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Summary

The problem of finding confidence regions for multiple predictor variables corresponding to given ex-
pected values of a response variable has not been adequately resolved. Motivated by an example from a
study on hyperbaric exposure using a logistic regression model, we develop a conceptual framework for
the estimation of the multi-dimensional effective dose for binary outcomes. The k-dimensional effective
dose can be determined by conditioning on k � 1 components and solving for the last component as a
conditional univariate effective dose. We consider various approaches for calculating confidence regions
for the multi-dimensional effective dose and compare them via a simulation study for a range of possi-
ble designs. We analyze data related to decompression sickness to illustrate our procedure. Our results
provide a practical approach to finding confidence regions for predictor variables for a given response
value.

Key words: Binary logistic regression; Decompression sickness; Effective dose; Inverse infer-
ence; Simultaneous confidence regions.

1 Introduction

Hyperbaric exposure, such as encountered in diving to depths and returning to the surface, can cause
medical difficulties resulting in decompression sickness (DCS) and even death. Data collected on hu-
mans as well as on animals used as test organisms for humans are studied to relate the risk of dive
factors to the onset of death or other (less severe) responses. The study motivating our work was a
large study conducted on sheep that were dived and returned to surface pressure in chambers allowing
for environmental control. 1108 dives were conducted at a range of depths and durations at depth.
Data on a number of outcomes were recorded (e.g. bends, DCS, death) for each dive.

An important objective for diving researchers is to determine the range of depths and dive durations
that correspond to a certain probability of a given outcome; for example, to find the range correspond-
ing to a probability of 0.05 of death. The goal of our current work is to provide statistical methodol-
ogy for finding such ranges and creating confidence regions for them.

This problem, when only one covariate is present, is usually called the estimation of effective dose
(ED100p) in quantal bioassay research (Finney, 1978). We adopt this terminology and extend it to the
DCS problem as the estimation of the “2-dimensional effective dose”. This is straightforwardly gener-
alized to multi-dimensional effective dose; our presentation considers this general case.
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2 Statistical Setting

In a biological assay study, the response Y is a binary variable which represents absence or presence,
often denoted “0” or “1”, respectively of a certain clearly defined outcome (for example, death). The
relationship between response and covariates is often described by the following logistic regression
model:

log
p

1� p
¼ b0 þ

Pk
i¼1

biXi ; ð1Þ

where p ¼ EðY j X1; � � � ;XkÞ is the probability that the binary response equals “1”. The number of
predictors k is fixed for model (1) and the coefficients bi (i ¼ 1; � � � ; k) are all assumed to be non-
zero. When k ¼ 1 and X ¼ X1 represents the dose level of a drug or treatment, the effective dose
ED100p is the value of X ¼ X1 that causes an outcome “1” with a given probability p (0 < p < 1).

Most previous work on the estimation of the effective dose has focused on a single predictor vari-
able, i.e., k ¼ 1. Carter et al. (1986) describe a method to estimate an asymptotic confidence region
about the ED100p from the logistic curve with multiple explanatory variables, but the statistical proper-
ties of the method have not been carefully evaluated nor alternatives considered. In the following, we
provide a general formulation for this problem.

For a given p in [0, 1], we define the multi-dimensional effective dose as the following set:

Qp ¼ ðx1; x2 � � � ; xkÞ 2 Rk : log
p

1� p
¼ b0 þ

Pk
i¼1

bixi

� �
: ð2Þ

The elements of the set must satisfy log p
1�p ¼ b0 þ

Pk
i¼1 bixi. Thus, if we can determine the values

of biði ¼ 0; 1; � � � ; kÞ, we can then obtain all the values contained in the set Qp. For example, when
k ¼ 2, p ¼ 0:5 (expected value of Y) and b0 ¼ b1 ¼ b2 ¼ 1, Q0:5 is the set of ðx1; x2Þ such that
x1 þ x2 ¼ �1.

Our first goal is to determine Qp. All methods with which we are familiar are logically equivalent
to the procedure in which possible values for k � 1 of the predictor variables are fixed and the solu-
tion obtained for the remaining variable. If a wide range of values for the k � 1 predictor variables is
used, this is (effectively) the unique approach to determine the points in the set Qp with bi
ði ¼ 0; 1; � � � ; kÞ known. Suppose ðx2*; � � � ; xk*Þ is one possible value for ðx2; � � � ; xkÞ, then we consider
the following ðx2*; � � � ; xk*Þ-Conditioning Effective Dose:

Qp*ðx2*; � � � ; xk*Þ ¼ log
p

1� p
� b0 �

Pk
i¼2

bixi*
� ��

b1 ðb1 6¼ 0Þ : ð3Þ

We note that
S
�fðx1; x2*; � � � ; xk*Þ : x1 ¼ Qp*ðx2*; � � � ; xk*Þg ¼ Qp, where

S
� means a union across all

possible values of ðx2*; � � � ; xk*Þ. Qp*ðx2*; � � � ; xk*Þ is more tractable than Qp (particularly for finding
confidence regions) and is employed to determine Qp indirectly. When conditioning variables are
clear from the context, we shall suppress the conditioning values and write Qp*.

Since b ¼ ðb0; b1; � � � ; bkÞ
T is usually unknown in model (1) with k fixed covariates, parametric

estimators must be obtained through a model-fitting procedure based on a training sample of size n.
An estimator of Qp can be obtained by substituting a consistent estimator b̂b of b in (2).

The next objective is to construct a confidence region such that we will have 100ð1� aÞ% prob-
ability that the true set Qp is contained in the confidence region. We accomplish this by finding a
100ð1� aÞ% confidence interval I* for each ðx2*; � � � ; xk*Þ-conditioning effective dose Qp*. We explore
several methods for calculating I* and then join these confidence intervals to form a confidence
region

G ¼
[
�
fðx1; x2*; � � � ; xk*Þ : x1 2 I*g : ð4Þ
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In dose-time-response models, Chen (2007) has used a method to construct confidence bands for
ED50 by conditioning on the time variable (or for lethal time, LT50, by conditioning on the dose
variable). Chen (2007) considered a specific solution similar to Method 3 in our paper to find the 2-
dimensional ED100p; However, our study provides a more general framework to deal with the multi-
ple-covariate calibration problem.

3 Methods

3.1 Construction of confidence intervals

To illustrate the approach, we shall assume k ¼ 2; the results generalize straightforwardly to higher
dimensions. By definition in (3), the x2*-conditioning effective dose is

Qp*ðx2*Þ ¼ log
p

1� p
� b0 � b2x2*

� ��
b1 : ð5Þ

This is the value of X1 such that a subject randomly selected from the conditional population given
X2 ¼ x2* responds with probability p.

To estimate Qp*ðx2*Þ, we can substitute the logistic regression coefficient estimates for bj(j ¼ 0; 1; 2Þ
and obtain the point estimate

Q̂Qp*ðx2*Þ ¼ log
p

1� p
� b̂b0 � b̂b2x2*

� ��
b̂b1 : ð6Þ

It is well known that under regularity conditions (Shao, 1999, p. 246) maximum likelihood esti-
mates b̂b are consistent and asymptotically normal,

ffiffiffi
n
p
ðb̂b� bÞ !d Nð0;VÞ : ð7Þ

The asymptotic covariance matrix V=n is the inverse of the information matrix of the log-likeli-
hood. The inverse of the sample information matrix is a consistent estimator V̂V=n. Most standard
statistical packages for logistic regression produce b̂b and V̂V=n in their outputs. In the following subsec-
tions we discuss four methods for constructing the confidence interval I* for Qp*.

3.1.1 Method 1

We first consider a method based on inverting Scheff�’s simultaneous confidence interval (Scheff�,
1959, p. 30) for h ¼ log p

1�p ¼ xT b for any x ¼ ð1; x1; x2ÞT. Based on the limit distribution of b̂b and
the Cauchy–Schwarz inequality, such an asymptotic confidence interval is given by

xT b̂b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT V̂Vxc2

3ðaÞ
n

s
� h � xT b̂bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT V̂Vxc2

3ðaÞ
n

s
; ð8Þ

where c2
3ðaÞ is the upper a quantile of the c2 distribution with 3 degrees of freedom. The confidence

region for the x2*-conditioning effective dose Qp* at a given x2* is then

I1* ¼ x1 : cT b̂b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cT V̂Vcc2

3ðaÞ
n

s
� log

p
1� p

� cT b̂bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cT V̂Vcc2

3ðaÞ
n

s
; where c ¼ ð1; x1; x2*ÞT

8<
:

9=
;
ð9Þ
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This is an asymptotic 100ð1� aÞ% simultaneous confidence interval for Qp* at any x2* since

PðQp* 2 I1*; for any x2*Þ ¼ P

�
cT b̂b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cT V̂Vcc2

3ðaÞ
n

s
� log

p
1� p

� cT b̂bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cT V̂Vcc2

3ðaÞ
n

s
; where c ¼ ð1; x1; x2*ÞT for any x2*

�

� P

�
xT b̂b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT V̂Vxc2

3ðaÞ
n

s
� log

p
1� p

� xT b̂bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xT V̂Vxc2

3ðaÞ
n

s
; for any x

�
¼ 1� a : ð10Þ

This method has been known to be conservative (e.g. Hsu, 1996) since Scheff�’s result provides
simultaneous confidence intervals for all possible linear contrasts of regression parameters. We also
note that the usual F quantiles have been replaced by c2 quantiles because the normal distribution for
the estimated regression coefficient is assymptotically correct (in which case the denominator degrees
of freedom for the F-statistic go to infinity).

Our method is similar to Carter et al. (1986) in the sense that our constructions both follow from
Scheff�’s simultaneous confidence intervals. It is relatively easy to implement our method in practice
since we work on one dimension after conditioning while Carter et al. (1986) only provided solutions
in complicated multi-dimensional forms.

3.1.2 Method 2

We apply the delta method to obtain the limit distribution of the estimator Q̂Qp* and construct the
confidence interval according to this distribution.

We define the function gðt1; t2; t3Þ ¼ ðh� t1 � t3x2*Þ=t2. Then, Qp* ¼ gðb0; b1; b2Þ and Q̂Qp* ¼
gðb̂b0; b̂b1; b̂b2Þ. Using the delta method and (7) givesffiffiffi

n
p
ðQ̂Qp*�Qp*Þ !d Nð0;VSÞ ; ð11Þ

where VS ¼ lT Vl. The column vector l ¼ rgðb0; b1; b2Þ, where

rgðt1; t2; t3Þ ¼
�1
t2
;

h� t1 � t3x2*

�t2
2

;
�x2*

t2

� �T

; ð12Þ

is the gradient of gðt1; t2; t3Þ. A consistent estimator for VS=n is l̂lT V̂Vl̂l=n, where l̂l ¼ rgðb̂b0; b̂b1; b̂b2Þ.
The asymptotic 100ð1� aÞ% confidence interval can be constructed as

I2* ¼ x1 : Q̂Qp*� za=2

ffiffiffiffiffiffiffiffiffiffi
V̂VS=n

q
� x1 � Q̂Qp*þ za=2

ffiffiffiffiffiffiffiffiffiffi
V̂VS=n

q� �
; ð13Þ

where za=2 is the upper a=2 quantile of the standard normal distribution.

3.1.3 Method 3

Fieller’s Theorem (Fieller, 1954) has been employed to compute confidence intervals for the ratios of
linear combinations of the regression parameters. We extend this idea to the construction of confi-
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dence intervals for Qp*. Let

T ¼ h� b̂b0 � b̂b2x2*� b̂b1x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cT V̂Vc=n

q ; ð14Þ

where c ¼ ð1; x1; x2*ÞT . Given h; x2*; and letting x1 be the corresponding Qp* of x2*, T is asymptotically
distributed as a standard normal variable. Thus,

1� a ¼ PðT2 � z2
a=2Þ : ð15Þ

The inequality T2 � z2
a=2 can be rearranged and expressed as a quadratic inequality in x1

Ax2
1 þ Bx1 þ C � 0 ; ð16Þ

where

A ¼ b̂b2
1 � z2

a=2v22

B ¼ 2½b̂b1ðb̂b0 þ b̂b2x2*� hÞ � z2
a=2ðv21 þ v23x2*Þ�

C ¼ ðb̂b0 þ b̂b2x2*� hÞ2 � z2
a=2ðv11 þ 2v13x2*þ v33x2*

2Þ

and vij is the (i, j)-th element of the matrix V̂V=n.
A 100ð1� aÞ% asymptotic confidence interval for Qp* is then

I3* ¼ x1 :
�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

2A
� x1 �

�Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC
p

2A

( )
; ð17Þ

provided A > 0 and B2 � 4AC > 0. Method 3 is equivalent to the inversion of the pointwise confi-
dence interval for hðxÞ.

3.1.4 Method 4

Another method for the construction of the confidence interval is the bootstrap re-sampling method.
We generate B bootstrap samples fWb; b ¼ 1; 2; � � � ;Bg, each consisting of n observations Wb ¼
fðX1i;b;X2i;b; Yi;bÞ; i ¼ 1; 2; � � � ; ng which are randomly drawn with replacement from the original sam-
ple fðX1i;X2i; YiÞ; i ¼ 1; 2; � � � ; ng. We refit the logistic model (1) for each of the bootstrap samples
and evaluate the x2*-conditioning effective dose

x̂x1;b ¼ log
p

1� p
� b̂b0;b � b̂b2;bx2*

� ��
b̂b1;b; b ¼ 1; 2; � � � ;B ð18Þ

where b̂bi;b; ði ¼ 1; 2; 3Þ are the coefficient estimates for the b-th bootstrap sample.
We then choose the a=2 quantile x̂x1;ð½Ba=2�Þ and 1� a=2 quantile x̂x1;ð½Bð1�a=2Þ�Þ from the ordered set

fx̂x1;ðbÞ : b ¼ 1; 2; � � � ;Bg, where ½u� is the largest integer smaller than u, and use these two values as
the lower and upper limits of the 1� a confidence interval for Qp*, respectively. The estimated inter-
val can be expressed as

I4* ¼ fx1 : x̂x1;ð½Ba=2�Þ � x1 � x̂x1;ð½Bð1�a=2Þ�Þg : ð19Þ

The closeness of the coverage rate of this interval to the desired confidence level depends on the
sample size n as well as the number of bootstrap samples, B. Efron and Tibshirani (1993, p. 52)
suggest B > 250 be considered for estimating the standard error in practice; Davis and Hinkley (1997,
p. 21) indicates that at least 1000 bootstrap samples should be generated for density estimation. We
note that an alternative to the method we described here is the parametric bootstrap (Efron and Tib-
shirani, 1993, p. 53).
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3.2 Properties of confidence regions

3.2.1 Simultaneous vs. pointwise confidence regions

In the general case we form the confidence region G in (4) by combining the confidence intervals I*
of Qp* for all possible ðx2*; � � � ; xk*Þ. The resulting confidence coefficient of the region G for capturing
the true Qp is

PðQp 2 GÞ ¼ P
h[
�
fðx1; x2*; � � � ; xk*Þ : x1 2 Qp*g

�
[
�
fðx1; x2*; � � � ; xk*Þ : x1 2 I*g

i
� PfQp*ðx2*Þ 2 I*ðx2*Þ; for all x2*g :

This probability argument indicates that in order to make the coverage probability for Qp no less
than 1� a, it is necessary that the simultaneous coverage probability for all Qp* be 1� a. Only
Method 1 can ensure this simultaneous coverage probability for Qp* and therefore achieve the correct
coverage probability for Qp as is demonstrated in (10).

The choice of simultaneous or pointwise methods will depend on the application. For some applica-
tions there may be primary interest in one variable conditional on others. In other applications the
focus may be placed on a small subregion. In such circumstances a pointwise confidence interval I*
may be desired; Methods 2, 3 and 4 are all possibilities.

We note that the resulting confidence regions can be different for Methods 2 and 4 depending on
the choice of the conditioning variable. Such a conditioning dependent difference diminishes as the
sample size n becomes large. Asymptotically, the regions obtained by Methods 2 or 4 approach the
region obtained by Method 3 (Cox, 1990), which is not affected by the choice of the conditioning
variable. Like Method 3, Method 1 does not depend on the conditioning variable choice.

3.2.2 Lengths of confidence intervals

For the four methods, we can easily show that Method 1 should always result in the widest interval.
The other three methods should have similar lengths asymptotically. The exact differences among
methods depend on the distribution of the covariates as well as on the pre-specified probability of
occurrence of response.

4 Simulation Study

4.1 Models with two covariates

We conducted a numerical study with 1000 simulations. For each simulation, we generated n ¼ 36 or
360 samples of X1 and X2 from the 6 designs depicted in Figure 1. These designs were selected to
represent a balanced situation and various patterns of imbalance. The number shown in the plot is the
number of replicates at that point for simulations with sample size 36. For n ¼ 360, the number of
replicates at each point is increased by a factor of 10. The true parameters were fixed to be b0 ¼ �6,
b1 ¼ 6, b2 ¼ 6. This choice of betas was made so that the “probability of success” would be 0.5 for
the line X1 þ X2 ¼ 1:0 and b0 þ b1X1 þ b2X2 would be �6 and þ6, respectively, at the lower left and
upper right corners of the unit square.

The binary response was generated from the Bernoulli distribution with success probability
p ¼ 1

1þe�ð�6þ6X1þ6X2Þ. The contours projected from the likelihood surface (at different p’s) are straight
lines with identical slopes but different intercepts. Each straight line represents the true 2-dimensional
effective dose corresponding to p. For each of the 1000 simulations, a logistic regression model was
fitted to the generated data.
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We chose 100 equally spaced values of X2 between [0, 1] and for each, calculated the x2*-condition-
ing effective dose Q̂Qp* for p ¼ 0:01; 0:05; 0:1; 0:5; 0:9; 0:95; and 0:99 and the associated 95% confi-
dence intervals I* by using the four methods described in Section 3.1.

For Method 1, we report the simultaneous coverage rate “R1” and average length “L”. Only if all 100
intervals covered all 100 true Qp*ðx2*Þ in one simulation do we report a correct simultaneous coverage.
For the other three methods, we report the pointwise coverage rate “R2” and average length “L”.

We note that the logistic regression model can result in computational instability when the data are
in a state of “complete separation” (Albert and Anderson, 1984). This phenomenon can occur more
frequently for some types of designs when sample sizes are small. Consequently confidence intervals
are impossible to obtain for some cases with sample size 36 (only Designs 1 and 5 are completely
reported in this paper).

In Table 1, the realized simultaneous coverage rates for Method 1 are all above 95%, often substan-
tially so. This wide coverage might be partially due to the fact that the asymptotic distribution has 3
degrees of freedom but there are only 2 degrees of freedom in the linear contrast since the intercept is
constant. In addition, our simulations only covered the unit square; the coverage rates almost certainly
would be smaller if we examined a larger region. In summary, Method 1 is the method of choice for
simultaneous inference although the results are often overly conservative.

With n ¼ 360 Methods 2, 3, and 4 all result in coverage rates close to 95% although those for
Method 2 are sometimes a bit low. Overall, Method 3 appears the most stable. By looking at the
proportions of intervals above and below the true value (not reported here), we note that Method 2
demonstrates a bias.
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Figure 1 The Distribution of X1 and X2 used in the Simulations.
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Table 1 Coverage rates for 95% confidence regions based on four methods from 1000 simulations.

Method 1a Method 2b Method 3b Method 4b

n p Design R1 L R2 L R2 L R2 L

36 .01 1 .996 8.6 .882 1.25 .983 28.59 .945 78.3
.05 1 .996 76.9 .888 .88 .976 2.48 .948 10.5
.1 1 .988 71.8 .902 .73 .980 13.96 .932 6.25
.5 1 1.00 11.5 .948 .53 .980 14.19 .951 1.42
.9 1 .992 9.9 .904 .73 .984 1.67 .955 2.56
.95 1 1.00 96.4 .881 .88 .985 2.37 .929 6.44
.99 1 .991 75.4 .875 1.46 .976 3.98 .910 4.50

.01 5 1 11.29 .899 1.51 .997 19.39 .952 2.18

.05 5 1 148.61 .902 1.17 .996 12.41 .948 10.56

.1 5 1 65.26 .906 .99 .993 14.61 .954 13.75

.5 5 1 14.62 .935 .69 .982 6.97 .950 1.48

.9 5 .978 38.43 .932 .76 .976 8.59 .955 2.58

.95 5 .964 52.54 .926 .87 .981 6.33 .964 2.37

.99 5 .956 97.38 .923 1.14 .991 1.16 .933 4.04

360 .01 1 .994 .586 .951 .37 .957 .39 .945 .46
.05 1 .993 .408 .947 .26 .951 .27 .940 .29
.1 1 .985 .337 .942 .21 .955 .23 .954 .25
.5 1 .983 .214 .950 .14 .954 .14 .949 .15
.9 1 .990 .335 .954 .22 .960 .22 .950 .25
.95 1 .993 .410 .947 .26 .947 .27 .946 .28
.99 1 .988 .586 .945 .37 .953 .38 .952 .36

.01 2 .990 .68 .945 .39 .949 .43 .947 .46

.05 2 .987 .42 .945 .25 .956 .27 .952 .25

.1 2 .986 .31 .938 .19 .946 .20 .935 .18

.5 2 .989 .27 .949 .16 .943 .17 .955 .14

.9 2 .996 .58 .949 .34 .947 .37 .944 .30

.95 2 .988 .69 .939 .41 .942 .44 .947 .52

.99 2 .988 .98 .934 .56 .950 .62 .946 .65

.01 3 .991 4.35 .933 .85 .956 1.22 .941 1.33

.05 3 .985 2.65 .934 .66 .962 .93 .946 .99

.1 3 .987 2.04 .946 .60 .959 .85 .945 .80

.5 3 .991 2.47 .941 .49 .953 1.05 .958 .65

.9 3 .983 2.21 .935 .59 .953 .79 .955 .89

.95 3 .982 2.51 .932 .66 .953 .85 .949 .96

.99 3 .989 3.39 .928 .86 .951 1.34 .940 1.09

.01 4 .983 2.14 .933 .71 .946 .93 .942 1.05

.05 4 .985 1.44 .946 .52 .953 .65 .943 .68

.1 4 .983 1.27 .941 .46 .946 .61 .935 .57

.5 4 .984 1.15 .949 .41 .949 .61 .957 .43

.9 4 .984 1.48 .945 .54 .940 .71 .952 .66

.95 4 .99 1.80 .938 .63 .945 .96 .939 .83

.99 4 .992 2.27 .927 .84 .951 1.14 .932 1.00
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The lengths of confidence intervals are computed in the same scale as the covariates in the
simulation. The average length of confidence intervals from Method 1 is much greater than those
from the other methods. The other three methods are quite similar to each other. Method 3 always
yields slightly wider confidence intervals than Method 2 with Method 4 usually between the other
two.

4.2 Models with four covariates

We also conducted a simulation for a logistic regression model with four covariates. The distribution
of the four covariates used is the discrete uniform distribution on 44 ¼ 256 equally spaced grid points
in the hypercube [0, 1]4 with one replicate per point. The binary response was generated from the
Bernoulli distribution with success probability p ¼ 1

1þe�ð�6þ3X1þ3X2þ3X3þ3X4Þ. Logistic regression models
were fitted to the generated data.

The values for ðX2;X3;X4Þ were fixed at the designed grid points and the ðx2*; x3*; x4*Þ-conditioning
effective dose Q̂Qp* for p ¼ :01; :05; :1; :3; :5; :7; :9; :95; and :99 and the associated 95% confidence
intervals I* were calculated. Methods 2 and 4 compare with Method 3 in a manner similar to that
found for the two-covariate case, and hence are not reported here. Table 2 provides the results from
the 1000 simulations for the two methods. Again, Method 1 produces confidence regions with simulta-
neous coverage probabilities of at least 95% and Method 3 appears to perform well on a point-wise
basis.

5 Example

It is well known that divers returning to the water surface from depths can encounter medical difficul-
ties. After hyperbaric exposures, it is best for divers to return to normal pressure using a carefully
calculated protocol. This process, called decompression, allows gradual, safe elimination of inert gases
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Table 1 Continued.

Method 1a Method 2b Method 3b Method 4b

n p Design R1 L R2 L R2 L R2 L

.01 5 .992 1.03 .939 .60 .958 .66 .939 .60

.05 5 .987 .79 .947 .46 .945 .49 .935 .57

.1 5 .986 .68 .929 .40 .949 .43 .941 .44

.5 5 .983 .43 .966 .27 .947 .29 .952 .25

.9 5 .980 .47 .938 .28 .944 .30 .935 .33

.95 5 .989 .52 .936 .32 .955 .34 .950 .40

.99 5 .989 .70 .938 .42 .959 .45 .929 .52

.01 6 .989 .92 .949 .54 .963 .59 .938 .51

.05 6 .985 .67 .938 .39 .954 .43 .963 .49

.1 6 .985 .57 .946 .34 .951 .37 .949 .28

.5 6 .987 .46 .956 .28 .957 .30 .930 .25

.9 6 .992 .66 .935 .39 .957 .42 .956 .49

.95 6 .990 .75 .942 .45 .955 .47 .936 .50

.99 6 .996 1.01 .937 .58 .947 .64 .937 .54

a Simultaneous confidence interval.
b Pointwise confidence interval.
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from the tissues. When decompression happens too quickly, the liberated gas forms bubbles that can
block blood vessels and damage tissue, producing the medical condition called decompression sick-
ness (DCS) which can potentially lead to a lethal consequence (Atkins et al., 1988, Dromsky et al.,
2000).

The body mass of adult sheep approximates that of adult humans. Thus, sheep offer a large
animal model for DCS with susceptibility quite similar to the human. Sheep decompression trials are
used to test decompression profiles viewed as too risky for humans (Lehner et al., 1997, Lehner
et al., 2000). In a recent study at the University of Wisconsin, Madison, sheep were used as a model
for submariners and divers to determine what might occur in humans undergoing similar dive pro-
files. Data on 1108 observations were collected. (Many sheep were used for multiple dives; however,
the time interval between dives was considered large enough so that each dive can be viewed as
independent) The experimental care and use of animals had been approved by the University of
Wisconsin–Madison.

The major risk factors investigated in this study are exposure pressure (depth) and exposure dura-
tion. Each sheep underwent simulated dives (in a pressure chamber) with a designed pressure and
duration and its outcome for CNS-DCS, limb bends, respiratory DCS and mortality was determined.
The pressure was measured in absolute atmospheres and duration at depth was measured in minutes.
All observed outcomes are dichotomous variables. Here we report on the mortality response.

A major goal of this study was to determine the ranges of dive depths and durations that correspond
to certain risks of incurring a response, e.g. mortality. In particular, the researchers wanted to deter-
mine the range of depths and durations corresponding to a relatively low mortality rate – say .05. The
empirical distribution of the two predictor variables (depth and duration) in the study is shown in
Figure 2.

We fit a logistic regression of mortality (Y) on log base 10 exposure duration (X1) and log base 10
exposure pressure (X2). The fitted model is given by

log
p

1� p
¼ �19:253þ 3:758X1 þ 14:196X2 ; ð20Þ

where p ¼ EðY j X1;X2Þ is the probability of mortality. The regression coefficients are all statistically
significant at the .05 level. Hence, the two predictor variables are both important for predicting mor-
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Table 2 Coverages rates for 95% confidence
regions based on Methods 1 and 3 from 1000
simulations for four covariates.

p Computing Methods

Method 1a Method 3b

R1 L R2 L

.01 .992 3.33 .954 1.35

.05 .994 2.23 .948 .96

.1 .985 1.86 .949 .82

.3 .989 1.41 .957 .62

.5 .987 1.29 .952 .59

.7 .994 1.42 .951 .63

.9 .987 1.94 .948 .82

.95 .994 2.53 .951 .95

.99 .994 3.67 .947 1.35
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tality. Both a longer exposure duration and a larger exposure pressure (dive depth) are associated with
a larger chance of death.

We determined the values of X1 and X2 that correspond to a fixed probability of mortality. For
p ¼ :05; :1; :3; :5; :7; :9, we display the contours of the fitted surface in Figure 2. Each line represents
the estimated effective dose for a given p. We note that these straight lines have the same slopes (the
same regression coefficients) but different intercepts.

For p ¼ :05, we estimated the multi-dimensional effective doses for X1 and X2 by a straight line in
the two-dimensional plane (Figure 3). We also produced the four types of confidence bands for these
two-dimensional effective doses and depict them with different types of lines in the figures. Since
Methods 2 and 4 depend on the order of conditioning, we chose to fix X2 at a series of grid points x2*
within the experimental range and then evaluate the x2*-conditioning effective dose of X1. In Method
4, the bootstrap sample size was B ¼ 500.

The results shown in these figures are consistent with our numerical study. Method 1 is the
widest but is the only one satisfying the simultaneous coverage requirement. The other three
methods are similar to each other. This is primarily due to the large sample size of our data set.
In part because of the invariance to order, and also due to the results of our simulation studies,
we focus on the Method 3 regions as the most useful in practice. Figures of this type will be
useful to the diving community in assessing the dive profiles that can meet certain risk probabil-
ities.
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Figure 2 Design Plots for X1 (log 10 duration) vs. X2 (log 10 pressure)
and Contour of the Fitted Surface from Logistic Regression for Sheep
Example.
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6 Discussion

In this paper we have generalized the concept of univariate effective dose to a multivariate setting. By
conditioning on fixed values for all variables except one, we utilize an asymptotic inference procedure
similar to that for the univariate effective dose. With our diving example, our development has proven
useful in a practical application.

Our approach can be easily extended to include interaction or polynomial terms. However, the
inclusion of these terms can result in confidence regions with complex shapes. Also, our methodology
can be generalized to a broader range of statistical calibration problems involving multiple covariates.
The distribution of the response variable can be any member of the exponential family. Our research
thus may benefit a wide variety of scientific disciplines for which it is important to determine a
confidence region of the predictor variables corresponding to a given response.

The choice of region for the conditioning variables should be based on practical needs. As demon-
strated in our simulation studies and real examples, simultaneous confidence region tends to be wider
and provides adequate coverage probability across the whole range of dose values. However, if we
only need to concentrate on particular dose levels of some covariates, the pointwise confidence region
for the conditioning effective dose might be sufficiently useful. Among the three pointwise methods,
Fieller’s method seems to have the best small sample performance.

In this paper we mainly focus on confidence bands for two predictors. When k > 2, the region is a
high-dimensional band (or tube) and usually hard to visualize. The procedures introduced in Section 2
can be slightly modified to construct the confidence region. The results, as seen in a small simulation
example in Section 4.2, are quite similar to what we demonstrate for two predictors.

The logistic regression function can suffer from computing instability for small sample sizes. More-
over, the parametric form of the dose-response relationship can be overly restrictive and might mis-
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Figure 3 Plot of X1 (log 10 duration) vs. X2 (log 10 pressure) for
mortality probability .05 and the associated confidence regions.
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specify the real biological mechanisms. We believe that a flexible non-parametric or semi-parametric
model might capture the underlying relationship more accurately. We intend to explore such an ap-
proach.

The procedure in this paper has been implemented in R. The computing code is available at

http://www.stat.nus.edu.sg/ � stalj.
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