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Abstract

In the present paper, the authors suggest an algorithm to evaluate the
multivariate normal integrals under the supposition that the correlation ma-
trix R is quasi-decomposable, in which we have r;; = a;a; for most i, 7,
and 135 = aja; + bi; for the others, where &;;’s are the nonzero deviations.
The algorithm makes the high-dimensional normal distribution reduce to a
2-dimensional or 3-dimensional integral which can be evaluated by the nu-
merical method with a high precision. Our supposition is close to what we
encounter in practice. When correlation matrix is arbitrary, we suggest an
approximate algorithm with a medium precision, it is, in general, better than
some approximate algorithms. The simulation results of about 20000 high-
dimensional integrals showed that the present algorithms were. very efficient.

It is a classical and important topic to evaluate the multivariate normal in-
tegrals. The early work had been reviewed by Gupta (1963)!!, and the later
work by Tong (1990)[!. Although there were many papers published in this re-
search field, one could not find a consentaneous and efficient algorithm for the
general multivariate normal integrals except in the cases of bivariate and trivari-
ate (Zhang-Yang, 1993[3]).. For the dimension m > 3, the articles published were
almost concerned in some special cases, such as a special region of integral or
a special structure of correlation matrix. Otherwise, the Monte Carlo or quasi
Monte Carlo method (i.e. number-theoretic method, Fang-Wang, 1994[4]) was
employed. The rate of convergence of quasi Monte Carlo is not over O(n_z/ ™y,
and it is difficult to obtain a precise evaluation if m is large.

In evaluation of multivariate normal integrals, a well known supposition for
the correlation matrix R is that the correlation coefficients r;; can be decomposed
as rij = a;a; for all i # j-and a? < 1. This, however, is a severe supposition. In
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practice a more natural supposition may be that rj; = a;a; is only for most of
rv', and rij = a;a;j + b;; for the others, where b;;’s are the nonzero deviations. R
is called a quasi-decomposable matrix if b;;'s sa.txsfy some restr1ct1ons (see 1 for
definition). :

The main results in the present paper are --

(1) To establish two dimension reduction theorems used to evaluate the mul-
tivariate normal integrals under the supposition. that R is a quasi-decomposable
matrix. In virtue of theorems, a high-dimensional normal distribution can be re--
duced to a 2-dimensional or 3- dimensional integral which can be evaluated by the
numerical method with a high precision.

(2) To establish an approximate. evaluatlon of multivariate normal integral
when R is an arbitrary correlation matrix.

(3) To suggest an efficient Gaussian quadrature formula to evaluate the inte-
gral from the dimension reduction theorems: This formula is more efficient than
the classical Gauss-Hermite quadrature. Also, a procedure of decompos1t1on of
domain of integration is suggested based on this formula. - .

(4) To give an algorithm to solve the a, s and b,J S for a. ngen R Espec1a11y,
the L, approximation is used. . .= " .

Our algorithms are complete, on one ha.nd when a precise eva.lua.tlon is re-
quired, the supposition is natural and friendly, and the L, solution makes it easily
hold true in many cases, on'the’ other hand, when an approximate eévaluation is re-
quired, there is no restriction.on our algorithm and an evaluation with a medium

_ precision can be obtained. The simulation results of about 20000 multivariate

normal integrals showed that the present a.lgonthms were very. efficient.

o L Dlmensmn Reductlon Theorems

§ .-
-

As the conventlona.l notation in multwa.nate sta.tlstlca.l a.na.ly31s,
(X1, Xm) ~ N(p, %)

means that the m-dimensional random vector (X3, Xm) is norma.lly distributed
with the mean vector g = (u1,- - -, im)’ and the covariance matrix & = (o;;). For
convemence, suppose that p; =0, oy = 1 for-all i without loss of generality. Then
the ‘covariance matrix becomes a correlation matrix R = (r;;). The normal den-
sity and distribution functlons are denoted ¢, (z1,- - ,:z:m) and ®n(z1, -+, Tm)
respectively. When m = 1, the subscnpt m’ ¢an be omitted, hence ‘we have
N(0,1), §(z) and B(z). -

In multivariate statistical a.na.lysxs we have-a well known result as follows{12]:

Lemma. Suppose that Y1,-- -, Ym, U are independent random. varzables each
one has a standard normal. distribution N(0,1), and -

-~

Xy =4/1~a? Y U, constant a? < l,i=1,---,m, (1.1)

then . _
(X1, Xm) ~ Nn(0,R), ) . (1.2)
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Brn(z1,  Tm) = /_O:o [ﬁ@(%)]qxu)du ' (1.3)
where A .
Tij = aiaj, Vi 7&] (1.4)

From (1.3), /1~ a? a.ppea.rsl in the denominator, so a? < 1 is needed. Fur-
thermore, in view of numerical computation, a?

integral

must not close 1. Because the

o(z) = = T /

can be evaluated by a simple. expression with a high precision (more than 14

decimal digits, see IMSL), we regard (1.3) as an 1-dimensional integral. The

above lemma shows that a high-dimensional normal distribution can -be reduced

to an 1-dimensional integral. This lemma had been used by many statisticans(!-2l.

But, it needs a severe supposition that all r;; can be decomposed as (1 4).
In practice, a more natura.l supposmon may be that

I a,aJ, o for most of i,
’J aiaj + b,_,, for a few of ryj,

where b;; are the nonzero deviations. For example, if only one r; is with a
(nonzero) dev:a.tlon as followsl) ) :

rg={ 4 . i>0 (Z_,i) # (i1, 71)s (15)
) Qi Gy +b‘l1_71’r:~..-.7' =11, 1 =71, St o
we have the following theqx;em.-
Theorem 1. Suppose that Y,-- Ym,U V are zndependent random van-
ables, each one has a standard normal distribution N (0 1), and

Xi =41~ a Y: - a1U Ti# il,'jl, S .
Xy = \/1 - a’i1 = 1biyjilCiyin 'Yil —ai'lU — i,/{-biljliqul v, - ‘ (1.6)
X = .\/1 - a?l - 7-1]11/Cl1.71 N a'jl Y/ ]biljl [/Ci).jl v,

where ¢;,;; > 0, and =+ indicates the sign bf radical,’ ie. siﬁn(bil i1): then

(X11 te 1Xm)l ~ Nm(O, R),

USince correlation matrix is symmetric and ri; = 1, we only use its lower triangle, then
i>j.
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where R is defined as (1.5), and the distribution function

T; +a;u

Tnle ) = [ ol il @(\/’1—4 s, (17)
| *;1&“. e

"
i +aiuE /bl 271'*-0. u + i1 i
iy (u) / ¢(27 1 aiu ] 1]1|cn.71 )@( J 71 I 1]1|/c 1] v)¢>(v)dv.
\/1 - a nil ]ciljl \/1 - a 7-1.‘i1 l/ciljl )
(1.8)

This theorem reduces ®,, to a 2-dimensional integral. The proof is similar to
the lemma. Obviously, we have the following restrictions
a? <1, a_?l +biglenn <1, 0?1 + [biyjl/eingy < 1. (1.9)
Ciyjy I usually equal to-1. When the above restrictions do not satisfy or their
values are too close 1, we can set ¢4, ‘the other positive value. In other words,
Ci 5, > 0 makes the restrictions easy.

- The remainder of this section we discuss the case where the number of de-
viations is more tha.n one. We are concemed with two kinds of deviations as
follows:

(1) All subscripts in nonzero dev1at1ons are different, e.g. ba1, bs3, brs, boa.

(2) There are some common subscripts in the nonzero deviations, but any sub-
script cannot appear in more than two nonzero deviations, e. 8 (b21, b31), (bra, b7s),
(bss, bos)-

Let n; be the number of nonzero deviations in the first kmd and no the second.
Where n2=0,2,4,6,--. Two kinds of deviations are denoted as b;,,, t =1,---,n
'a.nd (b,: 1ty Dgijt), 8 = 1,---,naf2 respectively. Although, we suppose that the
common subscnpt Je appea.rs in the second pos1t1on, the followmg dJscussmn
_ holds true for the other positions. ‘

Deﬁmtlon. . Rpxm is called a quasz-decomposable matriz if it is a posztwe
definite symmetnc matriz and its elements are as follows '

1, ] 1= 7,
aiGg,- 1> ,71 and % .7 7/: ztaJta 51j51 7{;1

Tij = ai,aj, + bi:jn 1.=1% J =7t t=1,--,nq, (1-10)
ai{saj.lq_*_biij.lﬂ i=i;, j=jfn S=1,"‘,TL2/2,

Y SRS S R
ag,aj, + bg g1, 1= kg, J=7Js Ty Jor s 7 1ty Jts

where the number of deviations is n = ni +no, and 2n, +3(ng/2) < m. Obviously,
in a quasi-decomposable matriz, any subscript of nonzero deviations cannot appear
1 more than two nonzero deviations.
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Theorem 2.  Suppose (X1, -+, Xm) ~ Np(0,R), where R is a quasi-
decomposable matriz with n nonzero deviations above, then we have

n2/2

o _ o N o z; +a; .
S (T, Tm) ‘/;oo.[t:]];gu]e(u)] [ g his ok ( ] [ ‘2%2 ( —-————\/_l_:)}gb(u)du,

(1.11)
where

: o : A /b e s . . b, 5 i3
gi,jt ('U.) - / Q(z t + a; u ' e IC‘u]e U)@(zh +a]¢u +. ' t]tl/c ¢Je U)q‘b(‘U)d‘U,
—co \/1 —-a lb;t]‘ ’C.,‘]‘ ‘ Jl - ?, - Ib‘itjtl/citjt
(1.12)

* i Ty tapud b' cl.”v $’+ak’u:]: bpi i1 leg 50w
by, gk (u) =/ / fb( n T lbe . ( ks a Vb st lew: 5,
. —o0 J —0C

\/ 1~af — by jlens, \/ 1 - g — lbes sl

+ U+ b.‘l " —+ b ¢ 1 7 51 .
@(z’ g+ yBezlTon o + s e, =) 6(v)p(w) dvdw
V1= = lbel/en s, = b /ow
_ ' (1.13)
and the restrictions are
' a <1, 4
a’zt + Ibmclcteje <l ‘12 + 10551/ Cinje < 1,
z’ +|b,l |c,: p < 1, A + Iblillele <1, (1.14)
1 ¥ lbt’J,VC:’,J, + lbk’J,l/Ck’,JL <1,
C;J >0, Vi#j.

The proof of the theorem is not difficult. It is based on theorem 1 and the
following transform of variables concerning with the deviations in the second kind:

Xy =L—a} —lbuglons Yo —aglU = xy/|byslens, Vs

Xk; = \/1 --(1%,s - lbk',jilck’,jz Ykl —ak:U "i\”bk’,jglck‘,j’, Ws,
Xy = 1= ad = lbygl/enz, = lbugl/ e, Yy |
—apU —\flbazl/eas Vs — /lbw,il/cr i, W,

where Yy, Yj, Y, U, Vi, W; all are independent N(0,1). The supposition
in this theorem may be the most friendly and it is close to what we encounter
in practice. In virtue of this theorem, the high-dimensional normal integral can
be reduced to a 2-dimensional integral (for ny = 0) or 3-dimensional integral (for
ng # 0), hence, it can be evaluated precisely by Gaussian quadrature (see Section
3). o

In principle, we can establish other dimension reduction theorems used for the
cases that a common subscript appears in more than two nonzero deviations. To

(1.15)
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avoid the evaluation of high-dimensional integral in theorems we can, however,
employ the approximate algorithm described in the next section.

2 Approximate Algorithm — Indirect Application of Theorems

‘ When R is not a quasi-decomposable matrix or we do not want to evaluate

the 3-dimensional integral in (1.11), the followmg a.pproxlmate algorithm can be
employed.

Approximate formula. Let (Xi,---,Xn) ~ Nm(O, R). Its distribution

function @, (z1, - - - , Tm) is to be evaluated. Suppose that n correlation coefficients
contain nonzero deviations as follows:
- aia;, 1> j'l and (7”.7) # (itajt)a
Fij = . q- . P s __ s — (21)
@i, aj, +bu_1n 1= J=J, t=1,---,n :

Here, the deviations may not belong to the two kinds discussed in Section 1, espe-

cially, the common subscripts can appear in more than two nonzero deviations. In’
other words, R can be an arbitrary correlation matrix. Based on R we construct -

n + 1 correlation matrices R(®, R®, ¢ = 1,2,.--,n. Firstly, R® is such one
~that all devza.tlons are eliminated, na.mely, R(O) can be decomposed completely.
Let & (z1,---,2m) be the distribution of N,z (0, R®), it can be evaluated by
the lemma in Section 1. Secondly, in R®, all but one of elements are equal to
RO and the different element is b;,;,. The distribution of Ny,(0, R®) denoted

Qsﬁ)(xi, --+,Zym) can be evaluated by the theorem 1 in Section 1. Suppose that
the contribution of each deviation b;,;, is added up independently, we have

Qm(zla"'azm): e e o
=00 (21, 1Zm) + Z[@g?(m-l, e ,a_cm) —_@S,‘P (zl, 3T (2.2)

Usua.lly, the above supposition does not satisfy and (2 2) is only an approx1—
mate evaluation for a general multivariate normal mtegral

Special Case.  The Formula (2.2) has a special case, in Wthh a; = 0 for
all 4, i.e. bjj = ry; for all 7 # j, then, n = m(m = 1)/2, and @(0)(3:1, -y Tm)
is the product of m independent ®(z;). That is. just the method suggested by
Drezner®!| and Drezner used Monte Carlo simulation to show the availability of his
algorithm. According to his simulation, the absolute errors were not greater than
0.001 when |ry;| = |bi;] < 0.2.. For our formula (2.2), a; # 0 and n < m{m - 1)/2,
it should be better than Drezner’s, and this suggestion had been confirmed by
our simulation (see Section 5) In one word, our approximate a.lgonthm is useful
when deviations |b;,;,|, ¢ = 1,---,n are not large.

Generalization. The approxunatxon (2.2) has a generalized type in which

every R() is a quasi-decomposable matrix as (1.10), especially, we have only
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one R®). The following is an example. Suppose that there exist 4 deviations
as boy, bz, baz, bas, we let R(D contain (b1, bss), and R(?) contain (b31, ba2).

By the way, such a grouping is better than others because there is no common

subscript in each group, a.nd only 2- dlmensmnal integrals appear in theorem 2.

3. Numerical Method for Integral from Theorem 2

3.1 More Efficient Quadrature Formula
Each dimension in mtegra.l generated by the dimension reduction theorems has
the form [0 flz)e=="dz, and the classical Gauss-Hermite quadrature formula

0 ) N
[ t@eds = uife) (3.
- i=1

was employed by most people, where N is the'number of nodes, z} and w} are
the node and weight respectively. The table of w; — z} can be found in many
books of numerical computation, e.g., Stroud—Secrestm Gauss—Hemute quarature
is of order (2N — 1), i.e. it is exact if f(z) is a polynomial of degree at most
2n — 1. Steen-Byrne-Gelbard (abbrev1ated SBG)[®! Suggested another Gaussian
quadrature as follows:

e W -
| t@ede = Y w0, (3.2)
i=1

It is order (2V — 1) in the interval (0,00) (not (—o0,c0)). Obviously, (3.2) can
also be used for the integral in (~co, o), and

' /:_oo f(x)e"’édx = /()ootf(x) + f(—z)le ~2 gy = Zw, (zi) + f(—zi)]- (33)

Should we use either formula (3.1) or (3. 3) to evalute the mtegra.l generated by
the dimension reduction theorems? From a first glance, in order to attain order
(2N = 1) in (—o0,00), SBG (3.3) needs 2N values of integrand when f(z) is -
not an even function, while the classical Gauss-Hermite formula (3.1) needs N
values only, and (3.1) should, in general, be used. However, the conclusmn may
be changed when f(z) is not sufficient smooth. For example, [0 I:zzle‘z dr =1.
If we set n = 2,4 and 6 in numerical computation, Gauss-Hermite results contain
the relative errors 25. 3%, 11.3% and 7.3% respectively, while SBG results are
all precisel®!. It is worth to point out that the superior of SBG formula also
appears in the integral from ‘our dimension reduction theorems. The present
author (Yang [9]) had computed 400 8-dimensional normal integrals generated
by random method and found that the total executive time of SBG (3.3) was
shorter than classical (3.1) (ratio was about 1/2). Also, Yang found that the
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classical formula slightly better than SBG only in the case that the condition of
correlation matrix R was very good (i.e. |R| > 0.5). But the case |R| > 0.5 are
rare in 8-dimensional normal integral (In fact, if all correlations are equal to r,
then |{R| > 0.5 corresponds to |r| < 0.2, and its frequency in simulation was only
'7%.) and two executive times have not significant difference for a small number
of nodes. Conversely, in case |R| < 0.5 (its frequency in simulation was 93%),
the number of nodes used for classical formula was larger than SBG, and the
difference between two executive times would i mcrea.se quickly if the condition of
R was bad. : .

In one word, Steen-Byrne-Gelbard formula was more eﬁicient than the cla.ssical
one in the numerical computation of high-dimensional normal integrals. By the
way, the original table w; — z; given by Steen-Byrne-Gelbard was small (N < 15).
The present author (Yang [9]) had*given a new table (N < 60).

3.2 Decomposition of Domain of Integration based on SBG

Now, we discuss the decomposition of domain of integration. We, first, parti-
tion the m—dimensional domain as 2 (k = 1,2,---) sub-domains with the equal
volume, e.g. two-dimensional plane can be partitioned as 4 quadrants, then, eval-
uate each integral in the sub-domains, and sum them. Because the features of
integrand in sub-domains are not the same, the number of nodes used for evalu-
ation of each sub-integral is not the same too, and the total number will be less
than that based on a full domain. For the SBG formula in Section 3.1 is based
- on a half infinite interval and with the above advantages, it is proper to used this
formula to evaluate each sub-integral.

The following we explain the decomposition of domain of integration based on
SBG by an example. In (1.11), let n; =1, nz =2 and denote the integral as

n= [ a@heu@f@d, (349

where the subscript v of g,(u) is used to indicate the integral variable (see (1:12)).
Let v— and v+ indicate the integrals in (—oc, 0) and (0, c0) respectively. We have
 gu(u) = gu_(u) + gv+('u) Similarly, let k- w(u) by w(u) + hys w(u) the integral
(3.4) becomes a sum of 4 sub—mtegrals :

ém—/ e Vo () + go_ ()b ()
+ gv..;..( )hu_'_w( ) + Gvs (u)h,,- w(w)]f (u)du

We abbreviate the above formulaas @ = J__ + T + [+ 1. Slmlla.rly, if
we also partition the integral variable u, ®, becomes a sum of 8 sub-integrals:

(I)m =1 ___ +I__.+ +I_.+_. + I_.{_q. +'I+.__ + I+...+ + I++._ + I+++. If we further
partition variable w in hyey(u), ®m consists of sum of 16 sub-integrals. In a
formula, each sub-domain of integration has a same volume, and each variable is
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in (—o0, 0) or (0, cc). Obviously, the above procedure of decomposition of domain
can be used for not only a single processor but also the multiple processors.

It is worth to point out that the excessive decomposition of domain could not
reach a high efficiency in. parallel process for the repeated operations. In serial
process, you can save some results created in the preceding computing to avoid
the repeated operations.. It is the best to decompose variable u because of no
repeated operation-in this case. From experience (see Section 5), we could use
three decompositions as follows: (1) variable u; {2) both u and v for n; = 1; (3)
both u and v* for ny = 2. '

4. Decomposxtxon of Correlatxon Matrix Under I,

In this section, we discuss a method to decompose a correlation matrix R, xm
and get @ = (a1, -, am)’ and b;;’s which satisfy ri; = aja; + bjj. ‘We want such
a method that it could give the exact a and b;;’s if R was a quasi-decomposable
matrix as (1:10); otherwisé, it could minimize the number of nonzero b;;’s as well

“as the values of [bij{’s. The latter makes the approximation (2.2) more efficient.

But, it is very difficult to find such a ma.thema.t1ca.1 method. In the present section,

~a L model

‘2%"‘?‘*‘““]“““ _

lail <1, i=1,---,m

serves as a.'substifuté for such method. We select Ly rather than Lo, i.e. the
traditional least square method, because the latter makes the dev1a.t1ons b,J S

appear in almost every ri; if Ris not completely decomposa.ble However, the L,

" solution can'make some deviations' zero, which means that the quasi-decomposable

supposition can be satisfied: ‘easily or the’ approximation (2.2) can be improved:
ecomposable matrix, and rij = a;a; except ry; and

a= (0 32,0.45,0.61, —0. 85, 0. 52, ~0.95), by = —0.2027, byy = 0.2807.

Under Ly we get b,] s as follows :
—.142 077 .001 .166 —.019 —.003 .066 .002
‘ —-.012 —.004 —.123 —~.010 .012 .021 .009
They are all inequal to zero. But, using L, algorithm described below we obtain
the exact a and b;;’s as they are. Sometimes, we could not obtain such an ideal
solution, but we always have several zero deviations and the minimum Z |bi;]-

The simulation study in Section 5 shows that the L; method is good.

(4.1) can be transformed to an iteratively reweighted least square model as
follows:
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m m

: Q(a) = Z Z wij(rij — aza])z_-— min,
. . y (4.2)
~wij = 1/(|ry; —-lai_aj|+eps), 1#j=1,---,m, _

a?<l, i=1,---,m

3
where eps is a small positive value to avoid the zero denominator. The readers
can see other papers given by the present author (Ya.ng [10, 11]) for the solution
of L; model. : \ '

5. Simulation Study

In this section, we show the performance of the algorithm we suggest. About
20000 multivariate normal integrals generated by Monte Carlo method were eval-
uated, in which there are over 4000 integrals with dimension m > 8. Simulation
study showed that the present algorithms were efficient. - .

: Quadrature formula and table w;—z;. A:product rule was used to evalua.te
the h1gh-d1mens1onal integral. For each dimension, we used Steen-Byrne-Gelbard
quadrature. (3.2) - or (3.3); and the table w; — z; ‘expanded by  Yangl®l. Noting
0 < f(z) < 1/4/7, where. f(z) is an integrand, we can omit some values of table
w; — z; for w; too small. - This would save executive time and space. Accordmg
to the simulated results: by Yang®, if we omitted the terms correspondmg to
w; < 0.1 x.1079,.the error of evaluation would not exceed 0.1 x 10~9..

Convergence crltermn and N- —reqmred number of nodes. The com-
putation of integral started. with- Ny: nodes, and then increased 2 nodes each time
until the difference between two neighbour. results was less than eps (tolerance).
To avoid a false-convergence in computing, we required another evaluation with
one more node._If and only if the new difference was also less than eps, the proce-
dure stopped, a.nd the-number of nodes used for the last eva.lua.tlon was recorded
as N. It is worth to pomt out that: N was only the number ‘of nodes in one di-
mens10na.1 interval. (—oc 0) or (o, oc) Hence ‘the number of nodes in (=0, c0)
was 2N. . Because the ‘same . N:was used for every dimension in computing, ‘the
number of nodes, was N Z or 4;N2 for 2 d1mens1ona.1 mtegra.l and N3 or 8N3 for
3- d1men51onal mtegra.l -

5.1 Three-Dlmensmnal N orma.l Integrals

When dimension m'= 3, the correlation matrix R is a.lwa.ys qua.31-decomposab1e
and the Theorem 1 in Section T can be used d1rect1y Fxrst for a famous exam-
ple discussed by Steckl!?, we obtained ®3(1.2;1.0,-0.5) = 0.220609581. In this
example, R(rq1,731,T32) = - (0.7,0.2, —0.4), we took a; = 0.95, as = ro1/a1, az =
T31/a1, b3z =132 —azay, ¢33 = 1.5 and tolerance eps = 0.5 x 10 =8, In computing,
N = 22 when the domain of integration did not partition and the executive time
was 0.55” (Pentium 90). When the domain was partitioned as four quadrants, we
needed N = (16, 18,22,18) and 0.44™. If eps = 0.5 x 1078, we had the evaluation
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0.2206096, and the values of N all reduced 4 and the times were 0.34” and 0.27".

Secondly, we generated 10000 R matrices, in which r;; ~ U(-1,1), Le. i
was an uniform random number in interval (—1,1). Using a similar procedure
(sometimes, .we started with an appropriate value of a or a3), we obtained a
precise evaluation for every positive definite matrix R without ill-condition. In
computing, we regarded R as the ill-conditioned matrix if its minimal eigenvalue
A3 failed in the interval (0,0.0015). In above 10000 random matrices, the number
of positive deﬁmte matrices was 6195, and the number of ili-conditioned matrices
was 21 only. , N

5.2 Case of Dimension m > 4

Two groups of examples. We listed two groups of examples of high-
dimensional normal integrals, their dimensions were up to 12. In these examples,
the correlation matrices were all quasi-decomposable as (1.10), we could, then,
evaluate every integral using Theorem 2. The maximum number of nonzero de-
viations in'examples - was up to 6, and the second group of examples contained a

\

common subscnpt 1. Perhaps, these examples could be used to assess some algo- -

rithms for lack of an available benchmark of h1gh-d1mens1ona1 normal integrals.
The parameters a;’s, deviations &;;’s, upper. bounds z;’s and the.evaluations of
integrals were all listed in the table:5.1. Where ®,,’s were the evaluations with
more than 8 significant digits given by Theorem 2, and A;,’s were the approx-
imations from (2.2). According to the table, the error of approximation A, is
small (about 1079). So, (2.2) can be used in a-lot of cases. By the way, due to
limited space; we made-the difference between parameters in neighbour integrals
only “appear in the last’ d1mens1ons e.g: <I>m is from <I>12 in Whlch the last two
dimensions are ormtted' o

’i['ablé. 51 Two groups of exa.mples of lngh-dunensmnal norma.l 1ntegrals

Group 1 - Py Group 2
i a; 'b.-,- ’ ‘zi| ®mand Am |1 | @i by Ti| @, and An
1295 - i @wadew 246 i . | 1 ]33 . o L2508 | . sia ceniesis
2 {-63 bn=06 _ 206 - 12| .81 - bor=-. 02._;..-1 79| o mens
31 .19 .. ~33|.354965422 &, | 3 | -.80 . -293
4 {-82 bgz=-11 ~ 2.35|.354976 As | 4 |-21 bg=.05 =.11|.213636260 &5
5| .42 _ 1.64 |.322708218 ®s | 5 | .80 b51=29 3.39 |.213628 As o
6 |-.17 bes=-34 1.69].322718 A5 = | 6 | .25 - 1.31.190555838 &
7 (-84 - .0 231].238884528 ®g | 7 | .81 ..bre=.16 _3.39|.190557 A; .
8 -62. bgr=.11  .72|.238891 As 8 |-.73 2.44 | .159269374 &,
9] .27 ..+ ..2.38].236778173 ®10| 9 | 09 bes=.17.. 1.01].159269 Ae
10 |49  byo,e=.39 -'3_.43 236784 A1 10| -.77 12.30 | .106984813 &1,
11{-74" © .41 .152603476 $1p | 11| 44 bu 10=" 38 0.56 .106984 An
121-.46 b1p,11=-.37 1.46 |.152604:A;15 - | 12| -

Decomposition of domain of mtegratlon. Usmg Monte Ca.rlo method we
generated 100 normal integrals with dimension 8. The upper bounds of integral
were uniformly distributed in interval (—0.5, 3.5), i.e. z; ~ U(—0.5, 3.5). The cor-
relation matrices R were quasi-decomposable, and a; ~ U(-1,1), 1 =1,2,---,8.
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They containedn three nonzero deviations bzl,b4;';.' z;nd bs3 (n1 =1, ny = 2). From
the construction of a;’s above, the correlation matrix, in general, had not a good
condition for the probability P(at least onela;} > 0.9) = 1—0.98 = 0.57. In order
to avoid the non-positive definite R, we formed the deviations as follows:

1 .. : - .

[b1] = 5 min(1 - a1, 1 - a3), |b43| =2 ’F(l —a), |bss] =27%(1 - a}),

where k was the minimum integer sa.tlsﬁed 1- a3 -27%(1 -ad) + (1 - ad)] > 0.
The computing was on PVM (Parallel Virtual Machine) combined several SGI-

'INDIGO computers. - We started from Ny = 6 and let eps = 0.5 x 1074, the job

time had been showed in the Table 5.2. According the table, decomposition of
domain could save job time even in the case of single processor,:and the speed
up had a good value 46.78/28.06 =1.67 in two:processors. But the value 2.45,
in four:processors, was not.very good.: Perhaps,: the job time depended on that
sub-doma.m in which N, the number of nodes,: was the maximum, especially, there
were severa.l integrals in which the correlation matrices were with a bad condition
(more than one |a;| >-0.95). In this case, value N in some one of sub-domains
was considerably larger than others, hence, most processors were in wait state for
a long time.

Table 5.2 Job time of 100 normal integrals mth dimension 8

procedure Job time Speed-up
procedure Number of processors Number of processors
PG 1 2 4 -9 4
‘no decomposing © {- .63.09" - B i
decomposmg (u,v™) | .46.78" .. 28.06". . 19.09™ | - 1.67 2:45

s TIN5
P T S -

' Ta.ble 5. 3 Error ﬁ'equency of appmmmatxon (2 2)

deviations b;; Two deviations (bay, bsa) sm deviations | 5 by;’s
dimension m - -| 4-- 5 § 7 8 10. 1z [ 8- 10 12 10

- sample size. -~ | 2000 200 =200 -200 200 - 200 200 | 200" 250 .300 | 250
no. of integrals - | 151 163 155 165 162 163 156 | 120 137 159 | 130
_freq €[0, .000001) [ 50 34 30 29 48 59 62 ] 8 13 8 12
(.000001, .000005) 21, 18 20- 21 18 10 16 | 12 12 16 15
{.000005,7:000010) {“5 - 10 i3 -10 7T 5 "4 °|12.°9 “10 13
[.000010, .000025) | -5 - 12 10 11 10 13 .8 | 20 12 16 7
[.000025,..000050) | 6 @6 6 10 7 3 -3 9.- 15 11 | 12
[-000050, .000075) | 3-- 4 3 ~ 4 .2 4 1 |11 9 9 9
[-000075, .000100) { 1~ "2 4 1 2 0 1 7 5 4 5
(000100, .000250) | 7 - 9- 8 10 3 4 3 |12 15 14 14
[.000250,-:000500) {. 1 3 5 1 1 1 6 4 8 6
{-000500, .000750) | 1 L 0 1 1.1 1 3 3 .1 3
[-000750, .001000) 1 11 1 2 .1 3
[.001000, .002500) ' 1 1 2 1
cumulative freq. | 100 100 100 100 100 100 100 { 100 100 100 | 100

Quasi-decomposable matrix. Two simulations based on dimension reduc-
tion theorem and the approximation (2.2) were included. Let ri; = a;a; + bij,
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a;’s be random, and a; ~ U(-1,1); the nonzero deviation b;;'s were random too,
bij ~ U(—.45, .45). For simplicity of programming, we set the number and the
positions of b;;’s as follows: (1) two deviations (bo1,ba3) for m > 4; (2) %m devi-
ations b1, bas, bes, bsz, - - - (without common subscript) for m = 8,10,12; (3) five
deviations b43, bse, be2, bs7, bg1 (with a common subs\cript 2) for m = 10. In simu-
lation, 200 (or 250, 300, see Table 5.3) random matrices were generated for every
dimension m. Because the non-positive or ill-conditioned matrices (the minimal
eigenvalue Amin < 0.0015) should be deleted, the number of integrals to be eval-
uated was less than-200. In computing, we first used Theorem 2 to evaluate an
integral, and the result was regarded as a ‘true’ value, and then we used approxi-
mation (2.2) (each R®) contained only one deviation) to evaluate the same integral
again, in the latter, a;’s and b;;’s were regarded as ‘unknown’, and they must be
solved by L; algorithm described in Section 4. The error in Table 5.3 was the
difference between the true’ value and the approximation. We had used several
seeds in simulation, but their results had not significant difference, and the Table
5.3 was arbitrary one taken from them.

In the table, there was an interesting phenomenon that the error was not
monotone increasing with the dimension m if the number of deviations was not
changed (see the case of two deviations). Perhaps, the reason could be found by
considering the process of evaluation of integral. In fact, before using approxi-
mation (2.2), we employed the decomposition technique under L; to get the a;’s
and b;;’s. When m was large enough, the degrees of freedom of L; solution was
large too because the sum of deviations added to the R was not changed. In
other words, Y |bij| from L; mjght less than the original value 'assigned. This
phenomenon implicated tha.t our a.lgonthm ha.d a strong power when dimension
m was large.

Arbitrary high-dimensional normal integral. A difficulty to asses an
algorithm used for the arbitrary high-dimensional normal mteg’rals is that we do
not know the accurate results of those integrals. To asses our apprommatlon
(2.2) we defined the half- difference as follows:” supposed that the correlations Ti;’s
(i # §) had only two different values a and a + b, and the two sides were equal
in number denoted n. There were two procedures to evaluate an integral. (1)
Forward computing. In this case, the elements of matrix R(® were R( ) = =a, V(i #

7). The value of b was regarded as a deviation, hence we had n ma.trlces R®),
the difference between R(?) and R(*) was only in ‘one element, and this element
had value a +b. (2) Backward computing. R( ) Za+b, Y(i # j). The value

of deviation was —b. We also had n matrices R(t) the difference between R(®)
and R(®) was only in one element, and this element had value a. Denoted the
above two evaluations for the same integral as @}, and ®;, respectively, and let
%(‘I):, + @) be the final approximation, the half-difference %]@;ﬁ, — & | was then
-used for assessment. The simulation results were listed in Table 5.4, in which
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the sample size was 100, and the dimension m made the number of correlations
even. From a first gla.nce each deviation |b] = 0.1 was not large, but the number
of deviations i—m( m = 1) was large, hence ¥ |b;;| was large too. For example,
¥ |bij| = 3.3 if m =12. On'the other hand, we had not adjusted a; and b;; to
reduce the level of dev1a.t10n as in the case of quasi-decomposable matrix. In one

word, our approxlma.tlon (2 2) had a good efﬁc1ency

Table 5.4 Half-difference Erequency of approximation (2. 2)

dimension m 4 5 8 9 12
correlation a 30 0 .50 . .60 .60 .20
- - deviation b .10 -10 .10 -.10 -.10
. Tibij| - 30 050 140 1.80 3.30
“freq € [0, .000005) 16 9 2 3 2
_ [-000005, ..000010) 15 9 6 1 1
" '[.000010, ~000050) ~ 31 22 9 6 12
~*.000050, *.000100) 21 7 27 10 11 8
--{-.000100, ..000250) - 17 22 28 34 22
[-000250, .000500)" ] 11 30 36 47
[-000500, .000750). 12 7 5
{-000750; .001000) . _ 3 2 3
cumulative freq. . -.100 100 100 100 100
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