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Abstract. In this paper, we show that the number of members of Sn avoiding any one

of five specific triples of 4-letter patterns is given by sequence A111279, which is known

to count weak sorting permutations. By numerical evidence, there are no other (non-

trivial) triples of 4-letter patterns giving rise to this sequence. We make use of a variety

of methods [5, 6] in proving our result, including recurrences, the kernel method, direct

counting, and bijections.
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1. Introduction

Let π = π1π2 · · ·πn ∈ Sn and τ ∈ Sk be two permutations. We say that π
contains τ if there exists a subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n such
that πi1πi2 · · ·πik is order-isomorphic to τ ; in such a context τ is usually called
a pattern. We say that π avoids τ , or is τ-avoiding, if no such subsequence
exists. The set of all τ -avoiding permutations in Sn is denoted Sn(τ). For an
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arbitrary finite collection of patterns T , we say that π avoids T if π avoids every
τ ∈ T ; the corresponding subset of Sn is denoted Sn(T ). Two sets of patterns
T and T ′ are said to be Wilf-equivalent if their avoiders have the same counting
sequence, that is, if |Sn(T )| = |Sn(T

′)| for all n ≥ 0. In the context of pattern
avoidance, a symmetry class refers to an orbit of the dihedral group of order eight
generated by the operations reverse, complement, and inverse acting entrywise
on sets of patterns. Two pattern sets in the same symmetry class obviously have
equinumerous avoiders, that is, are trivially Wilf-equivalent.

The weak sorting permutations are those that avoid 3241, 3421 and 4321
[1]. We will show that there are precisely five symmetry classes of triples of
4-letter patterns counted as the weak sorting permutations. Representatives
Πj , 1 ≤ j ≤ 5, of these five classes are listed in Theorem 1.1 below. The weak
sorting triple 3241, 3421, 4321 is in the same symmetry class as Π1. (Our proof
for Π1 is different from that in [1] for the weak sorting triple and is included
because similar methods are used for Π2 and Π3.) A computer check of initial
terms shows that no other symmetry class of triples of 4-letter patterns has this
counting sequence.

Theorem 1.1. (Main Theorem) Define

Π1 = {1234, 1243, 1342}, Π2 = {1243, 1324, 1342}, Π3 = {1324, 1342, 1432}
Π4 = {2314, 3214, 4213}, Π5 = {3214, 3241, 4213}.

Then, for all j = 1, 2, 3, 4, 5,

∑

n≥0

#Sn(Πj)x
n =

1− 5x+ (1 + x)
√
1− 4x

1− 5x+ (1 − x)
√
1− 4x

. (1)

2. Proof of Main Theorem

The next results are To prove our main theorem, we find an explicit formula for
the generating function

∑

n≥0 #Sn(Πj)x
n, where j = 1, 2, 3, 4, 5. Furthermore,

for the fifth class, Π5, we give an explicit formula for the number of members of
the set Sn(Π5).

2.1. Class 1: Π1 = {1234, 1243, 1342}

Let An = Sn(Π1). Define an = #An and an(i1, . . . , is) to be the number of
permutations π = π1 · · ·πn ∈ An such that π1 · · ·πs = i1 · · · is. Then we have
the following recurrence.
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Lemma 2.1. Define bn(i) = an(i, n− 1). For all 1 ≤ i ≤ n− 3,

an(i) = an−1(i) + · · ·+ an−1(1) + bn(i),

bn(i) = bn−1(i) + · · ·+ bn−1(1),

with an(n − 2) = an(n − 1) = an(n) = an−1, bn(n − 1) = 0 and bn(n − 2) =
bn(n) = an−2.

Proof. By the definitions, an(n) = an(n− 1) = an(n− 2) = an−1, bn(n− 1) = 0
and bn(n− 2) = bn(n) = an−2. If 1 ≤ i ≤ n− 3, then

an(i) =
i−1
∑

j=1

an(i, j) +
n
∑

j=i+1

an(i, j) =
i−1
∑

j=1

an−1(j) + an(i, n) + bn(i)

=

i
∑

j=1

an−1(j) + bn(i).

Also,

bn(i) =

i−1
∑

j=1

an(i, n− 1, j) +

n−2
∑

j=i+1

an(i, n− 1, j) + an(i, n− 1, n).

By the definitions, an(i, n − 1, n) = 0 (the permutations in question have sub-
sequence i, n − 1, n, n − 2, which is order isomorphic to 1342). Since π avoids
1234 and 1243, we see that an(i, n − 1, j) = 0 if i + 1 ≤ j ≤ n − 3. Clearly,
an(i, n− 1, n− 2) = an−1(i, n− 2) = bn−1(i). Thus,

bn(i) =

i−1
∑

j=1

an(i, n− 1, j) + bn−1(i).

Note that π = i(n− 1)jπ′ ∈ An with 1 ≤ j < i if and only if j(n− 2)π′′ ∈ An−1,
where π′′ is a word obtained from π′ by decreasing each letter greater than i by
1. Hence, an(i, n − 1, j) = an−1(j, n − 2), for all j = 1, 2, . . . , i − 1. In other

words, bn(i) =
∑i

j=1 bn−1(j), as required.

Define An(v) =
∑n

i=1 an(i)v
i−1 and Bn(v) =

∑n

i=1 bn(i)v
i−1. Then by mul-

tiplying the recurrence relations in Lemma 2.1 by vi−1, we obtain

n−3
∑

i=1

an(i)v
i−1 =

n−3
∑

i=1

i
∑

j=1

an−1(j)v
i−1 +

n−3
∑

i=1

bn(i)v
i,

n−3
∑

i=1

bn(i)v
i−1 =

n−3
∑

i=1

i
∑

j=1

bn−1(j)v
i−1,
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which, by the initial conditions, gives for n ≥ 3,

An(v) =
1

1− v
(An−1(v)− vnAn−1(1)) +Bn(v) − vn−1An−2(1),

Bn(v) =
1

1− v
(Bn−1(v)− vn−3Bn−1(1)) + vn−3An−3(1)

+ vn−1An−2(1) + vn−3An−2(1).

By direct calculations, we have A0(v) = A1(v) = 1, A2(v) = 1 + v, B0(v) =
B1(v) = 0 and B2(v) = v.

Let A(x, v) =
∑

n≥0 An(v)x
n and B(x, v) =

∑

n≥0 Bn(v)x
n be the generating

functions for the sequences An(v) and Bn(v), respectively. By multiplying by
xn and summing over n ≥ 3, we obtain

A(x, v) − 1− x− (1 + v)x2

=
x

1− v
(A(x, v) − 1− x− vA(xv, 1) + v + xv2) +B(x, v) − vx2A(xv, 1), (2)

B(x, v) − vx2

=
x

1− v
(B(x, v) − v−3B(xv, 1)) + x3A(xv, 1) + x2(v + v−1)(A(xv, 1) − 1). (3)

Hence, (2) and (3) can be written as
(

1− x

v(1− v)

)

A(x/v, v)

=1− x

1− v
A(x, 1) +B(x/v, v) − x2

v
A(x, 1),

(

1− x

v(1− v)

)

B(x/v, v)

=
−x

v4(1 − v)
B(x, 1) +

(

x3

v3
+

x2

v
+

x2

v3

)

A(x, 1)− x2

v3
.

By substituting v = 1+
√
1−4x
2 (the zero of the kernel 1− x

v(1−v) , see [3]) into the

second equation, we obtain

B(x, 1) = −x2 +
3x2 + x2

√
1− 4x

2
A(x, 1). (4)

By multiplying the first equation by 1− x
v(1−v) , and using the second equation,

we obtain
(

1− x

v(1 − v)

)2

A(x/v, v)

=1− x

v(1 − v)
− x2

v3
−
(

x2

v
+

x

1− v

)(

1− x

v(1 − v)

)

A(x, 1)

− x

v4(1− v)
B(x, 1) +

(

x3

v3
+

x2

v
+

x2

v3

)

A(x, 1).
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Differentiating the last equation with respect to v, substituting v = 1+
√
1−4x
2 ,

and using (4), we obtain after several simple algebraic operations the explicit
formula

A(x, 1) =
1− 5x+ (1 + x)

√
1− 4x

1− 5x+ (1− x)
√
1− 4x

,

which completes the proof of this case.

2.2. Class 2: Π2 = {1243, 1324, 1342}

Let An = Sn(Π2). Define an = #An and an(i1, . . . , is) to be the number of
permutations π1 · · ·πn ∈ An such that π1 · · ·πs = i1 · · · is.

Lemma 2.2. Define bn(i) = an(i, i+ 1). For all 1 ≤ i ≤ n− 3,

an(i) = an−1(i) + · · ·+ an−1(1) + bn(i),

bn(i) = bn−1(i) + · · ·+ bn−1(1),

with an(n − 2) = an(n − 1) = an(n) = an−1, bn(n) = 0 and bn(n − 2) =
bn(n− 1) = an−2.

Proof. By the definitions, an(n) = an(n− 1) = an(n− 2) = an−1, bn(n) = 0 and
bn(n− 2) = bn(n− 1) = an−2. If 1 ≤ i ≤ n− 3, then

an(i) =

i−1
∑

j=1

an(i, j) +

n
∑

j=i+1

an(i, j) =

i−1
∑

j=1

an−1(j) + an(i, n) + bn(i)

=

i
∑

j=1

an−1(j) + bn(i).

Also,

bn(i) =

i−1
∑

j=1

an(i, i+ 1, j) +

n
∑

j=i+2

an(i, i+ 1, j).

By the definitions, an(i, i+1, j) = 0 with j > i+2 (the permutations in question
have subsequence i, i+1, j, i+2, which is order isomorphic to 1243) and an(i, i+
1, i+ 2) = an−1(i, i+ 1) = bn−1(i). Thus

bn(i) = bn−1(i) +

i−1
∑

j=1

an(i, i+ 1, j).

Let π = i(i + 1)jπ′ ∈ An with 1 ≤ j ≤ i − 1. Then the letters i, i+ 1, i+ 2, i +
3, . . . , n form an increasing subsequence in π. If j′ with j < j′ < i appears to the
right of i+2 in π, then π contains either j(i+2)j′(i+3) or j(i+2)(i+3)j′, and
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hence an occurrence of 1243 or 1342, respectively. Thus j′ appears to the left of
i + 2 in π. Since π avoids 1324, it contains the subsequence j, j + 1, . . . , i − 1.
Thus π ∈ An if and only if j(j + 1)π′′ ∈ An−1, where π′′ is the word obtained
from π′ by decreasing each letter greater than i + 1 by 1 and increasing the
letters j + 1, j + 2, . . . , i − 1 by 1. Hence, an(i, i + 1, j) = an−1(j, j + 1), for all

j = 1, 2, . . . , i− 1. In other words, bn(i) =
∑i

j=1 bn−1(j), as required.

By using the techniques that have been used in the proof of Class 1 and the
similarity of Lemma 2.1 and Lemma 2.2, one can solve the recurrence relation
in Lemma 2.2, and obtain that the generating function A(x) =

∑

n≥0 anx
n is

given by
1− 5x+ (1 + x)

√
1− 4x

1− 5x+ (1 − x)
√
1− 4x

,

as required.

2.3. Class 3: Π3 = {1324, 1342, 1432}

Let An = Sn(Π3). Define an = #An and an(i1, . . . , is) to be the number of
permutations π1 · · ·πn ∈ An such that π1 · · ·πs = i1 · · · is. By using similar
arguments as in the proof of Lemmas 2.1 and 2.2, one can state the following
recurrence.

Lemma 2.3. Define bn(i) = an(i, n). For all 1 ≤ i ≤ n− 3,

an(i) = an−1(i) + · · ·+ an−1(1) + bn(i),

bn(i) = bn−1(i) + · · ·+ bn−1(1),

with an(n − 2) = an(n − 1) = an(n) = an−1, bn(n) = 0 and bn(n − 2) =
bn(n− 1) = an−2.

By comparing Lemmas 2.2 and 2.3, we obtain that #Sn(Π2) = #Sn(Π3),
which implies that the generating function A(x) =

∑

n≥0 anx
n is given by

1− 5x+ (1 + x)
√
1− 4x

1− 5x+ (1 − x)
√
1− 4x

,

as required.

2.4. Class 4: Π4 = {2314, 3214, 4213}

We first give a bijection from permutations avoiding {3214, 4213} to one-size-
smaller Schröder paths.

Recall that a Schröder path is a lattice path of North steps N = (0, 1),
diagonal steps D = (1, 1) and East steps E = (1, 0) that starts at the origin,
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never drops below the diagonal y = x, and terminates on the diagonal. Its
size is #N steps + #D steps, and a Schröder n-path is one of size n. Thus a
Schröder n-path ends at (n, n). The vertices on y = x split a nonempty Schröder
path into its components, and a Schröder path whose only vertices on y = x are
its endpoints (hence, is a one component path) is indecomposable. Thus all
components of a Schröder path are indecomposable. The number of Schröder
n-paths is the large Schröder number rn, [7, Sequence A006318]. A peak is a
pair of consecutive steps NE (consider the path rotated 45◦).

Every permutation on [n] has a bounding up-down staircase (Figure 1) de-
termined by its LR maxima and RL maxima.

5

1

4

9

6

8

10

2

7

3

Figure 1. Bounding staircase of a permutation.

Bounding staircases of size n are lattice paths from the origin consisting of n
steps each North N = (0, 1), East E = (1, 0), and South S = (0,−1), that are
characterized by the following properties:
(i) all N steps precede all S steps,

(ii) East runs (maximal sequence of contiguous E steps) are at different
heights,

(iii) measuring from the top, the i-th pair of matching N/S steps are at least
i units apart (to make room for the permutation entries above them), and
the first pair are just 1 unit apart (they bracket the entry n)

Proposition 2.4. There is a bijection from bounding staircases to one-size-smaller

Schröder paths.

Delete each run of East steps bounded by two S steps (Fig. 2a), insert it
between the matching N steps, and color the newly introduced NE corner gray
(Fig. 2b). Then delete the last n+2 steps (necessarily N E Sn) and replace each
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bb

b b

→

a)

b

b

→

b)

Bijection from bounding staircases to one-size-smaller Schröder paths
Figure 2.

c)

gray NE corner with a diagonal step D = (1, 1) to get the desired Schröder path
(Fig. 2c). �

Lemma 2.5. A permutation p avoids {3214, 4213} if and only if it is lexicograph-

ically least among all permutations with the same bounding staircase as p.

Proof. If either offending pattern is present in p, then there is also a subsequence
xbay with x a LR max, y a RL max, b > a and x, y both > b. Switching the a and
b gives a lexicographically smaller permutation with the same LR max/RL max,
both in value and position, and hence the same bounding staircase. Conversely,
if p is not lexicographically least, then a ba is present with b > a and neither a
nor b a LR max or RL max, implying that ba is the “21” of an offending pattern.

Remark. To construct this lexicographically least permutation, use the bounding
staircase to fill the LR max and RL max slots in the permutation, then fill the
remaining slots right to left in turn with the largest available entry that will not
create a new RL max.

Corollary 2.6. The map “permutation → bounding staircase” is a bijection from

Sn(3214, 4213) to bounding staircases of size n.

Combining this bijection with that of Proposition 2.4, we have a bijection
φ : Sn(3214, 4213)→ Schröder (n− 1)-paths.

Corollary 2.7. [4] |Sn(3214, 4213)| = rn−1, the large Schröder number.

Proposition 2.8. The restriction φ|Sn(Π4) is a bijection from Sn(Π4) to Schröder

(n− 1)-paths in which each component has at most one peak.
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Proof. In a 2314 pattern in a {3214, 4213}-avoider p, the “2” and “3” must be
LR maxima of p, and LR maxima in the permutation correspond to peaks in the
Schröder path. Now consider the insertion of two dividers in p, one just before
a LR max and the other just after a RL max, to split p into three segments
A,B,C. Necessarily, n ∈ B while A,C may be empty. Returns to y = x in
the Schröder path correspond to such insertions for which A ∪C is a nonempty
initial segment of the positive integers. The shortest AC thus corresponds to
the first component of the Schröder path. The “2” and “3” of the 2314 pattern
either both lie in A or both lie in B. If they lie in A, the “1” cannot lie in B.
These observations are the basis for an inductive proof and allow us to assume
that, in addition to AC being shortest, B is the singleton n, and so the Schröder
path has just one component. If a 2314 is present, the “2” and “3” produce two
peaks. On the other hand, if there are two peaks, they produce a “2” and “3”,
and there must also be present a “1” and “4” to make a 2314 for otherwise AC
would not be shortest.

We have the following elementary counts for Schröder paths.

Lemma 2.9. For n ≥ 1,
(i) [8, Ex. 45] The number of Schröder n-paths with no peaks is the Catalan

number Cn.

(ii) [7, Sequence A060693] The number of Schröder n-paths with exactly 1 peak

is
(

2n−1
n−1

)

.

An indecomposable Schröder path of size n ≥ 2 has the form NPE with P
a Schröder path of size n− 1; hence we have

Corollary 2.10.
(i) The number of indecomposable Schröder n-paths with no peaks is Cn−1 for

n ≥ 1.

(i) The number of indecomposable Schröder n-paths with exactly 1 peak is 1
for n = 1 and

(

2n−3
n−2

)

for n ≥ 2.

Proposition 2.11. The generating function for indecomposable Schröder paths

with at most 1 peak is

1

2

(

1 + x+
x√

1− 4x
−
√
1− 4x

)

.

Proof. Immediately by Corollary 2.10.

Corollary 2.12. The generating function for Schröder paths with at most 1 peak

in each component is

2
√
1− 4x

1− 5x+ (1 − x)
√
1− 4x

.
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Proof. This generating function is the Invert transform of the generating func-
tion in Proposition 2.11.

Corollary 2.13. The generating function for nonempty Π4-avoiders is

2x
√
1− 4x

1− 5x+ (1 − x)
√
1− 4x

. (5)

Proof. Immediately by Proposition 2.8 and Corollary 2.12.

Adding 1 to (5) to include the empty permutation gives (1).

2.5. Class 5: Π5 = {3214, 3241, 4213}

To characterize Π5-avoiders, draw a horizontal line just below the last entry
of a permutation p as in Figure 3 to obtain two subpermutations, A above
the line and B below the line. Split A into two segments, A1 consisting of
the entries weakly left of n and A2 consisting of the remaining entries. Here,
A1 = (10, 13, 18), A2 = (14, 15, 17, 16, 11, 12, 9). Say an entry in p is key if it
either lies in A1 or is a LR min in A2 (key entries are circled in Figure 3 and
we use the terms “key” and “circled” interchangeably below). Let B2 denote
the terminal segment of B consisting of the entries that lie (in p) after the first
entry of A. Here B2 = (2, 4, 7, 8).

3

5

1

6

10

2

13

18

4

7

14
15

17
16

8

11
12

9

A Π5-avoider with n = 18

Figure 3
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Here are some properties of a Π5-avoider p = (p1, . . . , pn). Let f and l denote
the first and last entries of A, respectively.

(i) A, and hence St(A), the standardization of A, is 213-avoiding, for if bac is
a 213 pattern in A, then each of a, b, c is > l and bacl is a forbidden 3241
in p.

(ii) B is 321-avoiding, for if cba is a 321 pattern in B, then cbal is a forbidden
3214 in p.

(iii) B2 is increasing, for if ba is a 21 in B2 then f 6= l and fbal is either a 3214
or 4213 in p, both forbidden.

(iv) For every x ∈ B, the right neighbor y of x in p (it always has one) is either
also in B or is circled, for otherwise y is in A2 but not a LR min of A2,
and so there is z ∈ A2 lying to the left of both x and y in p with z < y.
Then nzxy is a forbidden 4213 in p.

(Note that item 4 says that if B is divided into blocks of entries that are
contiguous in p, then each block lies immediately to the left of a circled entry in
p.) Conversely, if these 4 conditions are met, the reader may check that p is a
Π5-avoider.

Now, to count Π5-avoiders, we first dispose of the cases where A has length
1, 2 or n.

Lemma 2.14. Suppose n ≥ 3. Then for each of a = 1, 2 and n, we have |{p ∈
Sn(Π5) : length(A) = a}| = Cn−1.

Proof. Recall that both 321-avoiders and 213-avoiders on [n] are counted by Cn

We have a = 1 if and only of n is the last entry of p. Avoidance of 3214 then
implies p\{n} avoids 321. Conversely, if p\{n} avoids 321 then, a fortiori, p\{n}
avoids Π5 and so does p. Next, a = 2 if and only of n − 1 is the last entry of
p. Suppose n− 1 is the last entry of p and p is a Π5-avoider. If cba were a 321
pattern in p, then cba (n−1) would be a 4213 if c = n and a 3214 if c < n−1, both
of which are forbidden. So p\{n− 1} must avoid 321. Conversely, if p\{n− 1}
avoids 321 then, again, p avoids Π5. Lastly, a = n if and only of 1 is the last
entry of p and then p is a Π5-avoider if and only of p avoids 213 (else a 3241
terminating at the last entry is present) and the result follows.

Let k denote the number of key entries within a member of Sn(Π5). For the
remaining cases, we have 3 ≤ a ≤ n − 1 and so n ≥ 4. Then k ≥ 3 as follows.
Since pn ≤ n− 2 by the proof of Lemma 2.14, the three entries n, the successor
of n in A, and pn are all key and all distinct unless n is the second to last entry
of A, but in that case n−1 occurs before n and so is a key entry, and pn, n−1, n
are distinct. So 3 ≤ k ≤ a.

The following elementary counting results will be useful; we omit the proofs.
We use Cn,k for the generalized Catalan number k+1

2n+k+1

(

2n+k+1
n

)

. Recall that
(Cn,k)n≥0 is the (k + 1)-fold convolution of the Catalan numbers (Cn)n≥0 =
(Cn,0)n≥0 and so the generating function

∑

n≥0 Cn,kx
n is given by C(x)k+1,
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where C(x) := 1−
√
1−4x
2x is the generating function for the Catalan numbers. It

is convenient below to use the convention C0,−1 := 1.

Proposition 2.15.

(i) The number of 213-avoiding permutations on [n] whose last entry is 1 with

n in first position and k key entries is Cn−k,k−3 for 2 ≤ k ≤ n.

(ii) The number of 213-avoiding permutations on [n] whose last entry is 1 with

n in position j and k key entries is
(

k−2
j−1

)

Cn−k,k−2−j for 1 ≤ j ≤ k−1, k ≤
n.

Corollary 2.16. The number of 213-avoiding permutations on [n] whose last

entry is 1 with k key entries is w(n, k) :=
∑n−1

j=1

(

k−2
j−1

)

Cn−k,k−2−j for n ≥ 2, 1 ≤
k ≤ n.

Lemma 2.17. [2, Section 4.1.1] The number of 321-avoiding permutations on [n]
in which the last i entries are increasing is Cn−i,i for 0 ≤ i ≤ n.

We are now ready to count permutations p in Sn(Π5) by a := length(A),
k := number of key entries, i := number of entries of B after the first circled
entry in p. The cases a = 1, 2 or n have been treated already. So suppose given
n, a, k, i, with 3 ≤ k ≤ a ≤ n − 1 and 0 ≤ i ≤ b := n − a. By Corollary 17,
there are w(a, k) 213-avoiding permutations A1 of length a that end with 1 and
have k key entries. By Lemma 2.17, there are Cb−i,i 321-avoiding permutations

of length b such that the last i entries are increasing. There are
(

i+k−2
i

)

ways
to distribute these last i entries into k − 1 blocks to be placed just before the
k − 1 non-first key entries of A = A1 + b. (Of course, the initial block of b − i
entries of B lies before the first key entry.) These choices uniquely determine a
Π5-avoider of length n.

Hence, summing over a, k, i, we have for n ≥ 3,

|Sn(Π5)| = 3Cn−1 +

n−1
∑

a=3

a
∑

k=3

b
∑

i=0

w(a, k)Cb−i,i

(

i+ k − 2

i

)

(6)

= 3Cn−1 +

n−1
∑

a=3

a
∑

k=3

b
∑

i=0

a−1
∑

j=1

(

k − 2

j − 1

)

Ca−k,k−j−2 Cb−i,i

(

i+ k − 2

i

)

= 3Cn−1 +

n−1
∑

a=3

a
∑

k=3

a−1
∑

j=1

(

k − 2

j − 1

)

Ca−k,k−j−2 Cn−a,k−1.

The last equality evaluates the sum over i using a generalized Catalan number
identity. The generating function F (x) :=

∑

n≥0 |Sn(Π5)|xn is easily deduced:

F (x) = 1 + x+ 2x2 + 3
∑

n≥3

Cn−1x
n +G(x),
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where

G(x) =
∑

n≥4

n−1
∑

a=3

a
∑

k=3

a−1
∑

j=1

(

k − 2

j − 1

)

Ca−k,k−j−2Cn−a,k−1x
n

=
∑

k≥3

k−1
∑

j=1

(

k − 2

j − 1

)

∑

a≥k

Ca−k,k−j−2

∑

n≥a+1

Cn−a,k−1x
n

=
∑

k≥3

(

C(x)k − 1
)

k−1
∑

j=1

(

k − 2

j − 1

)

∑

a≥k

Ca−k,k−j−2x
a

=
∑

k≥3

xk
(

C(x)k − 1
)

k−1
∑

j=1

(

k − 2

j − 1

)

C(x)k−j−1

=
∑

k≥3

xk
(

C(x)k − 1
)(

1 + C(x)
)k−2

,

which is a difference of geometric sums. After evaluation and simplification, we
find

F (x) = 1 +
2x

√
1− 4x

1− 5x+ (1− x)
√
1− 4x

,

agreeing with the expression in (1), or with rationalized denominator,

F (x) = 1 +
2x2 + x(1 − 5x)C(x)

1− 4x− x2
.

In conclusion, we remark that the above characterization of Π5-avoiders can
easily be adapted to find the bivariate generating function for Π5-avoiders by
length and number of components. First, we count indecomposable Π5-avoiders.
For n ≥ 4, the cases a = 1, 2, n are counted by 0, Cn−2, Cn−1, respectively.
For 3 ≤ a ≤ n − 1, a Π5-avoider is indecomposable iff B, in the notation
above, in addition to being a 321-avoider whose last i entries are increasing,
satisfies the property that for all r = 1, 2, . . . , b− i, the first r entries of B, when
sorted, do not form an initial segment of the positive integers (the property is
vacuously satisfied when i = b). The number of such permutations is Cb−i,i−1 =
Cn−a−i,i−1. Thus, in (6), the initial 3Cn−1 term is replaced by Cn−2+Cn−1 and
the Cb−i,i factor in the sum is replaced by Cb−i,i−1. This modified sum leads
to the counting sequence (1, 1, 3, 11, 43, 173, 707, . . .)n≥1, [7, Sequence A026671],
for indecomposable Π5-avoiders, with generating function Findec(x) := 1/(1 −
x/

√
1− 4x). Further, a Π5-avoider with k ≥ 2 components has the form p1 ⊕

· · ·⊕ pk−1⊕ pk where p1, . . . , pk−1 are all indecomposable 321-avoiders and pk is
an indecomposable Π5-avoider. Here⊕ is the direct sum defined on permutations
π of length m and σ of length n by

(π ⊕ σ)(i) =

{

π(i)
σ(i −m) +m

if 1 ≤ i ≤ m,
if m+ 1 ≤ i ≤ m+ n.
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Since indecomposable 321-avoiders have the generating function xC(x), the de-
sired bivariate generating function, excluding the empty permutation, is

Findec(x)y

1− xyC(x)
=

2xy
√
1− 4x

y − 2x− 3xy + (2− xy − y)
√
1− 4x

.
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