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SUMMARY

Regularization methods are characterized by loss functions measuring data fits and penalty
terms constraining model parameters. The commonly used quadratic loss is not suitable for
classification with binary responses, whereas the loglikelihood function is not readily applicable
to models where the exact distribution of observations is unknown or not fully specified. We
introduce the penalized Bregman divergence by replacing the negative loglikelihood in the con-
ventional penalized likelihood with Bregman divergence, which encompasses many commonly
used loss functions in the regression analysis, classification procedures and machine learning
literature. We investigate new statistical properties of the resulting class of estimators with the
number pn of parameters either diverging with the sample size n or even nearly comparable with
n, and develop statistical inference tools. It is shown that the resulting penalized estimator, com-
bined with appropriate penalties, achieves the same oracle property as the penalized likelihood
estimator, but asymptotically does not rely on the complete specification of the underlying distri-
bution. Furthermore, the choice of loss function in the penalized classifiers has an asymptotically
relatively negligible impact on classification performance. We illustrate the proposed method
for quasilikelihood regression and binary classification with simulation evaluation and real-data
application.

Some key words: Consistency; Divergence minimization; Exponential family; Loss function; Optimal Bayes rule;
Oracle property; Quasilikelihood.

1. INTRODUCTION

Regularization is used to obtain well-behaved solutions to overparameterized estimation prob-
lems, and is particularly appealing in high dimensions. The topic is reviewed by Bickel & Li
(2006). Regularization estimates a vector parameter of interest β ∈ R

pn by minimizing the crite-
rion function,

�n(β) = Ln(β) + Pλn (β) (λn > 0),

consisting of a data fit functional Ln , which measures how well β fits the observed set of data;
a penalty functional Pλn , which assesses the physical plausibility of β; and a regularization
parameter λn , which regulates the penalty. Depending on the nature of the output variable, the
term Ln quantifies the error of an estimator by different error measures. For example, the quadratic
loss function has nice analytical properties and is usually used in regression analysis. However,
it is not always adequate in classification problems, where the misclassification loss, deviance
loss, hinge loss for the support vector machine (Vapnik, 1996) and exponential loss for boosting
(Hastie et al., 2001) are more realistic and commonly used in classification procedures.
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Currently, most research on regularization methods is devoted to variants of penalty meth-
ods in conjunction with linear models and likelihood-based models in regression analysis. For
linear model estimation with a fixed number p of parameters, Tibshirani (1996) introduced
the L1-penalty for the proposed lasso method, where the quadratic loss is in use. Theoret-
ical properties related to the lasso have been intensively studied; see Knight & Fu (2000),
Meinshausen & Buhlmann (2006) and Zhao & Yu (2006). Zou (2006) mentioned that the lasso
is in general not variable selection consistent, but the adaptive lasso via combining appropriately
weighted L1-penalties is consistent. Huang et al. (2008) extended the results in Zou (2006) to
high-dimensional linear models. Using the smoothly clipped absolute deviation penalty, Fan & Li
(2001) showed that the penalized likelihood estimator achieved the oracle property: the resulting
estimator is asymptotically as efficient as the oracle estimator. In their treatment, the number
pn of model parameters is fixed at p, and the loss function equals the negative loglikelihood.
Fan & Peng (2004) extended the result to pn diverging with n at a certain rate.

On the loss side, the literature on penalization methods includes much less discussion of either
the role of the loss function in regularization for models other than linear or likelihood-based
models, or the impact of different loss functions on classification performance. The least angle
regression algorithm (Efron et al., 2004) for L1-penalization was developed for linear models
using the quadratic loss. Rosset & Zhu (2007) studied the piecewise linear regularized solution
paths for differentiable and piecewise quadratic loss functions with L1 penalty. It remains desir-
able to explore whether penalization methods using other types of loss functions can potentially
benefit from the efficient least-angle regression algorithm. Moreover, theoretical results on the
penalized likelihood are not readily translated into results for approaches, such as quasilikelihood
(Wedderburn, 1974; McCullagh, 1983; Strimmer, 2003), where the distribution of the obser-
vations is unknown or not fully specified. Accordingly, a discussion of statistical inference for
penalized estimation using a wider range of loss functions is needed.

In this study, we broaden the scope of penalization by incorporating loss functions belonging
to the Bregman divergence class which unifies many commonly used loss functions. In particular,
the quasilikelihood function and all loss functions mentioned previously in classification fall
into this class. We introduce the penalized Bregman divergence by replacing the quadratic loss
or the negative loglikelihood in penalized least-squares or penalized likelihood with Bregman
divergence, and call the resulting estimator a penalized Bregman divergence estimator. Nonethe-
less, the Bregman divergence in general does not fulfill assumptions specifically imposed on the
likelihood function associated with penalized likelihood.

We investigate new statistical properties of large-dimensional penalized Bregman divergence
estimators, with dimensions dealt with separately in two cases:

Case I : pn is diverging with n; (1)

Case II : pn is nearly comparable with n. (2)

Zhang & Zhang (2010) give an application of the penalization method developed in this paper
to estimating the hemodynamic response function for brain fMRI data where pn is as large as
n. The current paper shows that the penalized Bregman divergence estimator, combined with
appropriate penalties, achieves the same oracle property as the penalized likelihood estimator,
but the asymptotic distribution does not rely on the complete specification of the underlying dis-
tribution. From the classification viewpoint, our study elucidates the applicability and consistency
of various classifiers induced by penalized Bregman divergence estimators. Technical details of
this paper are in the online Supplementary Material.
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Fig. 1. Illustration of Q(ν, μ) as defined in (3). The con-
cave curve is q; the two dashed lines indicate locations
of ν and μ; the solid straight line is q(μ) + (ν − μ)q ′(μ);
the length of the vertical line with arrows at each end is

Q(ν, μ).

2. THE PENALIZED BREGMAN DIVERGENCE ESTIMATOR

2·1. Bregman divergence

We give a brief overview of Bregman divergence. For a given concave function q with derivative
q ′, Bregman (1967) introduced a device for constructing a bivariate function,

Q(ν, μ) = −q(ν) + q(μ) + (ν − μ)q ′(μ). (3)

Figure 1 displays Q and the corresponding q. It is readily seen that the concavity of q ensures
the nonnegativity of Q. Moreover, for a strictly concave q, Q(ν, μ) = 0 is equivalent to ν = μ.
However, since Q(ν, μ) is not generally symmetric in ν and μ, Q is not a metric or distance in
the strict sense. Hence, we call Q the Bregman divergence and call q the generating function
of Q. See Efron (1986), Lafferty et al. (1997), Lafferty (1999), Kivinen & Warmuth (1999),
Grünwald & Dawid (2004), Altun & Smola (2006) and references therein.

The Bregman divergence is suitable for a broad array of error measures Q. For example,
q(μ) = aμ − μ2 with some constant a yields the quadratic loss Q(Y, μ) = (Y − μ)2. For a bi-
nary response variable Y , q(μ) = min{μ, (1 − μ)} gives the misclassification loss Q(Y, μ) =
I {Y � I (μ > 1/2)}, where I (·) denotes the indicator function; q(μ) = −{μ log(μ) + (1 −
μ) log(1 − μ)} gives the Bernoulli deviance loss Q(Y, μ) = −{Y log(μ) + (1 − Y ) log(1 − μ)};
q(μ) = 2 min{μ, (1 − μ)} results in the hinge loss; and q(μ) = 2{μ(1 − μ)}1/2 yields the expo-
nential loss Q(Y, μ) = exp[−(Y − 0·5) log{μ/(1 − μ)}].

Conversely, for a given Q, Zhang et al. (2009) provided necessary and sufficient conditions
for Q being a Bregman divergence, and in that case derived an explicit formula for q. Apply-
ing this inverse approach from Q to q, they illustrated that the quasilikelihood function, the
Kullback–Leibler divergence or the deviance loss for the exponential family of probability func-
tions, and many margin-based loss functions (Shen et al., 2003) are Bregman divergences. To our
knowledge, there is little theoretical work in the literature on thoroughly examining the penal-
ized Bregman divergence, via methods of regularization, for large-dimensional model building,
variable selection and classification problems.

2·2. The model and penalized Bregman divergence estimator

Let (X, Y ) denote a random realization from some underlying population, where X =
(X1, . . . , X pn )T is the input vector and Y is the output variable. The dimension pn follows
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the assumption in (1) or (2). We assume the parametric model,

m(x) = E(Y | X = x) = F−1(b0;0 + xTβ0), (4)

where F is a known link function, b0;0 ∈ R
1 and β0 = (β1;0, . . . , βpn ;0)T ∈ R

pn are the unknown
true parameters. Throughout the paper, it is assumed that some entries in β0 are exactly zero.
Write β0 = {β(I)T

0 , β
(II)T

0 }T, where β
(I)
0 collects all nonzero coefficients, and β

(II)
0 = 0.

Our goal is to estimate the true parameters via penalization. Let {(X1, Y1), . . . , (Xn, Yn)} be a
sample of independent random pairs from (X, Y ), where Xi = (Xi1, . . . , Xipn )T. The penalized
Bregman divergence estimator (b̂0, β̂) is defined as the minimizer of the criterion function,

�n(b0, β) = 1

n

n∑
i=1

Q
{

Yi , F−1(b0 + X T
i β

)} +
pn∑

j=1

Pλn (|β j |), (5)

where β = (β1, . . . , βpn )T, the loss function Q(·, ·) is a Bregman divergence, and Pλn (·) represents
a nonnegative penalty function indexed by a tuning constant λn > 0. Set β̃ = (b0, β

T)T, and
correspondingly X̃i = (1, X T

i )T. Then (5) can be written as

�n(β̃) = 1

n

n∑
i=1

Q
{

Yi , F−1(X̃ T
i β̃

)} +
pn∑

j=1

Pλn (|β j |). (6)

The penalized Bregman divergence estimator is β̃E = (b̂0, β̂1, . . . , β̂pn )T = arg min
β̃

�n(β̃).

Regarding the uniqueness of β̃E, assume that the quantities

q j (y; θ) = (∂ j/∂θ j )Q{y, F−1(θ)} ( j = 0, 1, . . .), (7)

exist finitely up to any order required. Provided that for all θ ∈ R and all y in the range of Y ,

q2(y; θ) > 0, (8)

it follows that Ln(β̃) = n−1 ∑n
i=1 Q{Yi , F−1(X̃ T

i β̃)} in (6) is convex in β̃. In that case, if convex
penalties are used in (6), then �n(β̃) is necessarily convex in β̃, and hence the local minimizer β̃E

is the unique global penalized Bregman divergence estimator. For nonconvex penalties, however,
the local minimizer may not be globally unique.

3. PENALIZED BREGMAN DIVERGENCE WITH NONCONVEX PENALTIES: pn � n

3·1. Consistency

We start by introducing some notation. Let sn denote the number of nonzero coordinates of β0,
and set β̃0 = (b0;0, β

T
0)T. Define

an = max
j=1,...,sn

∣∣P ′
λn

(|β j ;0|)
∣∣, bn = max

j=1,...,sn

∣∣P ′′
λn

(|β j ;0|)
∣∣,

where P ( j)
λ (|β|) is shorthand for (d j/dx j )Pλ(x)|x=|β|, j = 1, 2. Unless otherwise stated, ‖ · ‖

denotes the L2-norm. Theorem 1 guarantees the existence of a consistent local minimizer for (6),
and states that the local penalized Bregman divergence estimator β̃E is (n/pn)1/2-consistent.

THEOREM 1 (Existence and consistency). Assume Condition A in the Appendix, an =
O(1/n1/2) and bn = o(1). If p4

n/n → 0, (pn/n)1/2/λn → 0 and min j=1,...,sn |β j ;0|/λn → ∞ as
n → ∞, then there exists a local minimizer β̃E of (6) such that ‖β̃E − β̃0‖ = OP{(pn/n)1/2}.
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3·2. Oracle property

Following Theorem 1, the oracle property of the local minimizer is given in Theorem 2
below. Before stating it, we need some notation. Write X = (X (I)T, X (II)T)T, X̃ (I) = (1, X (I)T)T,
and β̃(I) = (b0, β

(I)T)T. For the penalty term, let

dn = {
0, P ′

λn
(|β1;0|)sign(β1;0), . . . , P ′

λn

(∣∣βsn ;0
∣∣)sign

(
βsn ;0

)}T
,

�n = diag
{

0, P ′′
λn

(|β1;0|), . . . , P ′′
λn

(∣∣βsn ;0
∣∣)}.

For the q function, define Fn = q (2){m(X )}/[F (1){m(X )}]2 X̃ (I) X̃ (I)T and

	n = E
[
var(Y | X )q (2){m(X )}Fn

]
, Hn = −E(Fn).

THEOREM 2 (Oracle property). Assume Condition B in the Appendix.

(i) If p2
n/n = O(1), (pn/n1/2)/λn → 0 and lim infn→∞ lim inf θ→0+ P ′

λn
(θ)/λn > 0 as

n → ∞, then any (n/pn)1/2-consistent local minimizer β̃E = (β̃(I)T
E , β̂(II)T)T satisfies

pr(β̂(II) = 0) → 1.
(ii) Moreover, if an = O(1/n1/2), p5

n/n → 0 and min j=1,...,sn |β j ;0|/λn → ∞, then for any
fixed integer k and any k × (sn + 1) matrix An such that An AT

n → G with G being a k ×
k nonnegative-definite symmetric matrix, n1/2 An	

−1/2
n {(Hn + �n)(β̃(I)

E − β̃
(I)
0 ) + dn} →

N (0, G) in distribution.

Theorem 2 has some useful consequences: First, the pn-dimensional penalized Bregman diver-
gence estimator, combined with appropriate penalties, achieves the same oracle property as the
penalized likelihood estimator of Fan & Peng (2004): the estimators of the zero parameters take
exactly zero values with probability tending to 1, and the estimators of the nonzero parameters are
asymptotically normal with the same means and variances as if the zero coefficients were known
in advance. Second, the asymptotic distribution of the penalized Bregman divergence estimator
relies on the underlying distribution of Y | X through E(Y | X ) and var(Y | X ), but does not
require a complete specification of the underlying distribution. Third, the asymptotic distribu-
tion depends on the choice of the Q-loss only through the second derivative of its generating
q function. This enables us to evaluate the impact of loss functions on the penalized Bregman
divergence estimators and to derive an optimal loss function in certain situations.

According to Theorem 2, the asymptotic covariance matrix of β̃
(I)
E is Vn = (Hn +�n)−1

	n(Hn + �n)−1. In practice, Vn is unknown and needs to be estimated. Typically, the sand-
wich formula can be exploited to form an estimator of Vn by

V̂n = (Ĥn + �̂n)−1	̂n(Ĥn + �̂n)−1, (9)

where 	̂n = n−1 ∑n
i=1 q2

1 (Yi ; X̃ (I)T

i β̃
(I)
E )X̃ (I)

i X̃ (I)T

i , Ĥn = n−1 ∑n
i=1 q2(Yi ; X̃ (I)T

i β̃
(I)
E )X̃ (I)

i X̃ (I)T

i and
�̂n = diag{0, P ′′

λn
(|β̂1|), . . . , P ′′

λn
(|β̂sn |)}.

Proposition 1 below demonstrates that for any (n/pn)1/2-consistent estimator β̃
(I)
E of β̃

(I)
0 , V̂n

is a consistent estimator for the covariance matrix Vn , in the sense that An(V̂n − Vn)AT
n → 0 in

probability for any k × (sn + 1) matrix An satisfying An AT
n → G, where k is any fixed integer.

PROPOSITION 1 (Covariance matrix estimation). Assume Condition B in the Appendix, and
bn = o(1). If p4

n/n → 0, (pn/n)1/2/λn → 0 and min j=1,...,sn |β j ;0|/λn → ∞ as n → ∞, then

for any ‖β̃(I)
E − β̃

(I)
0 ‖ = OP{(pn/n)1/2}, we have that An(V̂n − Vn)AT

n → 0 in probability for any
k × (sn + 1) matrix An satisfying An AT

n → G, where G is a k × k matrix.
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Is there an optimal choice of q such that the corresponding Vn matrix achieves its lower
bound? We have that Vn = H−1

n 	n H−1
n in two special cases. One is �n = 0 for large n

and large min j=1,...,sn |β j ;0|, which results from the smoothly clipped absolute deviation and
hard thresholding penalties; another one is �n = 0 for all n, which results from the weighted
L1-penalties in Theorem 6 below. In these cases, it can be shown via matrix algebra that the opti-
mal q satisfies the generalized Bartlett identity in (11) below. On the other hand, for an arbitrary
�n � 0, the complication rises; the optimal q is generally not available in closed-form.

3·3. Hypothesis testing

We consider hypothesis testing about β̃
(I)
0 formulated as

H0 : Anβ̃
(I)
0 = 0 versus H1 : Anβ̃

(I)
0 � 0, (10)

where An is a given k × (sn + 1) matrix such that An AT
n = G with G being a k × k positive-

definite matrix. This form of linear hypothesis allows one to test simultaneously whether a subset
of variables used are statistically significant by taking some specific form of the matrix An; for
example, An = [Ik, 0k,sn+1−k] yields An AT

n = Ik .
We propose a generalized Wald-type test statistic of the form

Wn = n
(

Anβ̃
(I)
E

)T(An Ĥ−1
n 	̂n Ĥ−1

n AT
n

)−1(Anβ̃
(I)
E

)
,

where 	̂n and Ĥn are as defined in (9). This test is asymptotically distribution-free, as Theorem 3
justifies that, under the null, Wn would for large n be distributed as χ2

k .

THEOREM 3 (Wald-type test under H0). Assume Condition C in the Appendix, and let an =
o{1/(nsn)1/2} and bn = o(1/p1/2

n ). If p5
n/n → 0, (pn/n)1/2/λn → 0 and min j=1,...,sn |β j ;0|/λn →

∞ as n → ∞, then under H0 in (10), Wn → χ2
k in distribution.

Remark 1. To appreciate the discriminating power of Wn in assessing the significance, the
asymptotic power can be analyzed. It can be shown that under H1 in (10) where ‖Anβ̃0‖ is
independent of n, Wn → +∞ in probability at the rate n. Hence Wn has power function tending
to 1 against fixed alternatives. Besides, Wn has a nontrivial local power detecting contiguous
alternatives approaching the null at the rate n−1/2. We omit the lengthy details.

In the context of penalized likelihood estimator β̃E, Fan & Peng (2004) showed that the
likelihood-ratio-type test statistic

�n = 2n

{
min

β̃∈Rpn+1:An β̃(I)=0
�n(β̃) − �n(β̃E)

}

follows an asymptotic χ2 distribution under the null hypothesis. Theorem 4 below explores the
extent to which this result can feasibly be extended to �n constructed from the broad class of
penalized Bregman divergence estimators.

THEOREM 4 (Likelihood-ratio-type test under H0). Assume (8) and Condition D in the
Appendix, an = o{1/(nsn)1/2} and bn = o(1/p1/2

n ). If p5
n/n → 0, (pn/n)1/2/λn → 0 and

min j=1,...,sn |β j ;0|/λn → ∞ as n → ∞, then under H0 in (10), provided that q satisfies the
generalized Bartlett identity,

q (2){m(·)} = − c

var(Y | X = ·) , (11)

for a constant c > 0, we have that �n/c → χ2
k in distribution.
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Curiously, the result in Theorem 4 indicates that in general, condition (11) on q restricts the
application domain of the test statistic �n . For instance, in the case of binary responses, the
Bernoulli deviance loss satisfies (11), but the quadratic loss and exponential loss violate (11).
This limitation reflects that the likelihood-ratio-type test statistic �n may not be straightforwardly
valid for the penalized Bregman divergence estimators.

Remark 2. For a Bregman divergence Q, condition (11) with c = 1 is equivalent to the
equality E[∂2 Q{Y, m(·)}/∂m(·)2 | X = ·] = E([∂ Q{Y, m(·)}/∂m(·)]2 | X = ·), which includes
the Bartlett identity (Bartlett, 1953) as a special case, when Q is the negative loglikelihood. Thus,
we call (11) the generalized Bartlett identity. It is also seen that the quadratic loss satisfies (11)
for homoscedastic regression models even without knowing the error distribution.

4. PENALIZED BREGMAN DIVERGENCE WITH CONVEX PENALTIES: pn ≈ n

4·1. Consistency, oracle property and hypothesis testing

For the nonconvex penalties discussed in § 3, the condition p4
n/n → 0 or p5

n/n → 0 can be
relaxed to p3

n/n → 0 in the particular situation where the Bregman divergence is a quadratic loss
and the link is an identity link. It remains unclear whether pn can be relaxed in other cases.

This section aims to improve the rate of consistency of the penalized Bregman divergence
estimators and to relax conditions on pn using certain convex penalties, the weighted L1-penalties,
under which the penalized Bregman divergence estimator β̃E = (b̂0, β̂

T)T is defined to minimize
the criterion function,

�n(β̃) = 1

n

n∑
i=1

Q
{

Yi , F−1(X̃ T
i β̃

)} + λn

pn∑
j=1

w j |β j |, (12)

with w1, . . . , wpn representing nonnegative weights. Define

w(I)
max = max

j=1,...,sn

w j , w(II)
min = min

sn+1 � j � pn

w j .

Lemma 1 obtains the existence of a (n/pn)1/2-consistent local minimizer of (12). This rate is
identical to that in Theorem 1 but, unlike Theorem 1, Lemma 1 includes the L1-penalty. Other
results parallel to those in § 3 can similarly be obtained.

LEMMA 1 (Existence and consistency). Assume Conditions A1–A7 in the Appendix and w
(I)
max =

OP{1/(λnn1/2)}. If p4
n/n → 0 as n → ∞, then there exists a local minimizer β̃E of (12) such that

‖β̃E − β̃0‖ = OP{(pn/n)1/2}.
Lemma 1 imposes a condition on the weights of nonzero coefficients alone, but ignores the

weights on zero coefficients. Theorem 5 below reflects that incorporating appropriate weights to
the zero coefficients can improve the rate of consistency from (pn/n)1/2 to (sn/n)1/2.

THEOREM 5 (Existence and consistency). Assume Conditions A1–A7 in the Appendix, w(I)
max =

OP{1/(λnn1/2)} and there exists a constant M ∈ (0,∞) such that limn→∞ pr(w(II)
minλn > M) = 1.

If s4
n/n → 0 and sn(pn − sn) = o(n), then there exists a local minimizer β̃E of (12) such that

‖β̃E − β̃0‖ = OP{(sn/n)1/2}.
More importantly, conditions on the dimension pn are much relaxed. For example, Theorem 5

allows pn = o(n(3+δ)/(4+δ)) for any δ > 0, provided sn = O(n1/(4+δ)), whereas Theorem 1 requires
pn = o(n1/4) for any sn � pn . This implies that pn can indeed be relaxed to the case (2) of being
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nearly comparable with n. On the other hand, the proof of Theorem 5 relies on the flexibility of
the weights {w j }, as seen in an I (II)

2,1 term. Thus, directly carrying the proof of Theorem 5 through
to either the nonconvex penalties in Theorem 1 or the L1-penalty is not feasible.

Theorem 6 gives an oracle property for the (n/sn)1/2-consistent local minimizer.

THEOREM 6 (Oracle property). Assume Conditions A1, A2, B3, A4, B5, A6–A7 in the
Appendix.

(i) If s2
n/n = O(1) and w

(II)
minλnn1/2/(sn pn)1/2 → ∞ in probability as n → ∞, then any

(n/sn)1/2-consistent local minimizer β̃E = (β̃(I)T
E , β̂(II)T)T satisfies pr(β̂(II) = 0) → 1.

(ii) Moreover, if w
(I)
max = OP{1/(λnn1/2)}, s5

n/n → 0 and min j=1,...,sn |β j ;0|/(sn/n)1/2 → ∞,
then for any fixed integer k and any k × (sn + 1) matrix An such that An AT

n → G

with G being a k × k nonnegative-definite symmetric matrix, n1/2 An	
−1/2
n {Hn(β̃(I)

E −
β̃

(I)
0 ) + λnWnsign(β̃(I)

0 )} → N (0, G) in distribution, where Wn = diag(0, w1, . . . , wsn )

and sign{β̃(I)
0 } = {sign(b0;0), . . . , sign(βsn ;0)}T.

For testing hypotheses of the form (10), the generalized Wald-type test statistic Wn proposed
in § 3·3 continues to be applicable. Theorem 7 derives the asymptotic distribution of Wn .

THEOREM 7 (Wald-type test under H0). Assume Conditions A1, A2, B3, C4, B5, A6–A7 in the
Appendix, and that w(I)

max = oP [1/{λn(nsn)1/2}]. If s5
n/n → 0 and min j=1,...,sn |β j ;0|/(sn/n)1/2 →

∞ as n → ∞, then under H0 in (10), Wn → χ2
k in distribution.

4·2. Weight selection

We propose a penalized componentwise regression method for selecting weights by

ŵ j = ∣∣β̂PCR
j

∣∣−1 ( j = 1, . . . , pn), (13)

based on some initial estimator, β̂PCR = (β̂PCR
1 , . . . , β̂PCR

pn
)T, minimizing

�PCR
n (β) = 1

n

n∑
i=1

pn∑
j=1

Q{Yi , F−1(Xi jβ j )} + κn

pn∑
j=1

|β j |, (14)

with some sequence κn > 0. Theorem 8 indicates that under assumptions on the correlation
between the predictor variables and the response variable, the weights selected by the penalized
componentwise regression satisfy the conditions in Theorem 5.

THEOREM 8 (Penalized componentwise regression for weights: pn ≈ n). Assume Conditions
A1, A2, B3, A4, A6, A7 and E. Assume that in Condition E, An = λnn1/2, An/κn → ∞ and
Bn/κn = O(1) for κn in (14). Suppose λnn1/2 = O(1), λn = o(κn) and log(pn) = o(nκ2

n ). As-
sume that E(X ) = 0 in model (4). Then there exist local minimizers β̂PCR

j ( j = 1, . . . , pn), of (14)
such that the weights ŵ j ( j = 1, . . . , pn), defined in (13) satisfy that ŵ

(I)
max = OP{1/(λn √ n)}

and ŵ
(II)
minλn → ∞ in probability in Theorem 5, where ŵ

(I)
max = max j=1,...,sn ŵ j and ŵ

(II)
min =

minsn+1 � j � pn ŵ j .

5. CONSISTENCY OF THE PENALIZED BREGMAN DIVERGENCE CLASSIFIER

This section deals with the binary response variable Y , which takes values 0 and 1. In this case,
the mean regression function m(x) in (4) becomes the class label probability, pr(Y = 1 | X = x).
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From the penalized Bregman divergence estimator (b̂0, β̂
T)T proposed in either § 3 or § 4, we can

construct the penalized Bregman divergence classifier, φ̂(x) = I {m̂(x) > 1/2}, for a future input
variable x , where m̂(x) = F−1(b̂0 + xTβ̂).

In the classification literature, the misclassification loss of a classification rule φ at a sample
point (x, y) is l{y, φ(x)} = I {y � φ(x)}. The risk of φ is the expected misclassification loss,
R(φ) = E[l{Y, φ(X )}] = pr{φ(X ) � Y }. The optimal Bayes rule, which minimizes the risk with
respect to φ, is φB(x) = I {m(x) > 1/2}. For a test sample (Xo, Y o), which is an independent
and identically distributed copy of samples in the training set Tn = {(Xi , Yi ), i = 1, . . . , n},
the optimal Bayes risk is then R(φB) = pr{φB(Xo) � Y o}. Meanwhile, the conditional risk of
the penalized Bregman divergence classification rule φ̂ is R(φ̂) = pr{φ̂(Xo) � Y o | Tn}. For φ̂

induced by the penalized Bregman divergence regression estimation using a range of loss functions
combined with either the smoothly clipped absolute deviation, L1 or weighted L1-penalties,
Theorem 9 verifies the classification consistency attained by φ̂.

THEOREM 9 (Consistency of the penalized Bregman divergence classifier). Assume Condi-
tions A1 and A4 in the Appendix. Suppose that ‖β̃E − β̃0‖ = OP (rn). If rn p1/2

n = o(1), then the
classification rule φ̂ constructed from β̃E is consistent in the sense that E{R(φ̂)} − R(φB) → 0
as n → ∞.

6. SIMULATION STUDY

6·1. Set-up

For illustrative purposes, four procedures for penalized estimators are compared: (I) the
smoothly clipped absolute deviation penalty, with an accompanying parameter a = 3·7, com-
bined with the local linear approximation; (II) the L1 penalty; (III) the weighted L1-penalties
with weights selected by (13); and (IV) the oracle estimator using the set of significant variables.
Throughout the numerical work in the paper, methods (I)–(III) utilize the least angle regression
algorithm, F is the log link for count data and the logit link for binary response variables.

6·2. Penalized quasilikelihood for overdispersed count data

A quasilikelihood function Q relaxes the distributional assumption on a random variable
Y via the specification ∂ Q(Y, μ)/∂μ = (Y − μ)/V (μ), where var(Y | X = x) = V {m(x)} for
a known continuous function V (·) > 0. Zhang et al. (2009) verified that the quasilikelihood
function belongs to the Bregman divergence and derived the generating q function,

q(μ) =
∫ μ

−∞
s − μ

V (s)
ds. (15)

We generate overdispersed Poisson counts Yi satisfying var(Yi | Xi = xi ) = 2m(xi ). In the
predictor Xi = (Xi1, . . . , Xipn )T, pn = n/8, n/2 and n − 10, and Xi1 = i/n − 0·5. For j =
2, . . . , pn , Xi j = �(Zi j ) − 0·5, where � is the standard normal distribution function, and
(Zi2, . . . , Zipn )T ∼ N {0, ρ1pn−11T

pn−1 + (1 − ρ)Ipn−1}, with 1d a d × 1 vector of ones and Id

a d × d identity matrix. Thus (Xi2, . . . , Xipn ) are correlated Un(0, 1) if ρ � 0. The link function
is log{m(x)} = b0;0 + xTβ0, where b0;0 = 5 and β0 = (2, 2, 0, 0, . . . , 0)T.

First, to examine the effect of penalized regression estimates on model fitting, we gen-
erate 200 training sets of size n. For each training set, the model error is calculated by∑L

l=1{m̂(xl) − m(xl)}2/L , at a randomly generated sequence {xl}L=5000
l=1 , and the relative model

error is the ratio of model error using penalized estimators and that using nonpenalized esti-
mators. The tuning constants λn for the training set in each simulation for methods (I)–(II) are
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Table 1. Simulation results from penalized quasilikelihood estimates, with dependent predic-
tors. n = 200, ρ = 0·2

Regression Variable selection
Loss pn Method MRME CZ (SD) IZ (SD)

Quasilikelihood n/8 SCAD 0·2428 17·74 (5·46) 0 (0)
L1 0·3503 14·21 (4·91) 0 (0)
Weighted L1 0·1077 21·32 (2·48) 0 (0)
Oracle 0·0861 23 –

Quasilikelihood n/2 SCAD 0·0409 91·73 (12·56) 0 (0)
L1 0·0712 88·00 (14·94) 0 (0)
Weighted L1 0·0161 94·84 (5·89) 0 (0)
Oracle 0·0105 98 –

Quasilikelihood n − 10 SCAD 0·0010 184·37 (8·52) 0 (0)
L1 0·0019 181·13 (13·87) 0 (0)
Weighted L1 0·0004 185·25 (4·97) 0 (0)
Oracle 0·0002 188 –

SCAD, smoothly clipped absolute deviation; MRME, mean of relative model errors obtained from the training
sets; CZ, average number of coefficients that are correctly estimated to be zero when the true coefficients are zero;
IZ, average number of coefficients that are incorrectly estimated to be zero when the true coefficients are nonzero;
SD, standard deviation.

selected separately by minimizing the quasilikelihood on a test set of size equal to that of the
training set; λn and κn for method (III) are searched on a surface of grid points. The mean relative
model error can be obtained from those 200 training sets. Table 1 summarizes the penalized
quasilikelihood estimates of parameters by means of (15). It is clearly seen that if the true model
coefficients are sparse, the penalized estimators reduce the function estimation error compared
with the nonpenalized estimators.

Second, to study the utility of penalized estimators in revealing the effects in variable
selection under quasilikelihood, Table 1 gives the average number of coefficients that are
correctly estimated to be zero when the true coefficients are zero, and the average num-
ber of coefficients that are incorrectly estimated to be zero when the true coefficients are
nonzero. The standard deviations of the corresponding estimations across 200 training sets
are given in brackets. Overall, the penalized estimators help yield a sparse solution and build a
sparse model. These results lend support to the theoretical results in § 3 and § 4.

In summary, the smoothly clipped absolute deviation and weighted L1 penalties outperform
the L1 penalty in terms of regression estimation and variable selection. As expected, the oracle
estimator, which is practically infeasible, performs better than the three penalized estimators.

6·3. Penalized Bregman divergence for binary classification

We generate data with two-classes from the model,

X = (
X1, . . . , X pn

)T ∼ N (0, �), Y | X = x ∼ Ber{m(x)},
where pn = n/8, n/2, n − 10, � = ρ1pn 1T

pn
+ (1 − ρ)Ipn and logit{m(x)} = b0;0 + xTβ0 with

b0;0 = 3 and β0 = (1·5, 2,−2,−2·5, 0, 0, . . . , 0)T. Table 2 summarizes the penalized estimates
of parameters. The results reinforce the conclusion drawn in § 6·2.

Moreover, to investigate the performance of penalized classifiers, we evaluate the average
misclassification rate for 10 independent test sets of size 10 000. Table 2 reports the mean of the
average misclassification rates calculated from 100 training sets. Evidently, all penalized classi-
fiers perform as well as the optimal Bayes classifier. This agrees with results of Theorem 9 on the
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Table 2. Simulation results from penalized Bregman divergence estimates for binary classifica-
tion, with dependent predictors. n = 200, ρ = 0·2

Regression Variable selection Classification
Loss pn Method MRME CZ (SD) IZ (SD) MAMR

Deviance n/8 SCAD 0·2504 18·86 (4·37) 0·01 (0·10) 0·1153
L1 0·3774 11·31 (5·48) 0·00 (0·00) 0·1218
Weighted L1 0·2409 18·11 (2·26) 0·01 (0·10) 0·1160
Oracle 0·1164 21 0 0·1042

Exponential n/8 SCAD 0·2566 18·92 (4·13) 0·00 (0·00) 0·1162
L1 0·3356 12·28 (5·54) 0·00 (0·00) 0·1232
Weighted L1 0·2176 19·07 (1·66) 0·01 (0·10) 0·1175
Oracle 0·1276 21 0 0·1042

Deviance n/2 SCAD 0·0612 94·74 (2·32) 0·03 (0·17) 0·1166
L1 0·1148 76·39 (12·97) 0·00 (0·00) 0·1313
Weighted L1 0·0782 89·00 (6·38) 0·04 (0·19) 0·1235
Oracle 0·0240 96 0 0·1043

Exponential n/2 SCAD 0·0915 94·37 (2·91) 0·05 (0·21) 0·1209
L1 0·1141 76·05 (11·99) 0·00 (0·00) 0·1315
Weighted L1 0·0723 90·60 (4·70) 0·04 (0·19) 0·1222
Oracle 0·0310 96 0 0·1043

Deviance n − 10 SCAD 0·0230 185·09 (1·53) 0·02 (0·14) 0·1136
L1 0·0847 158·19 (17·26) 0·00 (0·00) 0·1401
Weighted L1 0·0539 176·51 (8·17) 0·03 (0·17) 0·1273
Oracle 0·0121 186 0 0·1044

Exponential n − 10 SCAD 0·0360 184·62 (2·20) 0·01 (0·10) 0·1170
L1 0·0746 161·15 (14·73) 0·00 (0·00) 0·1386
Weighted L1 0·0489 178·70 (5·91) 0·04 (0·19) 0·1271
Oracle 0·0150 186 0 0·1044

MAMR, mean of the average misclassification rates calculated from training sets.

asymptotic classification consistency. Furthermore, the choice of loss functions in the penalized
classifiers has an asymptotically relatively negligible impact on classification performance.

7. REAL DATA

The Arrhythmia dataset (Güvenir et al., 1997) consists of 452 patient records in the diagnosis
of cardiac arrhythmia. Each record contains 279 clinical measurements, from electrocardiography
signals and other information such as sex, age and weight, along with the decision of an expert
cardiologist. In the data, class 01 refers to normal electrocardiography, class 02–class 15 each
refers to a particular type of arrhythmia, and class 16 refers to the unclassified remainder.

We intend to predict whether a patient can be categorized as having normal electrocardiography
or not. After deleting missing values and class 16, the remaining 430 patients with 257 attributes
are used in the classification. To evaluate the performance of the penalized estimates of model
parameters in logit{pr(Y = 1 | X1, . . . , X257)} = b0 + ∑257

j=1 β j X j , we randomly split the data
into a training set and a test set in the ratio 2:1. For each training set, the tuning constant is
selected by minimizing a 3-fold crossvalidated estimate of the misclassification rate; λn and
κn for the penalized componentwise regression are found on a grid of points. We calculate the
mean of the misclassification rates and the average number of selected variables over 100 random
splittings. It is seen from Table 3 that the penalized classifier using the deviance loss and that using
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Table 3. Arrhythmia data: mean misclassification rate and the average num-
ber of selected variables

Loss Method MMR # Selected variables

Deviance Nonpenalized 0·4265 257·00
SCAD 0·2550 16·13
L1 0·2358 45·46
Weighted L1 0·2340 26·44

Exponential Nonpenalized 0·4323 257·00
SCAD 0·2666 15·83
L1 0·2397 43·79
Weighted L1 0·2366 18·77

MMR, mean of the misclassification rates.

the exponential loss have similar values of misclassification rates. In contrast, the nonpenalized
classifiers select all attributes, yielding much higher misclassification rates.
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APPENDIX

For a matrix M , its eigenvalues, minimum eigenvalue, maximum eigenvalue and trace are labelled by
λ j (M), λmin(M), λmax(M) and tr(M), respectively. Let ‖M‖ = sup‖x‖=1 ‖Mx‖ = {λmax(MT M)}1/2 be the
matrix L2 norm; let ‖M‖F = {tr(MT M)}1/2 be the Frobenius norm. See Golub & Van Loan (1996) for
details. Throughout the proof, C is used as a generic finite constant.

We first impose some regularity conditions, which are not the weakest possible.

Condition A consists of the following.

A1. Assume supn � 1 ‖β̃(I)
0 ‖1 < ∞ and ‖X‖∞ is bounded;

A2. the matrix E(X̃ X̃ T) exists and is nonsingular;
A3. assume E(Y 2) < ∞;
A4. there is a large enough open subset of R

pn+1, which contains the true parameter point β̃0, such that
F−1(X̃ Tβ̃) is bounded for all β̃ in the subset;

A5. the eigenvalues of the matrix −E(q (2){m(X )}/[F (1){m(X )}]2 X̃ X̃ T) are uniformly bounded away
from 0;

A6. the function q (4)(·) is continuous, and q (2)(·) < 0;
A7. the function F(·) is a bijection, F (3)(·) is continuous and F (1)(·) � 0; and finally
A8. assume Pλn (0) = 0. There are constants C and D such that when θ1 > Cλn and θ2 > Cλn ,

|P ′′
λn

(θ1) − P ′′
λn

(θ2)| � D|θ1 − θ2|.

Condition B: These are identical to Condition A except that A3 and A5 are replaced by B3 and B5:

 at U
niversity of W

isconsin-M
adison on A

ugust 9, 2010 
http://biom

et.oxfordjournals.org
D

ow
nloaded from

 

http://biomet.oxfordjournals.org


Penalized Bregman divergence 563

B3. there exists a constant C ∈ (0,∞) such that E{|Y − m(X )| j } � j!C j for all j � 3. Also,
infn � 1, 1 � j � pn E{var(Y | X )X2

j } > 0; and
B5. assume λ j (	n) and λ j (Hn) are uniformly bounded away from 0; ‖H−1

n 	n‖ is bounded away from
∞.

Condition C: These are identical to Condition B except that B4 is replaced by:

C4. there is an open subset of R
pn+1 which contains the true parameter point β̃0, such that F−1(X̃ Tβ̃)

is bounded for all β̃ in the subset. Moreover, the subset contains the origin.

Condition D: This is identical to Condition C except that C5 is replaced by:

D5. assume λ j (Hn) are uniformly bounded away from 0; ‖H−1/2
n 	1/2

n ‖ is bounded away from ∞.

Condition E is as follows.

E1. Assume min j=1,...,sn |E(X j Y )| � An and maxsn+1 � j � pn |E(X j Y )| = o(Bn) for some positive se-
quences An and Bn , where sn � tn , for two nonnegative sequences sn and tn , denotes that there
exists a constant c > 0 such that sn � c tn for all n � 1.

Proof of Theorem 1. Let rn = (pn/n)1/2 and ũ = (u0, u1, . . . , u pn )T ∈ R
pn+1. Similar to Fan & Peng

(2004), it suffices to show that for any given ε > 0, there is a large constant Cε such that, for large n,

pr

{
inf

‖̃u‖=Cε

�n(β̃0 + rnũ) > �n(β̃0)

}
� 1 − ε. (A1)

Define β̃L = β̃0 + rnũ. To show (A1), consider

Dn(ũ) = 1

n

n∑
i=1

[
Q

{
Yi , F−1

(
X̃ T

i β̃L

)} − Q
{

Yi , F−1
(

X̃ T
i β̃0

)}]
+

pn∑
j=1

{
Pλn (|β j ;0 + rnu j |) − Pλn (|β j ;0|)

} ≡ I1 + I2. (A2)

First, we consider I1. For μ = F−1(θ ), obtain q j (y; θ ) ( j = 1, 2, 3), from (7). By Taylor’s expansion,

I1 = I1,1 + I1,2 + I1,3, (A3)

where I1,1 = rn/n
∑n

i=1 q1(Yi ; X̃ T
i β̃0)X̃ T

i ũ, I1,2 = r2
n /(2n)

∑n
i=1 q2(Yi ; X̃ T

i β̃0)(X̃ T
i ũ)2 and I1,3 = r3

n /(6n)∑n
i=1 q3(Yi ; X̃ T

i β̃
∗)(X̃ T

i ũ)3 for β̃∗ located between β̃0 and β̃0 + rnũ. Hence |I1,1| � OP{rn(pn/n)1/2}‖ũ‖
and I1,2 = −(r2

n /2)ũT E(q (2){m(X )}/[F (1){m(X )}]2 X̃ X̃ T)ũ + OP (r2
n pn/n1/2)‖ũ‖2. Conditions A1 and A4

give |I1,3| � OP (r3
n p3/2

n )‖ũ‖3.
Next, we consider I2. By Taylor’s expansion, I2 � rn

∑sn
j=1 P ′

λn
(|β j ;0|)sign(β j ;0)u j + (r2

n /2)
∑sn

j=1

P (2)
λn

(|β∗
j |)u2

j ≡ I2,1 + I2,2, for β∗
j between β j ;0 and β j ;0 + rnu j . Thus, |I2,1| � rnan‖u(I)‖1 and |I2,2| �

r2
n bn‖u(I)‖2 + Dr3

n ‖u(I)‖3, where u(I) = (u1, . . . , usn )T. Since p4
n/n → 0, we can choose some large Cε

such that I1,1, I1,3, I2,1 and I2,2 are all dominated by I1,2, which is positive by Condition A5. This
implies (A1). �

Proof of Lemma 1. Analogous to the proof of Theorem 1, it suffices to show (A1). Note that
(A2) continues to hold with I2 = λn

∑pn
j=1 w j (|β j ;0 + rnu j | − |β j ;0|) and I1 is unchanged. Clearly,

I2 � − λnrn
∑sn

j=1 w j |u j | ≡ I2,1, in which |I2,1| � λnrnw
(I)
max‖u(I)‖1. The rest of the proof resembles that

of Theorem 1 and is omitted. �
Proof of Theorem 5. Write ũ = {ũ(I)T, u(II)T}T, where ũ(I) = (u0, u1, . . . , usn )T and u(II) = (usn+1, . . . ,

u pn )T. Following the proof of Lemma 1, it suffices to show (A1) for rn = (sn/n)1/2.
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For I1,1 in (A3), I1,1 = I (I)
1,1 + I (II)

1,1 according to ũ(I) and u(II). It follows that |I (I)
1,1| � rn OP{(sn/n)1/2}

‖ũ(I)‖2 and |I (II)
1,1 | � rn OP (1/n1/2)‖u(II)‖1.

For I1,2 in (A3), similar to the proof of Theorem 1, I1,2 = I1,2,1 + I1,2,2. Define di = q (2){m(Xi )}/
[F (1){m(Xi )}]2. This yields

I1,2,1 � − r2
n

2n

n∑
i=1

di

(
X (I)T

i ũ(I)
)2 − r2

n

n

n∑
i=1

di

(
X (I)T

i ũ(I)
)(

X (II)T

i u(II)
) = I (I)

1,2,1 − I (cross)
1,2,1 .

Then there exists a constant C > 0 such that I (I)
1,2,1 � Cr2

n {1 + oP (1)}‖ũ(I)‖2
2 and |I (cross)

1,2,1 | �
OP (r2

n s1/2
n )‖ũ(I)‖2 · ‖u(II)‖1. For I1,2,2, partitioning ũ into ũ(I) and u(II) gives

I1,2,2 ≡ I (I)
1,2,2 + I (cross)

1,2,2 + I (II)
1,2,2,

where |I (I)
1,2,2| � r2

n OP (sn/n1/2)‖ũ(I)‖2
2, |I (cross)

1,2,2 | � r2
n OP{(sn/n)1/2}‖ũ(I)‖2‖u(II)‖1 and |I (II)

1,2,2| �
r2

n OP (n−1/2)‖u(II)‖2
1.

For I1,3 in (A3), since sn pn = o(n), ‖β̃∗‖1 is bounded and thus |I1,3| � OP (r3
n )‖ũ(I)‖3

1 +
OP (r3

n )‖u(II)‖3
1 ≡ I (I)

1,3 + I (II)
1,3 , where |I (I)

1,3| � OP (r3
n sn

3/2)‖ũ(I)‖3
2 and |I (II)

1,3 | � OP (r3
n )‖u(II)‖3

1.

For I2 in (A2), I2 � I (I)
2,1 + I (II)

2,1 , where I (I)
2,1 = −λnrn

∑sn
j=1 w j |u j | and I (II)

2,1 = λnrn
∑pn

j=sn+1 w j |u j |.
Hence |I (I)

2,1| � λnrnw
(I)
maxs1/2

n ‖u(I)‖2 and I (II)
2,1 � λnrnw

(II)
min‖u(II)‖1.

It can be shown that either I (I)
1,2,1 or I (II)

2,1 dominates all other terms in groups, G1 = (I (I)
1,2,2, I (I)

1,3), G2 =
(I (II)

1,1 , I (II)
1,2,2, I (II)

1,3 , I (cross)
1,2,1 , I (cross)

1,2,2 ) and G3 = (I (I)
1,1, I (I)

2,1). Namely, I (I)
1,2,1 dominates G1, and I (II)

2,1 dominates G2.

For G3, if ‖u(II)‖1 � Cε/2, then G3 is dominated by I (I)
1,2,1, which is positive; if ‖u(II)‖1 > Cε/2, then G3 is

dominated by I (II)
2,1 , which is positive. �

Proof of Theorem 8. Minimizing (14) is equivalent to minimizing �PCR
n, j (α) = n−1

∑n
i=1 Q{Yi , F−1

(Xi jα)} + κn|α|, for j = 1, . . . , pn . The proof may be separated into two parts.

Part 1. To show ŵ(I)
max = OP{1/(λnn1/2)}, it suffices to show that for An = λnn1/2, there exist local

minimizers β̂PCR
j of �PCR

n, j (α) such that limδ→0 infn � 1 pr(min1 � j � sn |β̂PCR
j | > Anδ) = 1. It suffices to prove

that for j = 1, . . . , sn there exist some b j with |b j | = 2δ such that

lim
δ→0

inf
n � 1

pr

[
min

1 � j � sn

{
inf

|α| � δ
�PCR

n, j (Anα) − �PCR
n, j (Anb j )

}
> 0

]
= 1, (A4)

and there exists some large enough Cn > 0 such that

lim
δ→0

inf
n � 1

pr

[
min

1 � j � sn

{
inf

|α| � Cn

�PCR
n, j (Anα) − �PCR

n, j (Anb j )

}
> 0

]
= 1. (A5)

Note that (A5) holds, since for every n � 1, when |α| → ∞, min1 � j � sn {�PCR
n, j (Anα) − �PCR

n, j (Anb j )} �
κnAn|α| − max j=1,...,sn �PCR

n, j (Anb j ) → ∞ in probability. To prove (A4), note that |Anα| � Anδ =
O(1)δ → 0 as δ ↓ 0. By Taylor’s expansion,

min
j=1,...,sn

{
inf

|α|� δ
�PCR

n, j (Anα) − �PCR
n, j (Anb j )

}
�An min

j=1,...,sn

inf
|α| � δ

{
(α − b j )

1

n

n∑
i=1

q1(Yi ; 0)Xi j

}

+ A2
n

2
min

j=1,...,sn

inf
|α| � δ

{
α2 1

n

n∑
i=1

q2(Yi ; Xi jAnα
∗
j )X2

i j − b2
j

1

n

n∑
i=1

q2(Yi ; Xi jAnb∗
j )X2

i j

}
+An min

1 � j � sn

inf
|α|� δ

{κn(|α| − |b j |)}

≡ I1 + I2 + I3,
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with α∗
j between 0 and α and b∗

j between 0 and b j . Let μ0 = F−1(0) and C0 = q ′′(μ0)/F ′(μ0) � 0. Then

I1 = An min
j=1,...,sn

inf
|α| � δ

{C0(α − b j )E(Y X j )} + An min
j=1,...,sn

inf
|α| � δ

[
C0(α − b j )

1

n

n∑
i=1

{Yi Xi j − E(Y X j )}
]

−An max
1 � j � sn

sup
|α| � δ

{
C0μ0(α − b j )

1

n

n∑
i=1

Xi j

}
≡ I1,1 + I1,2 + I1,3.

We see that |I1,3| � OP [An{log(sn)/n}1/2]δ, by Bernstein’s inequality (Lemma 2.2.11 in
van der Vaart & Wellner 1996). Again |I1,2| = OP [An{log(sn)/n}1/2]δ by an argument similar to that
of Theorem 2. Choosing b j = −2δsign{C0 E(Y X j )}, which satisfies |b j | = 2δ, gives I1,1 � |C0|cA2

nδ. For
I2 and I3, we observe that |I2| � OP (A2

n)δ2 and |I3| = O(Anκn)δ. By the assumptions, we can choose a
small enough δ > 0 such that with probability tending to 1, I1,2, I1,3, I2 and I3 are dominated by I1,1,
which is positive. Thus (A4) is proved.

Part 2. To verify that ŵ(II)
minλn → ∞ in probability, it suffices to prove that for any ε > 0, there exist local

minimizers β̂PCR
j of �PCR

n, j (α) such that limn→∞ pr(maxsn+1 � j � pn |β̂PCR
j | � λnε) = 1. Similar to the proof of

Theorem 1, we will prove that for any ε > 0,

lim
n→∞ pr

[
min

j=sn+1,...,pn

{
inf

|α|=ε
�PCR

n, j (λnα) − �PCR
n, j (0)

}
> 0

]
= 1. (A6)

For j = 1, . . . , sn , by Taylor’s expansion,

min
j=sn+1,...,pn

{
inf

|α|=ε
�PCR

n, j (λnα) − �PCR
n, j (0)

}
� λn min

j=sn+1,...,pn

inf
|α|=ε

{
α

1

n

n∑
i=1

q1(Yi ; 0)Xi j

}

+ λ2
n

2
min

j=sn+1,...,pn

inf
|α|=ε

{
α2 1

n

n∑
i=1

q2(Yi ; Xi jλnα
∗
j )X2

i j

}
+ λn inf

|α|=ε
(κn|α|)

≡ I1 + I2 + I3,

where α∗
j is between 0 and α. Similar to the proof in Part 1, |I1| � OP [λn{log(pn − sn + 1)/n}1/2]ε +

o(λnBn)ε. Note that |I2| � OP (λ2
n)ε2 and I3 = λnκnε. By assumptions, with probability tending to 1, I1

and I2 are dominated by I3 > 0. So (A6) is proved. �

Proof of Theorem 9. We first need to show Lemma A1.

LEMMA A1. Suppose that (Xo, Y o) follows the distribution of (X, Y ) and is independent of the training
set Tn. If Q satisfies (3), then E[Q{Y o, m̂(Xo)}] = E[Q{Y o, m(Xo)}] + E[Q{m(Xo), m̂(Xo)}].

Proof . Let q be the generating function of Q. We deduce from Corollary 3, p. 223 of Chow &
Teicher (1988) that E{q(Y o) | Tn, Xo} = E{q(Y o) | Xo} and E[Y oq ′{m̂(Xo)} | Tn, Xo] = E(Y o | Xo)q ′

{m̂(Xo)} = m(Xo)q ′{m̂(Xo)}. �

We now show Theorem 9. Setting Q in Lemma A1 to be the misclassification loss gives

1/2[E{R(φ̂)} − R(φB)] � E[|m(Xo) − 0·5|I {m(Xo) � 0·5, m̂(Xo) > 0·5}]
+ E[|m(Xo) − 0·5|I {m(Xo) > 0·5, m̂(Xo) � 0·5}]

≡ I1 + I2.

For any ε > 0, I1 � pr{|m̂(Xo) − m(Xo)| > ε} + ε and I2 � ε + pr{|m̂(Xo) − m(Xo)| � ε}. The proof
completes by showing I1 → 0 and I2 → 0. �
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Proof of Theorem 1

We follow the idea of the proof in Fan and Peng (2004). Let rn =
√

pn/n and ũ =

(u0, u1, . . . , upn)T ∈ R
pn+1. It suffices to show that for any given ǫ > 0, there is a sufficiently

large constant Cǫ such that, for large n we have

P
{

inf
‖ũ‖=Cǫ

ℓn(β̃0 + rnũ) > ℓn(β̃0)
}
≥ 1 − ǫ. (A.1)

This implies that with probability at least 1 − ǫ, there exists a local minimizer
̂̃
β of ℓn(β̃)

in the ball {β̃0 + rnũ : ‖ũ‖ ≤ Cǫ} such that ‖̂̃
β − β̃0‖ = OP (rn). To show (A.1), consider

Dn(ũ) =
1

n

n∑
i=1

{Q(Yi, F
−1(X̃T

i (β̃0 + rnũ))) − Q(Yi, F
−1(X̃T

i β̃0))}

+

pn∑
j=1

{Pλn(|βj;0 + rnuj|) − Pλn(|βj;0|)}

≡ I1 + I2, (A.2)

where ‖ũ‖ = Cǫ.

First, we consider I1. Recall (2.5). Then for µ = F−1(θ),

q1(y; θ) = (y − µ)q(2)(µ)/F (1)(µ),

q2(y; θ) = −q(2)(µ)/{F (1)(µ)}2 + (y − µ)A1(µ), (A.3)

q3(y; θ) ≡ A2(µ) + (y − µ)A3(µ),

where A1(µ) = {q(3)F (1) − q(2)F (2)}/{F (1)}3(µ), A2(µ) = {−2q(3)F (1)+3q(2)F (2)}/{F (1)}4(µ)

and A3(µ) = [q(4){F (1)}2 − 3q(3)F (1)F (2) − q(2)F (1)F (3) + 3q(2){F (2)}2]/{F (1)}5(µ). By Tay-

lor’s expansion,

I1 = I1,1 + I1,2 + I1,3, (A.4)

where

I1,1 =
rn

n

n∑
i=1

q1(Yi; X̃
T
i β̃0)X̃

T
i ũ,

I1,2 =
r2
n

2n

n∑
i=1

q2(Yi; X̃
T
i β̃0)(X̃

T
i ũ)2,

I1,3 =
r3
n

6n

n∑
i=1

q3(Yi; X̃
T
i β̃

∗
)(X̃T

i ũ)3

for β̃
∗

located between β̃0 and β̃0 + rnũ. Hence

|I1,1| ≤ rn

∥∥∥∥1

n

n∑
i=1

q1(Yi; X̃
T
i β̃0)X̃i

∥∥∥∥‖ũ‖ = OP (rn

√
pn/n)‖ũ‖. (A.5)

21



For I1,2 in (A.4), equation (A.3) gives that

I1,2 = − r2
n

2n

n∑
i=1

q(2)(m(Xi))

{F (1)(m(Xi))}2
(X̃T

i ũ)2 +
r2
n

2n

n∑
i=1

{Yi − m(Xi)}A1(m(Xi))(X̃
T
i ũ)2

≡ I1,2,1 + I1,2,2.

Note that∥∥∥∥1

n

n∑
i=1

q(2)(m(Xi))

{F (1)(m(Xi))}2
X̃iX̃

T
i − E

[
q(2)(m(X))

{F (1)(m(X))}2
X̃X̃T

]∥∥∥∥
F

= OP (pn/
√

n).

Thus

I1,2,1 = −r2
n

2
ũT E

[
q(2)(m(X))

{F (1)(m(X))}2
X̃X̃T

]
ũ + r2

nOP (pn/
√

n)‖ũ‖2,

Meanwhile, we have

|I1,2,2| ≤ r2
n

∥∥∥∥1

n

n∑
i=1

{Yi − m(Xi)}A1(m(Xi))X̃iX̃
T
i

∥∥∥∥
F

‖ũ‖2 = r2
nOP (pn/

√
n)‖ũ‖2.

Thus,

I1,2 = −r2
n

2
ũT E

[
q(2)(m(X))

{F (1)(m(X))}2
X̃X̃T

]
ũ + OP (r2

npn/
√

n)‖ũ‖2.

For I1,3 in (A.4), we observe that

|I1,3| ≤ r3
n

1

n

n∑
i=1

|q3(Yi; X̃
T
i β̃

∗
)||X̃T

i ũ|3 = OP (r3
np3/2

n )‖ũ‖3,

which follows from Conditions A1 and A4.

Next, we consider I2 in (A.2). By Taylor’s expansion, we have

I2 ≥
sn∑

j=1

{Pλn(|βj;0 + rnuj|) − Pλn(|βj;0|)}

= rn

sn∑
j=1

P ′
λn

(|βj;0|)sign(βj;0)uj +
r2
n

2

sn∑
j=1

P
(2)
λn

(|β∗
j |)u2

j

≡ I2,1 + I2,2,

where β∗
j is between βj;0 and βj;0 + rnuj. Thus, we have

|I2,1| ≤ rn

∣∣∣∣ sn∑
j=1

P ′
λn

(|βj;0|)uj

∣∣∣∣ ≤ rnan‖u(I)‖1,

|I2,2| ≤ r2
nbn‖u(I)‖2 + Dr3

n‖u(I)‖3. (A.6)

where u(I) = (u1, . . . , usn)T . By (A.5)–(A.6) and p4
n/n → 0, we can choose some large Cǫ

such that I1,1, I1,3, I2,1 and I2,2 are all dominated by I1,2, which is positive by Condition

A5. This implies (A.1).

Proof of Theorem 2

We first need to show Lemma 2.
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Lemma 2 Assume Condition B in the Appendix. If p2
n/n = O(1), (pn/

√
n)/λn → 0 and

lim inf
n→∞

lim inf
θ→0+

P ′
λn

(θ)/λn > 0, then for any given β̃
(I)

satisfying ‖β̃(I) − β̃
(I)

0 ‖ = OP (
√

pn/n)

and any constant C > 0, it follows that with probability tending to 1, ℓn(β̃
(I)

, 0) = min
‖β(II)‖≤C

√
pn/n

ℓn(β̃
(I)

,

Proof : It suffices to prove that for any β̃
(I)

satisfying ‖β̃(I)− β̃
(I)

0 ‖ = OP (
√

pn/n), with

probability tending to 1, the inequalities hold for all j ∈ {sn + 1, . . . , pn},

∂ℓn(β̃)

∂βj
< 0 for βj < 0, and

∂ℓn(β̃)

∂βj
> 0 for βj > 0,

namely, with probability tending to 1,

max
sn+1≤j≤pn

sup
‖β̃−β̃0‖=OP (

√
pn/n); βj<0

∂ℓn(β̃)

∂βj
< 0, (A.7)

min
sn+1≤j≤pn

inf
‖β̃−β̃0‖=OP (

√
pn/n); βj>0

∂ℓn(β̃)

∂βj

> 0.

We only need to show (A.7). Note that

∂ℓn(β̃)

∂βj

=
1

n

n∑
i=1

q1(Yi; X̃
T
i β̃)Xij + P ′

λn
(|βj|)sign(βj)

=
1

n

n∑
i=1

q1(Yi; X̃
T
i β̃0)Xij +

1

n

n∑
i=1

q2(Yi; X̃
T
i β̃

∗
){X̃T

i (β̃ − β̃0)}Xij

+P ′
λn

(|βj|)sign(βj),

where β̃
∗

lies between β̃0 and β̃. It follows that

max
sn+1≤j≤pn

sup
‖β̃−β̃0‖=OP (

√
pn/n); βj<0

∂ℓn(β̃)

∂βj

≤ max
sn+1≤j≤pn

1

n

n∑
i=1

q1(Yi; X̃
T
i β̃0)Xij

+ max
sn+1≤j≤pn

sup
‖β̃−β̃0‖=OP (

√
pn/n)

1

n

n∑
i=1

q2(Yi; X̃
T
i β̃

∗
){X̃T

i (β̃ − β̃0)}Xij

− min
sn+1≤j≤pn

inf
‖β̃−β̃0‖=OP (

√
pn/n)

P ′
λn

(|βj|)

≡ I1 + I2 − min
sn+1≤j≤pn

inf
‖β̃−β̃0‖=OP (

√
pn/n)

P ′
λn

(|βj|).

The first term I1 satisfies that

|I1| ≤ OP ({log(pn − sn + 1)/n}1/2). (A.8)

For I2,

|I2| ≤ OP (pn/
√

n). (A.9)
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Thus, by (A.8) and (A.9), the left hand side of (A.7) is

≤ OP (pn/
√

n) − min
sn+1≤j≤pn

inf
‖β̃−β̃0‖=OP (

√
pn/n)

P ′
λn

(|βj|)

≤ λn

[
OP

(pn/
√

n

λn

)
− min

sn+1≤j≤pn

inf
‖β̃−β̃0‖=OP (

√
pn/n)

{P ′
λn

(|βj|)/λn}
]
.

By (pn/
√

n)/λn → 0 and lim inf
n→∞

lim inf
θ→0+

P ′
λn

(θ)/λn > 0, (A.7) is proved. �
We now show Theorem 2. By Lemma 2, the first part of Theorem 2 holds that̂̃

β = (
̂̃
β

(I)

, 0T )T . To verify the second part of Theorem 2, notice the estimating equa-

tions (∂/∂β̃
(I)

)ℓn(β̃
(I)

, 0)|
β̃

(I)
=

̂̃
β

(I) = 0, since
̂̃
β

(I)

is a local minimizer of ℓn(β̃
(I)

, 0). Denote

dn(β̃
(I)

n ) = (0, P ′
λn

(|β1|)sign(β1), . . . , P
′
λn

(|βsn|)sign(βsn))T and Σn(β̃
(I)

n ) = diag{0, P ′′
λn

(|β1|), . . . , P ′′
λn

(|βsn|)}
which are equal to dn and Σn when β̃

(I)

n = β̃
(I)

0 . Taylor’s expansion applied to the left side

of the estimating equations yields

0 ≡
{

1

n

n∑
i=1

q1(Yi; X̃
(I)T
i β̃

(I)

0 )X̃
(I)
i + dn

}
+ K2(

̂̃
β

(I)

− β̃
(I)

0 ) + K3, (A.10)

where both β̃
∗(I)

and β̃
∗∗(I)

lie between β̃
(I)

0 and
̂̃
β

(I)

. Below, we will show

‖K2 − (Hn + Σn)‖ = OP (pn/
√

n), (A.11)

‖K3‖ = OP (p5/2
n /n). (A.12)

First, to show (A.11), note that K2 − (Hn + Σn) ≡ L1 + L2, where

L1 = −
(

1

n

n∑
i=1

q(2)(m(Xi))

{F (1)(m(Xi))}2
X̃

(I)T
i X̃

(I)T
i − E

[
q(2)(m(X))

{F (1)(m(X))}2
X̃(I)X̃(I)T

])
+

1

n

n∑
i=1

{Yi − m(Xi)}A1(m(Xi))X̃
(I)
i X̃

(I)T
i

≡ L1,1 + L1,2,

L2 = diag{0, P ′′
λn

(|β∗∗
1 |) − P ′′

λn
(|β1;0|), . . . , P ′′

λn
(|β∗∗

sn
|) − P ′′

λn
(|βsn;0|)}.

Similar arguments for the proof of Theorem 1 give ‖L1,1‖ = OP (sn/
√

n) and ‖L1,2‖ =

OP (sn/
√

n). Thus ‖L1‖ = OP (sn/
√

n). For the term L2, by the assumptions min1≤j≤sn |βj;0|/λn →
∞ and

√
pn/n/λn → 0, and the fact ‖β̃∗∗(I)−β̃

(I)

0 ‖ = OP (
√

pn/n), we have that min1≤j≤sn |β∗∗
j |/λn →

∞ with probability tending to 1, and consequently, by Condition A8, ‖L2‖ = OP (
√

pn/n).

Second, a similar proof used for I1,3 in (A.4) completes (A.12).

Third, by (A.10)–(A.12) and ‖̂̃
β − β̃0‖ = OP (

√
pn/n), we see that

(Hn + Σn)(
̂̃
β

(I)

− β̃
(I)

0 ) + dn = −1

n

n∑
i=1

q1(Yi; X̃
(I)T
i β̃

(I)

0 )X̃
(I)
i + u, (A.13)
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where ‖u‖ = OP (p
5/2
n /n). By Condition B5,

‖
√

nAnΩ−1/2
n u‖ ≤

√
n‖An‖Fλmax(Ω

−1/2
n )‖u‖

=
√

n{tr(AnAT
n )}1/2/λ

1/2
min(Ωn)‖u‖ = OP (p5/2

n /
√

n) = oP (1).

Thus

√
nAnΩ−1/2

n {(Hn + Σn)(
̂̃
β

(I)

− β̃
(I)

0 ) +dn} = − 1√
n

AnΩ−1/2
n

n∑
i=1

q1(Yi; X̃
(I)T
i β̃

(I)

0 )X̃
(I)
i + oP (1).

To complete proving the second part of Theorem 2, we apply the Lindeberg-Feller central

limit theorem (van der Vaart, 1998) to
∑n

i=1 Zi, where Zi = −n−1/2AnΩ
−1/2
n q1(Yi; X̃

(I)T
i β̃

(I)

0 )X̃
(I)
i .

It suffices to check that (I)
∑n

i=1 cov(Zi) → G and (II)
∑n

i=1 E(‖Zi‖2+δ) = o(1) for some

δ > 0. Condition (I) follows from var{q1(Y ; X̃(I)T β̃
(I)

0 )X̃(I)} = Ωn. To verify condition (II),

notice that

E(‖Zn‖2+δ) ≤ n−(2+δ)/2E

{
‖An‖2+δ

F

[
‖Ω−1/2

n X̃(I)‖
∣∣∣∣ q(2)(m(X))

F (1)(m(X))
{Y − m(X)}

∣∣∣∣]2+δ}
≤ 2Cs(2+δ)/2

n n−(2+δ)/2[E(|Y |2+δ) + E{|m(X)|2+δ}]
≤ O{(sn/n)(2+δ)/2}.

Thus, we get
∑n

i=1 E(‖Zi‖2+δ) ≤ O{n(sn/n)(2+δ)/2} = O{s(2+δ)/2
n /nδ/2}, which is o(1) by

Condition B3. This verifies Condition (II).

Proof of Proposition 1

Note ‖An(V̂n − Vn)AT
n‖ ≤ ‖V̂n − Vn‖‖An‖2

F . Since ‖An‖2
F → tr(G), it suffices to prove

that ‖V̂n − Vn‖ = oP (1). Define Sn = Hn + Σn and Ŝn = Ĥn + Σ̂n.

First, we prove ‖Ŝn − Sn‖ = oP (1). Note that

Ŝn − Sn =
1

n

n∑
i=1

q2(Yi; X̃
(I)T
i

̂̃
β

(I)

)X̃
(I)
i X̃

(I)T
i + Σn(

̂̃
β

(I)

) − Hn − Σn(β̃
(I)

0 )

=
1

n

n∑
i=1

{q2(Yi; X̃
(I)T
i

̂̃
β

(I)

) − q2(Yi; X̃
(I)T
i β̃

(I)

0 )}X̃(I)
i X̃

(I)T
i

+

{
1

n

n∑
i=1

q2(Yi; X̃
(I)T
i β̃

(I)

0 )X̃
(I)
i X̃

(I)T
i −Hn + Σn(

̂̃
β

(I)

) − Σn(β̃
(I)

0 )

}
≡ I1 + I2.

From the proof of (A.11) in Theorem 2, we know that ‖I2‖ = OP (pn/
√

n) = oP (1). We

only need to consider the term I1,

I1 = −1

n

n∑
i=1

[
q(2)(m̂(Xi))

{F (1)(m̂(Xi))}2
− q(2)(m(Xi))

{F (1)(m(Xi))}2

]
X̃

(I)
i X̃

(I)T
i

+
1

n

n∑
i=1

[{Yi − m̂(Xi)}A1(m̂(Xi)) − {Yi − m(Xi)}A1(m(Xi))]X̃
(I)
i X̃

(I)T
i
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≡ I1,1 + I1,2.

Let g(·) = q(2)(·)/{F (1)(·)}2. By the assumptions, g(·) is differentiable. Thus

1

n

n∑
i=1

|g(m̂(Xi)) − g(m(Xi))|

=
1

n

n∑
i=1

∣∣∣(g ◦ F−1)′(X̃
(I)T
i β̃

∗(I)
)X

(I)T
i (

̂̃
β

(I)

− β̃
(I)

0 )
∣∣∣ = OP (pn/

√
n),

where β̃
∗(I)

is between
̂̃
β

(I)

and β̃
(I)

0 . Thus

‖I1,1‖ ≤
∥∥∥∥1

n

n∑
i=1

|g(m̂(Xi)) − g(m(Xi))|X̃(I)
i X̃

(I)T
i

∥∥∥∥
F

= OP (p2
n/
√

n).

Similar arguments give ‖I1,2‖ = OP (p2
n/
√

n). Thus ‖I1‖ = OP (p2
n/
√

n) = oP (1).

Second, we show ‖Ω̂n − Ωn‖ = oP (1). Define T1 = 1
n

∑n
i=1 q2

1(Yi; X̃
(I)T
i

̂̃
β

(I)

)X̃
(I)
i X̃

(I)T
i .

Then Ω̂n = T1. It is easy to see that

T1 =
1

n

n∑
i=1

{q2
1(Yi; X̃

(I)T
i

̂̃
β

(I)

) − q2
1(Yi; X̃

(I)T
i β̃

(I)

0 )}X̃(I)
i X̃

(I)T
i

+
1

n

n∑
i=1

q2
1(Yi; X̃

(I)T
i β̃

(I)

0 )X̃
(I)
i X̃

(I)T
i

= ∆1,1 + (Ωn + ∆1,2),

where ‖∆1,1‖ = OP (p2
n/
√

n) and ‖∆1,2‖ = OP (sn/
√

n). We observe that ‖Ω̂n − Ωn‖ =

OP (p2
n/
√

n) = oP (1).

Third, we show ‖V̂n − Vn‖ = oP (1). We notice the equation similar to that in the

proof of Fan and Peng (2004), V̂n − Vn = L1 + L2 + L3, where L1 = Ŝ−1
n (Ω̂n − Ωn)Ŝ−1

n ,

L2 = Ŝ−1
n (Sn − Ŝn)S−1

n ΩnŜ−1
n and L3 = S−1

n ΩnŜ−1
n (Sn − Ŝn)S−1

n . By Assumption B5, it is

straightforward to verify that ‖S−1
n ‖ ≤ O(1), ‖Ŝ−1

n ‖ ≤ OP (1) and ‖S−1
n Ωn‖ ≤ O(1). Since

‖L1‖ ≤ ‖Ŝ−1
n ‖‖Ω̂n − Ωn‖‖Ŝ−1

n ‖, we conclude ‖L1‖ = oP (1). Similar arguments lead to

‖L2‖ = oP (1) and ‖L3‖ = oP (1). Hence ‖V̂n − Vn‖ = oP (1).

Proof of Theorem 3

Before showing Theorem 3, Lemma 3 is needed.

Lemma 3 Assume conditions of Theorem 3. Then

̂̃
β

(I)

− β̃
(I)

0 = −1

n
H−1

n

n∑
i=1

q1(Yi; X̃
(I)T
i β̃

(I)

0 )X̃
(I)
i + oP (n−1/2),

√
n(AnĤ

−1
n Ω̂nĤ

−1
n AT

n )−1/2An(
̂̃
β

(I)

− β̃
(I)

0 )
L−→ N(0, Ik).
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Proof : Following (A.13) in the proof of Theorem 2, we observe that ‖u‖ = OP (p
5/2
n /n) =

oP (n−1/2). Furthermore, ‖dn‖ = OP (
√

snan) = oP (n−1/2) and ‖Σn × (
̂̃
β

(I)

− β̃
(I)

0 )‖ ≤

bn‖̂̃
β

(I)

− β̃
(I)

0 ‖ = OP (bn

√
pn/n) = oP (n−1/2). Condition B5 completes the proof for the

first part.

To show the second part, denote Un = AnH
−1
n ΩnH

−1
n AT

n and Ûn = AnĤ
−1
n Ω̂nĤ

−1
n AT

n .

Notice that the eigenvalues of H−1
n ΩnH

−1
n are uniformly bounded away from 0. So are the

eigenvalues of Un. From the first part, we see that

An(
̂̃
β

(I)

− β̃
(I)

0 ) = −1

n
AnH

−1
n

n∑
i=1

q1(Yi; X̃
(I)T
i β̃

(I)

0 )X̃
(I)
i + oP (n−1/2).

It follows that
√

nU
−1/2
n An(

̂̃
β

(I)

−β̃
(I)

0 ) =
∑n

i=1 Zi+oP (1), where Zi = −n−1/2U
−1/2
n AnH

−1
n q1(Yi; X̃

(I)T
i β̃

(I)

0 )X̃

To show
∑n

i=1 Zi
L−→ N(0, Ik), similar to the proof for Theorem 2, we check (III)

∑n
i=1 cov(Zi) →

Ik and (IV)
∑n

i=1 E(‖Zi‖2+δ) = o(1) for some δ > 0. Condition (III) is straightforward since∑n
i=1 cov(Zi) = U

−1/2
n UnU

−1/2
n = Ik. To check condition (IV), similar arguments used in

the proof of Theorem 2 give that E(‖Zn‖2+δ) = O{(sn/n)(2+δ)/2}. This and Condition B3

yield
∑n

i=1 E(‖Zi‖2+δ) ≤ O{s(2+δ)/2
n /nδ/2} = o(1). Hence

√
nU−1/2

n An(
̂̃
β

(I)

− β̃
(I)

0 )
L−→ N(0, Ik). (A.14)

From the proof of Proposition 1, it can be concluded that ‖Ûn −Un‖ = oP (1) and that the

eigenvalues of Ûn are uniformly bounded away from 0 and ∞ with probability tending to

one. Consequently,

‖Û−1/2
n U1/2

n − Ik‖ = oP (1). (A.15)

Combining (A.14), (A.15) and Slutsky’s theorem completes the proof that
√

nÛ
−1/2
n An(

̂̃
β

(I)

−
β̃

(I)

0 )
L−→ N(0, Ik). �

We now show Theorem 3, which follows directly from H0 in (3.2) and the second part

of Lemma 3.

Proof of Theorem 4

For the matrix An in (3.2), there exists a (sn + 1 − k) × (sn + 1) matrix Bn satisfying

BnBT
n = Isn+1−k and AnBT

n = 0. Thus, Anβ̃
(I)

= 0 is equivalent to β̃
(I)

= BT
n γn, where γn

is a (sn +1−k)×1 vector. Thus under H0 in (3.2), we have β̃
(I)

0 = BT
n γ0. Then minimizing

ℓn(β̃) subject to Anβ̃
(I)

= 0 is equivalent to minimizing ℓn(BT
n γn, 0) with respect to γn,

and we denote by γ̂n the minimizer. Under (2.6),
̂̃
β is the unique minimizer of ℓn(β̃).

Hence Λn = 2n{ℓn(B
T
n γ̂n, 0)− ℓn(

̂̃
β

(I)

, 0)}. Before showing Theorem 4, we need Lemma 4.
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Lemma 4 Assume conditions of Theorem 4. Then under the null hypothesis H0 in (3.2),

we have that

BT
n (γ̂n − γ0) = −1

n
BT

n (BnHnBT
n )−1Bn

n∑
i=1

q1(Yi; X̃
(I)T
i β̃

(I)

0 )X̃
(I)
i + oP (n−1/2),

and

2n{ℓn(B
T
n γ̂n, 0) − ℓn(

̂̃
β

(I)

, 0)} = n(BT
n γ̂n − ̂̃

β
(I)

)THn(B
T
n γ̂n − ̂̃

β
(I)

) + oP (1).

Proof : To obtain the first part, following the proof of (A.13) in Theorem 2, we have a

similar expression for γ̂n,

Bn(Hn + Σn)BT
n (γ̂n − γ0) + Bndn = −1

n
Bn

n∑
i=1

q1(Yi; (BnX̃
(I)
i )T γ0)X̃

(I)
i + vn,

where ‖vn‖ = OP (p
5/2
n /n) = oP (n−1/2). Moreover,

‖Bndn‖ ≤ ‖Bn‖‖dn‖ = OP (
√

snan) = oP (n−1/2);

the fact that ‖BnΣnBT
n ‖ ≤ ‖Σn‖ leads to

‖BnΣnBT
n (γ̂n − γ0)‖ ≤ ‖Σn‖‖γ̂n − γ0‖ = OP (bn

√
pn/n) = oP (n−1/2).

Thus, under H0,

BnHnBT
n (γ̂n − γ0) = −1

n
Bn

n∑
i=1

q1(Yi; X̃
(I)T
i β̃

(I)

0 )X̃
(I)
i + wn,

with ‖wn‖ = oP (n−1/2). As a result,

BT
n (γ̂n − γ0) = −1

n
BT

n (BnHnB
T
n )−1Bn

n∑
i=1

q1(Yi; X̃
(I)T
i β̃

(I)

0 )X̃
(I)
i + BT

n (BnHnBT
n )−1wn.

We notice that

‖BT
n (BnHnBT

n )−1wn‖ ≤ ‖(BnHnBT
n )−1‖‖wn‖ ≤ ‖wn‖/λmin(Hn) = oP (n−1/2),

in which the fact λmin(BnHnBT
n ) ≥ λmin(Hn) is used.

The proof of the second part proceed in three steps. In Step 1, we use the Taylor

expansion for ℓn(BT
n γ̂n, 0) − ℓn(

̂̃
β

(I)

, 0),

ℓn(BT
n γ̂n, 0) − ℓn(

̂̃
β

(I)

, 0) =
1

2n

n∑
i=1

q2(Yi; X̃
(I)T
i

̂̃
β

(I)

){X̃(I)T
i (BT

n γ̂n − ̂̃
β

(I)

)}2
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+
1

6n

n∑
i=1

q3(Yi; X̃
(I)T
i β̃

∗(I)
){X̃(I)T

i (BT
n γ̂n − ̂̃

β
(I)

)}3

+
1

2
(BT

n γ̂n − ̂̃
β

(I)

)T{Σn(β̃
∗∗(II)

)}(BT
n γ̂n − ̂̃

β
(I)

)

≡ I1 + I2 + I3,

where both β̃
∗(I)

and β̃
∗∗(I)

lie between
̂̃
β

(I)

and BT
n γ̂n.

In Step 2, we analyze the stochastic order of BT
n γ̂n−

̂̃
β

(I)

. For a matrix X whose column

vectors are linearly independent, set PX = X(XTX)−1XT . Define Hn = Isn+1 − P
H

1/2
n BT

n
.

Then H−1
n − BT

n (BnHnB
T
n )−1Bn = H

−1/2
n HnH

−1/2
n . By Lemma 3 and the first part of

Lemma 4, we see immediately that

BT
n γ̂n − ̂̃

β
(I)

= H−1/2
n HnH

−1/2
n

(
1

n

n∑
i=1

q1,iX̃
(I)
i

)
+ oP (n−1/2), (A.16)

where q1,i = q1(Yi; X̃
(I)T
i β̃

(I)

0 ). Note that ‖H−1/2
n HnH

−1/2
n (n−1

∑n
i=1 q1,iX̃

(I)
i )‖ = OP (1/

√
n).

This gives

‖BT
n γ̂n − ̂̃

β
(I)

‖ = OP (1/
√

n). (A.17)

In Step 3, we conclude from (A.17) that I2 = OP{(pn/n)3/2} = oP (1/n) and I3 =

oP (1)OP (n−1) = oP (1/n). Then 2n{ℓn(BT
n γ̂n, 0) − ℓn(β̂

(I)
, 0)} = 2nI1 + oP (1). Similar to

the proof of Proposition 1, it is straightforward to see that

2nI1 = n(BT
n γ̂n − ̂̃

β
(I)

)T

{
1

n

n∑
i=1

q2(Yi; X̃
(I)T
i

̂̃
β

(I)

)X̃
(I)
i X̃

(I)T
i

}
(BT

n γ̂n − ̂̃
β

(I)

)

= n(BT
n γ̂n − ̂̃

β
(I)

)T

{
1

n

n∑
i=1

q2(Yi; X̃
(I)T
i β̃

(I)

0 )X̃
(I)
i X̃

(I)T
i

}
(BT

n γ̂n − ̂̃
β

(I)

) + oP (1)

= n(BT
n γ̂n − ̂̃

β
(I)

)T E{q2(Y ; X̃(I)T β̃
(I)

0 )X̃(I)X̃(I)T }(BT
n γ̂n − ̂̃

β
(I)

) + oP (1)

= n(BT
n γ̂n − ̂̃

β
(I)

)THn(BT
n γ̂n − ̂̃

β
(I)

) + oP (1).

Then the second part of Lemma 4 is proved. �
We now show Theorem 4. A direct use of Lemma 4 and (A.16) leads to

2n{ℓn(B
T
n γ̂n, 0) − ℓn(

̂̃
β

(I)

, 0)}

=

(
1√
n
H−1/2

n

n∑
i=1

q1,iX̃
(I)
i

)T

Hn

(
1√
n
H−1/2

n

n∑
i=1

q1,iX̃
(I)
i

)
+ oP (1).

Since Hn is idempotent of rank k, it can be written as Hn = CT
n Cn, where Cn is a k×(sn+1)

matrix satisfying CnC
T
n = Ik. Then

2n{ℓn(BT
n γ̂n, 0) − ℓn(

̂̃
β

(I)

, 0)}
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=

(
1√
n

CnH
−1/2
n

n∑
i=1

q1,iX̃
(I)
i

)T (
1√
n

CnH
−1/2
n

n∑
i=1

q1,iX̃
(I)
i

)
+ oP (1).

When the generalized Bartlett identity (3.3) holds for the q-function, we have Hn = Ωn/c.

In this case, similar arguments for Theorem 2 yields

1√
n

CnH
−1/2
n

n∑
i=1

q1(Yi; X̃
(I)T
i β̃

(I)

0 )X̃
(I)
i

L−→ N(0, cIk),

which completes the proof.

Proof of Lemma 1

Analogous to the proof of Theorem 1, it suffices to show (A.1). Note that (A.2) continues

to hold with the terms I2 = λn

∑pn

j=1 wj(|βj;0 + rnuj| − |βj;0|) and I1 unchanged. Clearly,

I2 ≥ −λnrn

∑sn

j=1 wj |uj| ≡ I2,1, in which |I2,1| ≤ λnrnw
(I)
max‖u(I)‖1. The rest of the proof

resembles that of Theorem 1 and is omitted.

Proof of Theorem 5

Write ũ = (ũ(I)T ,u(II)T )T , where ũ(I) = (u0, u1, . . . , usn)T and u(II) = (usn+1, . . . , upn)T .

Following the proof of Lemma 1, it suffices to show (A.1) for rn =
√

sn/n.

For I1,1 in (A.4),

I1,1 =
rn

n

n∑
i=1

q1(Yi; X̃
T
i β̃0)X̃

(I)T
i ũ(I) +

rn

n

n∑
i=1

q1(Yi; X̃
T
i β̃0)X

(II)T
i u(II) ≡ I

(I)
1,1 + I

(II)
1,1 .

It follows that

|I(I)
1,1| ≤ rnOP (

√
sn/n)‖ũ(I)‖2, |I(II)

1,1 | ≤ rnOP (1/
√

n)‖u(II)‖1.

For I1,2 in (A.4), similar to the proof of Theorem 1, I1,2 = I1,2,1 + I1,2,2. Define di =

q(2)(m(Xi))/{F (1)(m(Xi))}2. This yields

I1,2,1 ≥ − r2
n

2n

n∑
i=1

di{X(I)T
i ũ(I)}2 − r2

n

n

n∑
i=1

di{X(I)T
i ũ(I)}{X(II)T

i u(II)} = I
(I)
1,2,1 − I

(cross)
1,2,1 .

Then there exists a constant C > 0 such that

I
(I)
1,2,1 ≥ Cr2

n{1 + oP (1)}‖ũ(I)‖2
2,

|I(cross)
1,2,1 | ≤ OP (r2

n

√
sn)‖ũ(I)‖2 · ‖u(II)‖1.

For I1,2,2,

I1,2,2 =
r2
n

2n

n∑
i=1

{Yi − m(Xi)}A1(m(Xi))[{X(I)T
i ũ(I)}2 + 2{X(I)T

i ũ(I)}{X(II)T
i u(II)} + {X(II)T

i u(II)}2]

≡ I
(I)
1,2,2 + I

(cross)
1,2,2 + I

(II)
1,2,2,
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where

|I(I)
1,2,2| ≤ r2

nOP (sn/
√

n)‖ũ(I)‖2
2,

|I(cross)
1,2,2 | ≤ r2

nOP (
√

sn/n)‖ũ(I)‖2‖u(II)‖1,

|I(II)
1,2,2| ≤ r2

nOP (1/
√

n)‖u(II)‖2
1.

For I1,3 in (A.4), since snpn = o(n), ‖β̃∗‖1 is bounded and thus

|I1,3| ≤ OP (r3
n)‖ũ(I)‖3

1 + OP (r3
n)‖u(II)‖3

1 ≡ I
(I)
1,3 + I

(II)
1,3 ,

where

|I(I)
1,3| ≤ OP (r3

nsn
3/2)‖ũ(I)‖3

2, |I(II)
1,3 | ≤ OP (r3

n)‖u(II)‖3
1.

For I2 in (A.2), I2 ≥ I
(I)
2,1+I

(II)
2,1 , where I

(I)
2,1 = −λnrn

∑sn

j=1 wj|uj| and I
(II)
2,1 = λnrn

∑pn

j=sn+1 wj|uj|.
Thus, we have

|I(I)
2,1| ≤ λnrnw(I)

max

√
sn‖u(I)‖2, I

(II)
2,1 ≥ λnrnw

(II)
min‖u(II)‖1.

It can be shown that either I
(I)
1,2,1 or I

(II)
2,1 dominates all other terms in groups, G1 =

{I(I)
1,2,2, I

(I)
1,3}, G2 = {I(II)

1,1 , I
(II)
1,2,2, I

(II)
1,3 , I

(cross)
1,2,1 , I

(cross)
1,2,2 } and G3 = {I(I)

1,1, I
(I)
2,1}. Namely, I

(I)
1,2,1 dom-

inates G1, and I
(II)
2,1 dominates G2. For G3, since ‖ũ(I)‖2 ≤ Cǫ, we have that

|I(I)
1,1| ≤ OP (rn

√
sn/n)Cǫ, |I(I)

2,1| ≤ λnrn

√
snw(I)

maxCǫ.

Hence, if ‖u(II)‖1 ≤ Cǫ/2, then ‖ũ(I)‖2 > Cǫ/2, and thus G3 is dominated by I
(I)
1,2,1, which is

positive; if ‖u(II)‖1 > Cǫ/2, then G3 is dominated by I
(II)
2,1 , which is positive. This completes

the proof.

Proof of Theorems 6–7

They are similar to those of Theorems 2–3 and are omitted.

Proof of Theorem 8

Minimizing (4.3) is equivalent to minimizing ℓPCR
n,j (α) = n−1

∑n
i=1 Q(Yi, F

−1(Xijα)) +

κn|α|, for j = 1, . . . , pn. The proof is separated into two parts.

Part 1. To show ŵ
(I)
max = OP{1/(λn

√
n)}, it suffices to show that for An = λn

√
n, there

exist local minimizers β̂PCR
j of ℓPCR

n,j (α) such that limδ→0 infn≥1 P (min1≤j≤sn |β̂PCR
j | > Anδ) =

1. It suffices to prove that for 1 ≤ j ≤ sn there exist some bj with |bj | = 2δ such that

lim
δ→0

inf
n≥1

P
(

min
1≤j≤sn

{
inf
|α|≤δ

ℓPCR

n,j (Anα) − ℓPCR

n,j (Anbj)
}

> 0
)

= 1, (A.18)

and there exists some large enough Cn > 0 such that

lim
δ→0

inf
n≥1

P
(

min
1≤j≤sn

{
inf

|α|≥Cn

ℓPCR

n,j (Anα) − ℓPCR

n,j (Anbj)
}

> 0
)

= 1. (A.19)
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(A.18) and (A.19) imply that with probability tending to one, there must exist local mini-

mizers β̂PCR
j of ℓPCR

n,j (α) such that Anδ < |β̂PCR
j | < AnCn for 1 ≤ j ≤ sn.

First, we prove (A.19). For every n ≥ 1, when |α| → ∞,

min
1≤j≤sn

{ℓPCR

n,j (Anα) − ℓPCR

n,j (Anbj)} ≥ κnAn|α| − max
1≤j≤sn

ℓPCR

n,j (Anbj)
P−→ ∞.

Thus (A.19) holds.

Second, we prove (A.18). Note that |Anα| ≤ Anδ = O(1)δ → 0 as δ ↓ 0. For 1 ≤ j ≤ sn,

by Taylor’s expansion,

ℓPCR

n,j (Anα) =
1

n

n∑
i=1

Q(Yi, µ0) + Anα
1

n

n∑
i=1

q1(Yi; 0)Xij

+
A2

nα2

2

1

n

n∑
i=1

q2(Yi; XijAnα
∗
j )X

2
ij + Anκn|α|,

where µ0 = F−1(0) and α∗
j is between 0 and α. Thus we have that

min
1≤j≤sn

{
inf
|α|≤δ

ℓPCR

n,j (Anα) − ℓPCR

n,j (Anbj)
}

≥ An min
1≤j≤sn

inf
|α|≤δ

{
(α − bj)

1

n

n∑
i=1

q1(Yi; 0)Xij

}
+
A2

n

2
min

1≤j≤sn

inf
|α|≤δ

{
α2 1

n

n∑
i=1

q2(Yi; XijAnα
∗
j )X

2
ij − b2

j

1

n

n∑
i=1

q2(Yi; XijAnb
∗
j )X

2
ij

}
+An min

1≤j≤sn

inf
|α|≤δ

{κn(|α| − |bj |)}
≡ I1 + I2 + I3,

with b∗j between 0 and bj . Let C0 = q′′(µ0)/F
′(µ0) 6= 0. Then

I1 = An min
1≤j≤sn

inf
|α|≤δ

{C0(α − bj)E(Y Xj)}

+An min
1≤j≤sn

inf
|α|≤δ

[
C0(α − bj)

1

n

n∑
i=1

{YiXij − E(Y Xj)}
]

−An max
1≤j≤sn

sup
|α|≤δ

{
C0µ0(α − bj)

1

n

n∑
i=1

Xij

}
≡ I1,1 + I1,2 + I1,3.

We can see that |I1,3| ≤ OP (An{log(sn)/n}1/2)δ, by the Bernstein’s inequality (van der

Vaart and Wellner, 1996, Lemma 2.2.11). Again |I1,2| = OP (An{log(sn)/n}1/2)δ by an

argument similar to that of Theorem 2. Choosing bj = −2δsign{C0E(Y Xj)}, which satisfies

|bj | = 2δ, gives

I1,1 = An min
1≤j≤sn

inf
|α|≤δ

{αC0E(Y Xj) + 2δ|C0E(Y Xj)|}
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≥ Anδ|C0| min
1≤j≤sn

|E(Y Xj)| ≥ |C0|cA2
nδ.

For I2 and I3, we observe that |I2| ≤ OP (A2
n)δ

2 and |I3| = O(Anκn)δ. The conditions

log(pn) = o(nκ2
n) and An/κn → ∞ imply that {log(sn)/n}1/2/An = o(1). Together with

the condition An/κn → ∞, we can choose a small enough δ > 0 such that with probability

tending to one, I1,2, I1,3, I2 and I3 are dominated by I1,1, which is positive. Thus (A.18) is

proved.

Part 2. To verify ŵ
(II)
minλn

P−→ ∞, it suffices to prove that for any ǫ > 0, there exist local

minimizers β̂PCR
j of ℓPCR

n,j (α) such that limn→∞ P (maxsn+1≤j≤pn |β̂PCR
j | ≤ λnǫ) = 1. Similar to

the proof of Theorem 1, we will prove that for any ǫ > 0,

lim
n→∞

P
(

min
sn+1≤j≤pn

{
inf
|α|=ǫ

ℓPCR

n,j (λnα) − ℓPCR

n,j (0)
}

> 0
)

= 1. (A.20)

For 1 ≤ j ≤ sn, by Taylor’s expansion,

min
sn+1≤j≤pn

{
inf
|α|=ǫ

ℓPCR

n,j (λnα) − ℓPCR

n,j (0)
}

≥ λn min
sn+1≤j≤pn

inf
|α|=ǫ

{
α

1

n

n∑
i=1

q1(Yi; 0)Xij

}
+

λ2
n

2
min

sn+1≤j≤pn

inf
|α|=ǫ

{
α2 1

n

n∑
i=1

q2(Yi; Xijλnα
∗
j )X

2
ij

}
+ λn inf

|α|=ǫ
(κn|α|)

≡ I1 + I2 + I3,

where α∗
j is between 0 and α. Similar to the proof in Part 1,

I1 = λn min
sn+1≤j≤pn

inf
|α|=ǫ

{C0αE(Y Xj)}

+λn min
sn+1≤j≤pn

inf
|α|=ǫ

[
C0α

1

n

n∑
i=1

{YiXij − E(Y Xj)}
]

−λn max
sn+1≤j≤pn

sup
|α|=ǫ

(
C0µ0α

1

n

n∑
i=1

Xij

)
≡ I1,1 + I1,2 + I1,3.

Then |I1,3| ≤ OP [λn{log(pn − sn + 1)/n}1/2]ǫ, |I1,2| ≤ OP [λn{log(pn − sn + 1)/n}1/2]ǫ and

|I1,1| ≤ o(λnBnǫ). Hence |I1| ≤ OP [λn{log(pn − sn + 1)/n}1/2]ǫ + o(λnBn)ǫ. For I2, we

have that |I2| ≤ OP (λ2
n)ǫ2. Note I3 = λnκnǫ. Since log(pn) = o(nκ2

n), Bn = O(κn) and

λn = o(κn), with probability tending to one, I1 and I2 are dominated by I3, which is

positive. So (A.20) is proved.

Proof of Theorem 9

We first need to show Lemma 5.

Lemma 5 Suppose that (Xo, Y o) follows the distribution of (X, Y ) and is independent of the

training set Tn. If Q is a BD, then E{Q(Y o, m̂(Xo))} = E{Q(Y o, m(Xo))}+E{Q(m(Xo), m̂(Xo))}.
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Proof : Let q be the generating function of Q. Then

Q(Y o, m̂(Xo)) = [q(m(Xo)) − E{q(Y o) | Tn, Xo}] + [E{q(Y o) | Tn, Xo}
−q(Y o)] − q(m(Xo)) + q(m̂(Xo)) + {Y o − m̂(Xo)}q′(m̂(Xo)). (A.21)

Since (Xo, Y o) is independent of Tn, we deduce from Chow and Teicher (1988, Corollary 3,

p. 223) that

E{q(Y o) | Tn, Xo} = E{q(Y o) | Xo}. (A.22)

Similarly,

E{Y oq′(m̂(Xo)) | Tn, Xo} = E(Y o | Tn, Xo)q′(m̂(Xo))

= E(Y o | Xo)q′(m̂(Xo)) = m(Xo)q′(m̂(Xo)). (A.23)

Applying (A.22) and (A.23) to (A.21) results in

E{Q(Y o, m̂(Xo)) | Tn, Xo} = [q(m(Xo)) − E{q(Y o) | Xo}] + Q(m(Xo), m̂(Xo))

= E{Q(Y o, m(Xo)) | Xo} + Q(m(Xo), m̂(Xo))

and thus the conclusion. �
We now show Theorem 9. Setting Q in Lemma 5 to be the misclassification loss gives

1/2[E{R(φ̂)} − R(φB)] = E(|m(Xo) − .5| I[ I{m(Xo) > .5} 6= I{m̂(Xo) > .5}])
≤ E[|m(Xo) − .5| I{m(Xo) ≤ .5, m̂(Xo) > .5}]

+E[|m(Xo) − .5| I{m(Xo) > .5, m̂(Xo) ≤ .5}]
≡ I1 + I2.

For any ǫ > 0, it follows that

I1 = E[|m(Xo) − .5| I{m(Xo) < .5 − ǫ, m̂(Xo) > .5}]
+E[|m(Xo) − .5| I{.5 − ǫ ≤ m(Xo) ≤ .5, m̂(Xo) > .5}]

≤ P{|m̂(Xo) − m(Xo)| > ǫ} + ǫ;

similarly, I2 ≤ ǫ + P{|m̂(Xo) − m(Xo)| ≥ ǫ}. Recall that

|m̂(Xo) − m(Xo)| = |F−1(X̃o
T ̂̃
β) − F−1(X̃o

T
β̃0)| ≤ |(F−1)′(X̃o

T
β̃

∗
)|‖X̃o‖‖̂̃

β − β̃0‖,

for some β̃
∗

between β̃0 and
̂̃
β, where X̃o = (1, XoT )T . By Condition A4, we conclude that

(F−1)′(X̃o
T
β̃

∗
) = OP (1). This along with ‖̂̃

β−β̃0‖ = OP (rn) and ‖X̃o‖ = OP (
√

pn) implies

that

|m̂(Xo) − m(Xo)| = OP (rn
√

pn) = oP (1).

Thus I1 → 0 and I2 → 0, which completes the proof.

34


	Biometrika_2010_551
	Introduction
	The penalized Bregman divergence estimator
	Bregman divergence
	The model and penalized Bregman divergence estimator

	Penalized Bregman divergence with nonconvex penalties: pn n
	Consistency
	Oracle property
	Hypothesis testing

	Penalized Bregman divergence with convex penalties: pnn
	Consistency, oracle property and hypothesis testing
	Weight selection

	Consistency of the penalized Bregman divergence classifier
	Simulation study
	Set-up
	Penalized quasilikelihood for overdispersed count data
	Penalized Bregman divergence for binary classification

	Real data

	Biometrika_2010_551_supplement

