed lines the 95% and 5%
quantiles. These tests indicate that the bound is tight for well-conditioned problems,
such as Figure 5a, in which the system matrix has a condition number equal to 1.94.
Meanwhile, in Figure 5b the system matrix has a condition number of 41.70 and there
is much more slack between the empirical convergence and the theoretical bound.

7.3. Positive definite. First we compare the two methods Gauss-pd (6.6) and
CD-pd (3.7) on synthetic data in Figure 6.

Using the MATLAB function hilbert, we can generate positive definite matrices
with very high condition number; see Figure 6(left). Both methods converge slowly
and, despite the dense system matrix, the Gauss-pd method has a performance sim-
ilar to that of the CD-pd method. In Figure 6(right) we compare the two methods
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(a) illc1033
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Fig. 3. The performance of the Gauss-LS, CD-LS, GK, and RK methods on linear systems
(a) well1033, where (m;n) = (1850, 750), nnz = 8758, and κ2 = 1.8, and (b) illc1033, where
(m;n) = (1033; 320), nnz = 4732, and κ2 = 2.1, from the Matrix Market [3].

on a system generated by the MATLAB function sprandsym (m, n, density, rc,
type), where density is the percentage of nonzero entries, rc is the reciprocal of the
condition number, and type=1 returns a positive definite matrix. The Gauss-pd and
CD-pd methods have a similar performance in terms of wall clock time on this sparse
problem.

To appraise the performance gain in using block variants, we perform tests using
two block variants: the randomized Newton method (3.12), which we will now refer to
as the block CD-pd method, and the block Gauss-pd method (6.7); see Figure 7. The
size of blocks q in both methods was set to q =

√
n. To solve the q×q system required

in the block methods, we use the MATLAB built-in direct solver, sometimes referred
to as “back-slash.” As test data, we use the Newton system ∇2f(w0)x = −∇f(w0),
arising from four ridge-regression problems of the form

(7.1) min
w∈Rn

f(w)
def
= 1

2‖Aw − b‖22 + λ
2 ‖w‖22,

using data from LIBSVM [5]. In particular, we set w0 = 0 and use λ = 1 as the
regularization parameter, whence ∇f(w0) = AT b and ∇2f(w0) = ATA+ I.

In terms of wall clock time, the Gauss-pd method converged faster on all problems
except the protein problem as compared to CD-pd. The two block methods had
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Fig. 4. The performance of Gauss-LS and CD-LS methods on two LIBSVM test problems: (a)
SUSY: (m;n) = (5 × 106; 18) and (b) covtype.binary: (m; n) = (581, 012; 54).

a comparable performance on the aloi and SUSY problems. The block Gauss-pd
method converged in one iteration on covtype.binary, and the block CD-pd method
converged fast on the Protein problem.

We now compare the methods on two positive definite matrices from the Ma-
trix Market collection [3]; see Figure 8. The right-hand side was generated using
rand(n,1). The block CD-pd method converged much faster on both problems.
The lower condition number (κ2 = 12) of the gr 30 30-rsa problem resulted in fast
convergence of all methods; see Figure 8a. Meanwhile, the high condition number
(κ2 = 4.3 · 104) of the bcsstk18 problem resulted in a slow convergence for all meth-
ods; see Figure 8b.

Despite the clear advantage of using a block variant, applying a block method
that uses a direct solver can be infeasible on very ill conditioned problems. As an
example, applying the block CD-pd to the Hilbert system, and using MATLAB back-
slash solver to solve the inner q × q systems, resulted in large numerical inaccuracies
and ultimately prevented the method from converging. This occurred because the
submatrices of the Hilbert matrix are also very ill conditioned.

7.4. Comparison between optimized and convenient probabilities. We
compare the practical performance of using the convenient probabilities (5.5) against
using the optimized probabilities by solving (5.4). We solved (5.4) using the disci-
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iterations
0 500 1000

e
r
r
o
r

10-10

105
Gauss LS
theo. Gauss LS

(a) rand(n,m)

iterations
0 500 1000 1500

e
r
r
o
r

10-4

102

Gauss LS
theo. Gauss LS

(b) liver-disorders

Fig. 5. A comparison between the Gauss-LS method and the theoretical bound ρtheo
def
=

1 − λmin(A
TA)/‖A‖2F on (a) rand(n,m) with (m; n) = (500, 50), κ2 = 1.94, and a dense solution

generated with x∗ = rand(n, 1) and (b) liver-disorders with (m;n) = (345, 6) and κ2 = 41.70.
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Fig. 6. Synthetic MATLAB generated problem. The Gaussian methods are more efficient
on sparse matrices. Left: The Hilbert Matrix with n = 100 and condition number ‖A‖‖A−1‖ =
6.5953× 1019. Right: Sparse random matrix A = sprandsym (n, density, rc, type) with n = 1000,
density= 1/ log(n2), and rc = 1/n = 0.001. Dense solution generated with x∗ =rand(n, 1).

plined convex programming solver cvx [14] for MATLAB.

In Table 2 we compare the different convergence rates for the CD-pd method,
where ρc is the convenient convergence rate (5.7), ρ∗ the optimized convergence rate,
(1 − 1/n) the lower bound, and in the final “optimized time(s)” column the time
taken to compute ρ∗. In Figure 9, we compare the empirical convergence of the CD-
pd method when using the convenient probabilities (5.5) and CD-pd-opt, the CD-pd
method with the optimized probabilities, on four ridge-regression problems and a
uniform random matrix. We ran each method for 60 seconds.

In most cases using the optimized probabilities results in a much faster conver-
gence; see Figures 9a, 9c, 9d, and 9e. In particular, the 7.401 seconds spent calculating
the optimal probabilities for aloi paid off with a convergence that was 55 seconds
faster. The mushrooms problem was insensitive to the choice of probabilities in Fig-
ure 9d. Finally, despite ρ∗ being much less than ρc on covtype (see Table 2), us-
ing optimized probabilities resulted in an initially slower method, though CD-pd-opt
eventually catches up as CD-pd stagnates; see Figure 9b.

In Table 3 we compare the different convergence rates for the RK method. In
Figure 10, we then compare the empirical convergence of the RK method when using
the convenient probabilities (5.5) and RK-opt, the RK method with the optimized
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Fig. 7. The performance of Gaussian and CD-pd methods on four ridge-regression problems: (a)
aloi: (m;n) = (108, 000; 128), (b) protein: (m;n) = (17, 766; 357), (c) SUSY: (m;n) = (5× 106; 18),
and (d) covtype.binary: (m;n) = (581, 012; 54).
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Fig. 8. The performance of the Gauss-pd, CD-pd, and block CD-pd methods on two lin-
ear systems from the Matrix Market collection [3]: (a) gr 30 30-rsa with n = 900, nnz = 4322
(density= 0.53%), and κ2 = 12. (b) bcsstk18 with n = 11948, nnz = 80519 (density= 0.1%), and
κ2 = 4.3 · 1010.

Table 2

Optimizing the convergence rate for CD-pd.

Data set ρc ρ∗ 1− 1/n Optimized time(s)

rand(50,50) 1− 2 · 10−6 1− 3.05 · 10−6 1− 2.10−2 1.076

mushrooms-ridge 1− 5.86 · 10−6 1− 7.15 · 10−6 1− 8.93 · 10−3 4.632

aloi-ridge 1− 2.17 · 10−7 1− 1.26 · 10−4 1− 7.81 · 10−3 7.401

liver-disorders-ridge 1− 5.16 · 10−4 1− 8.25 · 10−3 1− 1.67 · 10−1 0.413

covtype.binary-ridge 1− 7.57 · 10−14 1− 1.48 · 10−6 1− 1.85 · 10−2 1.449
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Fig. 9. The performance of the CD-pd and optimized CD-pd methods on (a) aloi: (m;n) =
(108, 000; 128), (b) covtype.binary: (m; n) = (581, 012; 54), (c) liver-disorders: (m;n) = (345, 6),
(d) mushrooms: (m;n) = (8124, 112), (e) uniform-random-50X50.

probabilities by solving (5.4). The rates ρ∗ and ρc for the rand(500,100) problem are
similar, and accordingly, both the convenient and the optimized variants converge at a
similar rate in practice; see Figure 10b. Meanwhile, the difference in the rates ρ∗ and
ρc for the liver-disorders is more pronounced, and in this case, the 0.83 seconds
invested in obtaining the optimized probability distribution paid off in practice, as the
optimized method converged 1.25 seconds before the RK method with the convenient
probability distribution; see Figure 10a.

We conclude from these tests that the choice of the probability distribution can
greatly affect the performance of the method. Hence, it is worthwhile developing
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Table 3

Optimizing the convergence rate for randomized Kaczmarz.

Data set ρc ρ∗ 1− 1/n Optimized time(s)

rand(500,100) 1− 3.37 · 10−3 1− 4.27 · 10−3 1− 1 · 10−2 33.121

liver-disorders 1− 5.16 · 10−4 1− 4.04 · 10−3 1− 1.67 · 10−1 0.8316

time (s)
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r
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(a) liver-disorders-popt-k

time (s)
0 0.1 0.2 0.3

e
r
r
o
r

10-10

105
Kaczmarz
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(b) rand(500,100)

Fig. 10. The performance of the Kaczmarz and optimized Kaczmarz methods on (a)
liver-disorders: (m;n) = (345, 6), (b) rand(500,100).

approximate solutions to (5.3).

8. Conclusion. We present a unifying framework for the randomized Kaczmarz
method, randomized Newton method, randomized coordinate descent method, and
random Gaussian pursuit. Not only can we recover these methods by selecting the
parameters S and B appropriately, but we can also analyze them and their block
variants through a single theorem (Theorem 4.6). Furthermore, we obtain a new
lower bound for all these methods in Theorem 4.4 and, in the discrete case, recover
all known convergence rates expressed in terms of the scaled condition number in
Theorem 5.2.

Theorem 5.2 also suggests a preconditioning strategy. Developing precondition-
ing methods is important for reaching a higher precision solution on ill-conditioned
problems. For as we have seen in the numerical experiments, the randomized meth-
ods struggle to bring the solution within 10−2 relative error when the matrix is ill-
conditioned.

This is also a framework on which randomized methods for linear systems can be
designed. As an example, we have designed a new block variant of RK, a new GK
method, and a new Gaussian block method for positive definite systems. Furthermore,
the flexibility of our framework and the general convergence theorems (Theorems 4.6
and 4.4) allows one to tailor the probability distribution of S to a particular problem
class. For instance, other continuous distributions, such as uniform, or other discrete
distributions, such as Poisson, might be more suited to a particular class of problems.

Numeric tests reveal that the new Gaussian methods designed for overdetermined
systems are competitive on sparse problems, as compared to the Kaczmarz and CD-LS
methods. The Gauss-pd method also proved competitive as compared to CD-pd on
all tests. However, when applicable, the combined efficiency of using a direct solver
and an iterative procedure, such as in the block CD-pd method, proved the most
efficient.
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RANDOMIZED ITERATIVE METHODS FOR LINEAR SYSTEMS 1687

The work opens up many possible future venues of research. This includes in-
vestigating accelerated convergence rates through preconditioning strategies based on
Theorem 5.2 or by obtaining approximate optimized probability distributions (5.4).

Appendix A. A bound on the expected Gaussian projection matrix. We
now bound the covariance of a random Gaussian vector projected onto the sphere.
This bound is used to study the complexity of Gaussian methods in section 6.

Lemma A.1. Let D ∈ R
n×n be a positive definite diagonal matrix, let U ∈ R

n×n

be an orthogonal matrix, and let Ω = UDUT . If u ∼ N(0, D) and ξ ∼ N(0,Ω), then

(A.1) E

[
ξξT

ξT ξ

]
= UE

[
uuT

uTu

]
UT

and

(A.2) E

[
ξξT

ξT ξ

]
� 2

π

Ω

Tr (Ω)
.

Proof. Let us write S(ξ) for the random vector ξ/‖ξ‖2 (if ξ = 0, we set S(ξ) = 0).
Using this notation, we can write

E
[
ξ(ξT ξ)−1ξT

]
= E

[
S(ξ)(S(ξ))T

]
= Cov [S(ξ)] ,

where the last identity follows since E [S(ξ)] = 0, which in turn holds since the
Gaussian distribution is centrally symmetric. As ξ = Uu, note that

S(u) =
UT ξ

‖UT ξ‖2 =
UT ξ

‖ξ‖2 = UTS(ξ).

Left multiplying both sides by U we obtain US(u) = S(ξ), from which we obtain

Cov [S(ξ)] = UCov [S(u)]UT ,

which is equivalent to (A.1).

To prove5 (A.2), note first that M
def
= E

[
uuT/uTu

]
is a diagonal matrix. One

can verify this by direct calculation (informally, this holds because the entries of u
are independent and centrally symmetric). The ith diagonal entry is given by

Mii = E

[
u2
i∑n

j=1 u
2
j

]
.

As the map (x, y) → x2/y is convex on the positive orthant, we can apply Jensen’s
inequality, which gives

E

[
u2
i∑n

j=1 u
2
j

]
≥ (E [|ui|])2∑n

j=1 E
[
u2
j

] = 2

π

Dii

Tr (D)
,

which concludes the proof.

Appendix B. Expected Gaussian projection matrix in two dimensions.
Lemma B.1. Let ξ ∼ N(0,Ω), and let Ω ∈ R

2×2 be a positive definite matrix;
then

(B.1) E

[
ξξT

ξT ξ

]
=

Ω1/2

Tr
(
Ω1/2

) .
5A version of Lemma A.1 was conjectured in the original draft of this paper. Prof. Joel Tropp

provided this formulation and the remainder of this proof.
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Proof. Let Σ = UDUT and u ∼ N(0, D). Given (A.1), it suffices to show that

(B.2) Cov [S(u)] =
D1/2

Tr
(
D1/2

) ,
which we will now prove.

Let σ2
x and σ2

y be the two diagonal elements of D. First, suppose that σx = σy.
Then u = σxη, where η ∼ N(0, I) and

E

[
uuT

uTu

]
=

σ2
x

σ2
x

E

[
ηηT

ηT η

]
=

1

n
I =

D1/2

Tr
(
D1/2

) .
Now suppose that σx 
= σy. We calculate the diagonal terms of the covariance matrix
by integrating

E

[
u2
1

u2
1 + u2

2

]
=

1

2πσxσy

∫
R2

x2

x2 + y2
e−

1
2 (x

2/σ2
x+y2/σ2

y)dxdy.

Using polar coordinates x = R cos(θ) and y = R sin(θ) we have

(B.3)

∫
R2

x2

x2 + y2
e−

1
2 (x

2/σ2
x+y2/σ2

y)dxdy =

∫ 2π

0

∫ ∞

0

R cos2(θ)e−
R2

2 C(θ)dRdθ,

where C(θ)
def
=
(
cos(θ)2/σ2

x + sin(θ)2/σ2
y

)
. Note that

(B.4)

∫ ∞

0

Re−
C(θ)R2

2 dR = − 1

C(θ)
e−

C(θ)R2

2

∣∣∣∣
∞

0

=
1

C(θ)
.

This applied in (B.3) gives

E

[
u2
1

u2
1 + u2

2

]
=

1

2πσxσy

∫ 2π

0

cos2(θ)

cos(θ)2/σ2
x + sin(θ)2/σ2

y

dθ =
b

π

∫ π

0

cos2(θ)

cos2(θ) + b2 sin2(θ)
dθ,

where b = σx/σy. Multiplying the numerator and denominator of the integrand by
sec4(x) gives the integral

E

[
u2
1

u2
1 + u2

2

]
=

b

π

∫ π

0

sec2(θ)

sec(θ)2
(
1 + b2 tan2(θ)

)dθ.
Substituting v = tan(θ) so that v2 + 1 = sec2(θ) and dv = sec2(θ)dθ and using the
partial fractions

1

(v2 + 1) (1 + b2v2)
=

1

1− b2

(
1

v2 + 1
− b2

b2v2 + 1

)

gives the integral∫
dv

(v2 + 1) (1 + b2v2)
=

1

1− b2
(arctan(v) − b arctan(bv))

=
1

1− b2
(θ − b arctan(b tan(θ))) .(B.5)
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RANDOMIZED ITERATIVE METHODS FOR LINEAR SYSTEMS 1689

To apply the limits of integration, we must take care because of the singularity at
θ = π/2. For this, consider the limits

lim
θ→(π/2)−

arctan(b tan(θ)) =
π

2
, lim

θ→(π/2)+
arctan(b tan(θ)) = −π

2
.

Using this to evaluate (B.5) on the limits of the interval [0, π/2] gives

lim
t→(π/2)−

1

1− b2
(θ − b arctan(b tan(θ)))

∣∣∣∣
t

0

=
1

1− b2
π

2
(1− b) =

π

2(1 + b)
.

Applying a similar argument for calculating the limits from π/2+ to π, we find that

E

[
u2
1

u2
1 + u2

2

]
=

2b

π

π

2(1 + b)
=

σx

σy + σx
.

Repeating the same steps with x swapped for y we obtain the other diagonal element,
which concludes the proof of (B.2).
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