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Abstract

Matrix variate skew elliptically contoured distributions generalize

several classes of important distributions. This paper defines and
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explores matrix variate skew elliptically contoured distributions. In
particular, we discuss the first two moments of the matrix variate skew

elliptically contoured distributions.

1. Introduction

The moments of matrix variate distributions are necessary both in theory
and in applications, but often, their derivation is not straightforward and can
constitute a work in and of itself. For example, Wen and Zhu derived
stochastic representations and the first two moments, among other properties,
of the multivariate skew Pearson type VII distribution and the skew
t-distribution [1, 2]. In addition, Chen and Gupta extended several important
properties of the multivariate skew normal distributions to the matrix variate
case [3]. Also, Gupta et al. derived the first two moments of the multivariate
skew normal distributions [4, 5, 6]. Furthermore, Akdemir and Gupta
discussed more general matrix variate skew normal distributions, including

moments [7].

In a previous work [8], we obtained the stochastic representations of the
matrix variate skew elliptically contoured distributions (MSE). This paper
extends that work by deriving the first two moments of the matrix variate

skew elliptically contoured distributions (MSE).

In Section 2, we recall several definitions pertinent to the paper as well
as the results from [8] for stochastic representations of matrix variate skew
elliptically contoured distributions (MSE). In Section 3, we obtain moments

of matrix variate skew elliptically contoured distributions.
2. Notation and Definitions

Matrix variate distributions have been studied by Gupta and Nagar,
among others [9]. Below we include the results from [8] necessary for the
derivation of moments. We refer the reader to [9] and [8] for additional

definitions and theorems.
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Let X be a pxm random matrix, which has a matrix variate normal
distribution, i.e., X ~Np n(M,Z®¥), where M e RP*Misa px m mean

matrix, X is a p x p positive definite matrix and ¥ is an m x m positive

definite matrix. We use bold face upper and lower case letters to denote
vectors, uppercase letters without bold face for matrices, and lowercase
letters without bold face for elements of a vector or a matrix.

We list below the theorems and corollaries from [8] which are used in the
following section.

Theorem 1 (Theorem 2 in [8]). Assume

Vo .
V= V. ~ Ep+1,m(072 XY, \‘/)’
1

Z*_l 0
0 )
Tispxp, Pismxm, Vyislxm,Vis pxm.

For 8; e (-1, 1), let

Xo =|Vol, Xj =8j|Vo|+(1-8D)2V), i=12..p

| Vo l=(Vor b [Voz | s | Vom ]):

Z = (X, X'\ X = (XY, .o, X)),

V,
V*=| Ol,
Vi

P :j 1w Y2 h(trX o' X)) dXo.
X0<0

Then the random matrix X has a matrix variate skew elliptically contoured
distribution. Specifically,

-1
X ~ MSEp (2578, 5, ¥, Qi1 2%, v),
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where

' 1 1
8= (8}, 87, ., 8p) , Ty = 38 + ATA, A = diag((l -87)2, ..., (1 - 5%,)5),

and Q,, =1-38'%5'.

In the following corollaries, we use the notation and definitions found in

Theorem 1.

V *
Corollary 1. Assume V = (VOJ ~ Np41,m(0, " ® ¥). Then the random
1

matrix X has a matrix variate skew normal distribution. The pdf of the
random matrix X can be written as

1 1 -1
f(X)= “ det(W) 2(2n) 2" exp{—l XO‘P_le}dXO}
Xp<0 2
—lm L L m 1 -1 -1
x det(88' + AZA) 2™ det(W) 2P (2n) 2P exp{—ztr(x 'Ts XW¥ )}
1 1 1
x j det(Q15) 2™ det(¥) 2(2n) 2"
XO <0 ’
x exp{—%tr((Xo — 83X ol (X - 825X )‘P_l)} dX,

-1
_ UX0<0 dm(Xo, 0, ‘{’)dxo} dp.m(X, 0,25 ®P)

x Oy (X'2518, 0, O, W)

which is denoted by MSN , (255, £5, ¥, Q1 ,'¥).

V, x
Corollary 2. Assume [Voj ~PVIl 5, m(0, 27, W, 0, r). Then the
1

random matrix X has a matrix variate skew Pearson type VII distribution.
The pdf of the random matrix X can be written as
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1
_ () X% 'Xp )
o U X0<0 ("2 (q - my2) ¥ |12 [l T J dXO}

§ r(q) (1 L r(xs'x ‘P_I)J_q
(=1)P"2r(q - pm/2)| 25 V] P2 s

N J I'(q)

Xo<0 ()21 (q - m/2)| Q1% [/

y {1 L [Xo - 5(25)”" X](Qn.i‘f’)_l[xo ~8(z5)' X] }_q dXo.

This matrix variate skew Pearson type VII distribution is denoted by
-1
MSPVII (2578, Z5, W, Q1 ,%, 0, 1),

In the next theorem, we use the same notation and definitions as in

Theorem 1.

Theorem 2 (Theorem 3 in [8]). Assume

VO *
V=l ]~ Epem(0. 5T @ ¥, v)
1

Also assume that X = AA', and ¥ = BB'. For §; e (-1, 1), let
X) 5 Vi
=| i || Vol+A] i |or X =38Vy|+AV,.
) A\
Then the random matrix X has the following stochastic representation:
X = R(3| U |+ AAU,) B, (D
where R is a nonnegative random variable, U; is 1xm and uniformly

distributed on sphere S;,,, U, is p x m and vec(U5) is uniformly distributed
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on sphere Spm. In addition, R, U;, and U, are independent. Furthermore,
w(x):J(jOme(rzx)dF(r), x>0, where Qun(tt), teRP™ denotes the

characteristic function of vec(U5), and F(r) denotes the distribution

function of r.

The next corollary follows immediately. Moreover, its statement uses the

same notation as in Theorem 2 and also assumes that ¥ = AA’, ¥ = BB'.

Vo ¥
Corollary 3. Assume V = v |~ Np+1,m(0,Z° ®F). For §; e (-1, 1),
1
let

Z, gl Vi
=| |V0|+A ,OI’Z=8|V0|+AV1.

Vo

Then the random matrix Z is distributed as matrix variate skew normal and
has the following stochastic representation:

Z = Ry(3| Uy |+ AAU,)B,, @)
where Uy, U,, A, B are the same as in Theorem 2.

Based on the definitions and the stochastic representation obtained in [8],
the moments of matrix variate skew elliptically contoured distribution can be

derived, as we now show.
3. Moments of Matrix Variate Skew Elliptically Contoured Distribution

The moments of matrix variate skew elliptical distributions can be found
using the moments of the matrix variate skew normal distribution since the
latter is easy to find. Suppose that the random matrix X is distributed as a
general matrix variate skew elliptically contoured distribution (MCD) such as
in Theorem 2 and also suppose that the random matrix Z is distributed as a

matrix variate skew normal as in Corollary 3. Then the moments of the skew
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MCD X are associated with the moments of skew normal Z. Specifically, we

have the following relationship between them:

E[sz’zl L si J

E(Hm:"lxs“%E[Rziplw(nm?lzsﬂ)a ®
0

where Xj; is the (i, j) element of random matrix X, Zjj is the (i, j)

coefficient of the random matrix Z, and Rg is distributed as XZ with degrees

of freedom pm. Equation (3) leads to the following results:

_ER) N_BRY) oo
B(X) = gpc) * B@). E(X)= o) E(z2"), )
Evec(x") @ veo(x)) = BB | Bvec(z) ® vee(z)). )
E RO)

It also leads to our next theorem.

Theorem 3. Suppose that the random matrix X is distributed as a
matrix variate skew Pearson type VII defined in Corollary 2, i.e.,

X ~ MSPVIl, 1 (2578, 88 + AZA, ¥, Q1 5, d, A). Suppose also that
the random matrix Z is distributed as a matrix variate skew normal defined
in Corollary 1, i.e., Z ~ MSN, n(2518, 5, W, Q1 ,¥). Then we have

r(q_(p+1)m+1

) oo

2

E(X) = , (6)
F(q (P J;l)mj 2

E(XX') = A « B(2Z"), )

2g-(p+1)m-2

A
2g-(p+1)m-— 2"

E[vec(X") ® vec(X )] E[vec(Z') ® vec(Z’),]. (3)
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Proof. Based on (2.5.17) on p. 59 of [10], the pdf of the random variable
R can be found using the function h defined in (6) of [8]:

1
5 5(p+1)m
9(r) = —7——— P In(e?)
F[—(p + 1)m)
2
Lip+nym 2\ ¢
__2nm? p(p+1)m-1 I'(q) (1+r_J
1 1 A
F(E(p + 1)m) (nk)(p+2)ml“(q -~ m)
)
; .
{5 (p+m) ;f"?‘“r(q (o= m)
Thus,
E(R) = I+wr (r)dr
= 0 g
= 1 2(q) J+w r(p”)m(l + ﬁj_qdr
p+1)m 0 A
S (LRLLM AR CELY
_(p+1)m+1 (p+1)m+1)
B sl i s X
_(p+1)m) ((p+1)m) '
F(q > )2
Next, we find the expectation of Ry. By (2.5.17) on p. 59 of [10], we
have
l(p+1)m
2n2

g(r ) __ s r(p+1)m—1h(r2)
’ F(%(erl)m) ° ’
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L(p+1)m 1
_ 22 (pepmet| L | 50
= 0 (prm
{3+ 0| (20155

Let s = r02 . Then
1 -1 (p+D)m 1
—(p+1 AN VAL
g(s) = [F(gjﬁ(m )mJ s 2 e2,

Therefore, S or R ~ x2((p +1)m) and

E(Ry) = E(VS)

0
1 1
F((er 2)m+ j
(p+1)m V2,
(5
_(p+Dm+1
B(R) :F(q 2 j x ©)
E(Ry) r(q_(pzl)m) 2
On the other hand,

oo (p+Dm _
BR?) = [~ r’g(n) = = (5 Om=3 " @ E(RS)=(p+Dm,
E(R?) A
E(RF) 20-(p+Dm-2° (10

Hence, equations (6), (7) and (8) are proved using (9) and (10). ]
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In order to use Theorem 3 to find the first two moments of any matrix
variate skew elliptically contoured distribution, we have to first find the first
two moments of matrix variate skew normal distributions. Gupta et al.
derived the first two moments of multivariate skew normal distributions [4,
5, 6]. To generalize these results to matrix variate skew normal distribution,
we utilize moment generating functions. In particular, Arellano-Valle and
Azzalini derived the moment generating function (mgf) of a multivariate
unified skew normal distribution [11]. Harrar and Gupta presented the mgf
for general matrix variate skew normal distributions [12]. The following
lemma is from Harrar and Gupta [12].

Lemma 1. Assume X ~MSN p,m(b,z, ¥,Q). Then the moment

generating function of X can be written as

My (T) = CXetr{%ZT‘PT'}d)m(\PT’Zb, Q+b'Th¥), (11)

where ¢ = [@,(0; Q + b'Zb¥)[ .
In order to simplify notation in the sequel, we let = = Q + b’Xb¥ and

0 = ¥YT'Zh. Note that 0 = vec(¥T'Zb) = [(b'T) ® W]x vec(T'). Furthermore,
welet t = vec(T'), D = (b'Z) ® V.

Theorem 4. Suppose X ~ MSN (b, X, ¥, Q). Then the expectation

of X can be written as
TR b
B(X) = [@n(0; E) ' x Y° > GIP(0; D, Z)x Hy, (12)
i=1 j=1
where the matrix Hj;(m x p) has unit element at the (i, j)th place and zero
elsewhere and that

- 0 -
Girjnp(O; D, E)= at—ij(Dm(Dt; 2o

J_| |1/2 Z K, m(i— 1)+J|(~(k))_ | Dpy-1[0; (E(_kl))_l],
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where Dy m(i-1)+j is the element (k, m(i—1)+ j) of matrix D, E(‘kl) is the
matrix constructed by eliminating the kth row and the kth column of E‘l,

. . =1 _ (=1
with the convention that Ek) = = )(k).

Otr(ETWYT')
oT

the moment generating function (11) can be written in the form

Proof. Since = 2XTY, the derivative with respect to T of

Mx@) _ oot LsTyr (ETY)x Oy (6, Z)
aT 2
1 A, -
+Cx etr{EZT‘PT }x 6_Tq)m(0’ =). (13)

After a lengthy calculation (the reader is referred to similar derivations in [4,
5, 6] for details), we have

B(%) = aMa)-(r(T) ‘T—O

- e =
= [On(0: S x 0 (0.9)|
where
0 - 0 =
2 wp0.2) ‘T_O_ S on(6E)|
and
0 o
- .= - mpo. \H
<7 Om(Dt; _)‘TZO = ZZG” (0; D, E)Hjy;.
i=1 j=1
Therefore, the theorem is proved. ]

Finally, we have the following theorem, whose proof — like that of
Theorem 4 — requires a long elementary calculation of a second derivative
which is similar in details to derivations in [4, 5, 6].
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Theorem 5. Suppose X ~ MSN (b, X, ¥, Q). Then the expectation
of vec(X'") ® vec( X')' can be written as
E(vec(X") ® vec(X ’)')
pm pm
=Z®V + [0y (0; 2)! XZZG P(0; D, E) x Hyj,
i'=1j'=l1

where the matrix Hy;(pm > pm) has unit element at the (i', j')th place and
zero elsewhere,

'=m@i-1)+j,j=m@a-1)+b;i,a=1..m; jb=1,.., p;

and
G,E}f,”(o, D, 2)

0
=—Y% ®.,(Dt, =
tjjOtap m( )

t=0

2 |_‘|12 ZZDI m(i- l)+jDk m(a— 1)+b|~(k |)|q)m 2(0; [H_l I 1)

(k1)
k=11=k
0 0 0 .
—k
* kZZJ‘_OO"'J_OO"'J_OO DI, m(i—1)+jDk,m(a_1)+bD IXi
=l i=l
i=k

1yl
X Om-1[X1s - Xieo1s Xt - Xmi (Ege)) ™ 1oy -+ X8 -+ A,

where =€ is the element (k, k) of = Vand 2 ( i) is the matrix constructed

by eliminating the ith and jth rows and the ith and jth columns of =1 with
=1 =1
Zh.p =& iy

Proof. Based on (11), we have



Moments of Matrix Variate Skew Elliptically Contoured Distributions 25

1
otr| = XTYT'
My (T) 1 , (2 j -

1 , 0 -
=Cx etr{z STYT } Svec(T) @0, =).

Thus,

My (T)
ovec(T")ovec(T ')’

| GtF(% 2T ‘PT’) &r(% 2T ‘PT')
=C><6'[I‘{—ZT‘PT'} ; ® —~ D (0, =
2 aVGC(T ) avec(T’) m( )
1 '
1 6tr(§ STYT )
+Cx etr{—ZT‘PT'} - ®(0, E)
2 ovec(T")ovec(T")
&r(l 2T ‘PT’)
+c><etr{lZT‘PT'} 0D (6. ,:) ® 2 ;
2 6vec(T ) 8vec(T’)
1 0°®,,,(0, Z)
+Cx etr{— STYT ’} me =2
2 ovec(T")ovec(T")

=Cx etr{% STYT '} {vec(\PT 'Y) ® (vec(¥T '2))'CDm(9, E)

o0,(0, E)

ey © (vec(¥T'E))

+E®Y)0,(0,E)+

oD, (0, =) }
8vec(T')avec(T’), .
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Hence,

My (T)

E[vec(X') ® vec(X') | = 8vec(T')6vec(T’)'

T=0

*® (0, )

, [
ovec(T")ovec(T")

=2X®Y +cx

T=0
4. Concluding Remarks

The set of skew elliptically contoured distributions contains the
elliptically contoured distributions. In [8], we defined and explored the
matrix variate skew elliptically contoured distribution, obtaining in the
process two stochastic representations. In this work, we have extended that
effort by obtaining the first two moments of a subfamily of this large family

of distributions.

In particular, the moment results obtained in this paper are useful in both
theory and application. Future directions include expanding upon the utility

and importance of these results.
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