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1. Introduction. The identity of the title is
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Here � is the classical M�obius function, and (1) is a formal power series identity in z. When
a is a positive integer, the exponent M(a; n) is also a positive integer and counts the number
of circular arrangements of n letters taken from an alphabet of a letters. This suggests the
possibility of a combinatorial proof. The present note shows how a straightforward search for
such a proof leads almost directly to the Unique Factorization Theorem for the so-called Lyndon
words that arise in the theory of Combinatorics on Words. The Lyndon word proof does not
seem to be well known. It is only vaguely referred to in Rota and Metropolis's 1983/84 papers
[1, 2], where a \natural" bijective proof is given. Nor is it mentioned in several subsequent proofs
and generalizations [3, 4, 5, 6, 7].

2. Notation and Terminology. Let A = fA;B;C; : : :g denote a �xed alphabet of a
distinct letters. A word (on alphabet A) is any �nite sequence of these letters. The length of a
word is the number of letters in its sequence. There is one word of length 0: the empty word.
Let W(a; n) denote the set of an words of length n on A and let W(a) =

S1
n=0W(a; n) denote

the set of all words on A: In fact, W(a) is a monoid with the product of two words given by
juxtaposition and the empty word as identity. Let W(a)+ denote the set of nonempty words in
W(a):
W(a)+ is partitioned into equivalence classes, called necklaces, by the following equivalence

relation: w1 � w2 i� w2 can be obtained from w1 by cyclic rotation of its letters. Thus
fABA;AAB;BAAg is a necklace, as is fABAB;BABAg. A word w 2 W(a)+ is primitive

if it cannot be expressed as a power of a shorter word. Let < denote lex (dictionary) order on
W(a)+: Thus A < AA < AB < B: A word w 2 W(a)+ is called a Lyndon word if it is (i)
primitive, and (ii) minimal in its necklace equivalence class (relative to lex order). Thus A and
AAB are Lyndon words unlike ABAB (not primitive) and ABA (not minimal).

3. Combinatorial Interpretation of Coe�cients. The number of Lyndon words of
length n on an alphabet of a letters can be counted by M�obius inversion and is given by the

expression M(a; n) above [8, x5.1, p. 65]. So let us visualize a listing fpijg
M(a;i)
j=1 of the Lyndon
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words of length i for each i, arranged vertically, and a corresponding listing of the (expanded)
factors on the right side of the cyclotomic identity (1) as in Figure 1 below.

p11 (1 + z + z2 + � � �+ zk + : : :)
...

...
...

...
pi1 (1 + zi + z2i + � � �+ zki + : : : )
...

...
pi;M(a;i) (1 + zi + z2i + � � �+ zki + : : : )

pi+1;1 (1 + zi+1 + z2(i+1) + � � �+ zk(i+1) + : : : )
...

...
...

...

Figure 1

The coe�cient of zn on the right side of the cyclotomic identity (1) is the number of ways to select
one power of z from each row in Fig. 1 such that their exponents sum to n. Letting the term zki

in the row labelled pij correspond to k copies of the Lyndon word pij ; we see that this coe�cient is
equal to the number of sets (multisets really) of Lyndon words (on a letters) whose lengths sum to
n: Let C(a; n) denote the collection of such multisets. For example, C(2; 3) consists of 8 multisets:
(1)fA;A;Ag (2)fAABg (3)fAB;Ag (4)fABBg (5)B;AAg (6)fB;ABg (7)fBB;Ag (8)fB;B;Bg:
Now recallW(a; n) is the set of all n-letter words on our a-letter alphabet; thusW(2; 3) = fAAA;
AAB; ABA; ABB; BAA; BAB; BBA; BBBg: Clearly the coe�cient of zn on the left side
of (1) is an = jW(a; n)j:

4. A Bijection. So far we have identi�ed corresponding coe�cients in (1) with the cardi-
nalities of all words of length n on A|W(a; n), and all multisets of Lyndon words on A whose
lengths sum to n|C(a; n). All that's missing is a bijection W(a; n)  ! C(a; n): To go from
C(a; n) to W(a; n); surely the most obvious thing to do is to erase the commas. For C(2; 3)
above, this works!

It will work in general provided we arrange the Lyndon words comprising a multiset in an
appropriate order, and reverse lex (�) will do. Let this be done (as it quietly was for C(2; 3)
above) giving a canonical representation of each element of C(a; n):Now let  : C(a; n)!W(a; n)
denote the \erase the commas" map. For  to be a bijection the following theorem must be
true (it is).

Theorem 1 Any word w 2 W(a; n) can be uniquely factored as a weakly decreasing product of

Lyndon words wi:

w = w1w2 � � �wr w1 � w2 � � � � � wr

This is sometimes called the Chen-Fox-Lyndon factorization and an exposition can be found in [8,
p. 67]. Algorithms for e�ecting the factorization are also discussed there and implemented in the
MathematicaTM package CombinatoricsOnWords available from http://www.stat.wisc.edu/~callan/
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