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Abstract: Many applications of nonparametric tests based on curve estimation involve selecting a smooth- 
ing parameter. The author proposes an adaptive test that combines several generalized likelihood ratio tests 
in order to get power performance nearly equal to whichever of the component tests is best. She derives the 
asymptotic joint distribution of the component tests and that of the proposed test under the null hypothesis. 
She also develops a simple method of selecting the smoothing parameters for the proposed test and presents 
two approximate methods for obtaining its P-value. Finally, she evaluates the proposed test through simu- 
lations and illustrates its application to a set of real data. 

Tests adaptatifs de fonctions de regression fondes 
sur des rapports de vraisemblances multi-echelle generalises 
R&sum&:Moult applications des tests non paramktriques basks sur l'estimation de courbes font intervenir 
un paramktre de lissage. L'auteure propose un test adaptatif qui allie plusieurs tests du rapport de vraisem- 
blances gknkralisks et rivalise de puissance avec le meilleur d'entre eux. Elle dktermine la loi asymptotique 
conjointe des tests individuels et celle du test global sous I'hypothkse nulle. Elle montre aussi comment sk- 
lectionner facilement les paramktres de lissage du test global et propose deux mkthodes de calcul approchk 
de son seuil. Elle examine en outre le comportement du test proposk par voie de simulations et en illustre 
I'emploi dans un cas concret. 

1. INTRODUCTION 

Recently a series of model specification tests have been developed that combine nonparametric 
regression techniques, or "scatterplot smoothing." Without assuming any particular paramet- 
ric form of the underlying regression function, nonparametric tests overcome the drawbacks of 
conventional parametric tests by broadening the scope of applications and guarding against mod- 
elling biases. Regardless of which nonparametric smoothing technique is employed, nonpara- 
metric tests demand suitable selection of the smoothing parameter. Examples of the smoothing 
parameter include the order in orthogonal series and thresholding approaches, the penalty factor 
in smoothing splines, and the bandwidth parameter in kernel and local polynomial regression, 
among others. Since the treatments can be adjusted analogously to tests based on other non- 
parametric estimation methods, in this paper we shall focus on bandwidth selection for local 
polynomial based tests. 

There are many smoothing parameter selectors available in the literature. These include 
cross-validation (Stone 1974), generalized cross-validation (Wahba 1977), the pre-asymptotic 
substitutionmethod (Fan & Gijbels 1995), the plug-in method (Ruppert, Sheather &Wand 1995), 
and many others. Unfortunately, straightforward applications of these types of approaches to the 
context of nonparametric hypothesis testing will encounter difficulties. This is mainly due to the 
following two reasons. First, as Ingster (1982) showed, the optimal rate for the smoothing param- 
eter for nonparametric testing is different from that for nonparametric function estimation. In the 
latter context, the smoothing criterion is based on minimizing mean (integrated) squared errors, 
thus balancing the trade-off between bias and variance of the nonparametric estimator. In the 
former context, on the other hand, the optimal smoothing rule is defined so that contiguous alter- 
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natives with the fastest possible rate of convergence to the null can be detected consistently, thus 
rendering a most powerful test. In the practical applications of smoothing-based tests, however, 
Ingster's work has not been taken into account. Secondly, the best constant associated with the 
optimal rate of smoothing parameter for nonparametric test is generally not available, and cannot 
be determined from the formulation and derivation of the resulting optimal rate. This stands in 
stark contrast to nonparametric curve fitting, for which the best constant in the optimal rate for 
the smoothing parameter can be derived analytically and estimated consistently. A rate-optimal 
test, in the sense of Ingster (1982), was recently proposed in Fan, Zhang & Zhang (2001), based 
on the generalized likelihood ratio (GLR) statistic combined with the local polynomial smoother. 
While theoretical properties of the GLR test were justified asymptotically in the same paper for 
a variety of useful models, including the Gaussian white noise model, nonparametric regres- 
sion model, varying coefficient model and generalized varying coefficient model, little attention 
has been focused on examining the finite-sample properties and smoothing parameter selection 
of the GLR test. These two reasons motivate our theoretical and methodological study here of 
multiscale generalized likelihood ratio. 

An alternative approach for choosing the amount of smoothing consists of repeating the cor- 
responding nonparametric test procedure across several selected values of a smoothing param- 
eter. King, Hart & Wehrly (1991) and Azzalini & Bowman (1993) recommended plotting the 
observed significance against a range of smoothing parameters. They observed from the "signif- 
icance trace" a remarkable stability of the P-values over a grid of smoothing parameters, except 
those over extremely small values, and concluded that the smoothing parameter is less impor- 
tant in nonparametric tests. Similar observations were reported in Hiirdle & Mamrnen (1993), 
Young & Bowman (1995), Bowman & Young (1996) and Kauermann & Tutz (1999), but no fur-
ther convincing explanation has been given. On the other hand, Firth, Glosup & Hinkley (1991) 
discussed via asymptotic expansion how the smoothing parameter will affect the power of a test, 
and emphasized the need to incorporate an empirically chosen smoothing parameter into test 
procedures. Likewise, a simulation study which examines the effect of smoothing parameter on 
power was given in Raz (1990). Since one may not, in general, be informed of the kind of alter- 
natives expected, it is desirable to develop nonparametric tests which have high power against a 
broad class of alternatives. 

Our approach can briefly be described as follows. We first consider the GLR tests with mul- 
tiple smoothing parameters, say h l ,  . . ., h J , which span a wide range of reasonable smoothing 
parameters, yet are optimal in the rate of Ingster (1982) and Fan, Zhang & Zhang (2001). De- 
pending on the nature of the alternative model [data], the power [P-value] of the GLR test will 
vary with different values of hj. We shall take the maximum of the corresponding (normalized) 
GLR tests as a new test procedure, called a multiscale generalized likelihood ratio (MGLR) test. 
Our simulations show that the GLR test, with a single smoothing parameter, will usually suffer 
from power loss, while the discriminating power of the MGLR test is always close to that of the 
best GLR test, which uses the favorable but unknown scale of smoothing parameter. Namely, the 
MGLR test is nearly as powerful as if the GLR test with an unknown optimal smoothing parame- 
ter were used. This is the adaptive feature enjoyed by the MGLR test. Furthermore, the power of 
the MGLR test is competitive with the power of the adaptive Neyman test (Fan & Huang 2001), 
which does not depend on the degree of smoothness of the underlying regression function and 
theoretically achieves the adaptively optimal rate of convergence of nonparametric hypothesis 
testing. Compared with the adaptive Neyman test (ANT), the null distribution of the MGLR 
statistic can be approximated more accurately and thus enables one to obtain the P-value for the 
observed data more precisely. Moreover, our methodology of the MGLR test can be modified in 
a straightforward way to handle other more complicated models even with heteroscedasticity. 

The rest of the article is organized as follows. In Section 2, we formulate the MGLR test 
statistic and derive its asymptotic null distribution. Specifically, we derive the asymptotic expres- 
sions for the correlation coefficients between the GLR statistics; our results explain the aforemen- 
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tioned stability in the significance trace. Issues about calibrating the P-value and level-a critical 
value associated with the MGLR test are studied in Section 3. In Section 4, we propose an em- 
pirical method of selecting smoothing parameters for the GLR and MGLR tests. In Section 5, 
we report on simulation evaluations of the powers of the MGLR test in comparison with the 
F-test and ANT. We apply the MGLR test to a real-data example in Section 6. A summary and 
concluding remarks are provided in Section 7. Technical proofs are postponed to the Appendix. 

2. TESTS OF REGRESSION FUNCTION 

2.1. Background. 

We first briefly outline the GLR test proposed in Fan, Zhang & Zhang (2001). Suppose we 
are given independent observations, ( X I ,  Y l )  , . . ., ( X , ,Y,), from a nonparametric regression 
model, 

Y = m ( X )+ E ,  (1) 

where, conditional on the predictor variable X,  the error E has a normal distribution with mean 
zero and unknown variance u2. The mean regression function, m(x)  = E (Y 1 X = x),  is 
assumed to belong to M ,  a smooth functional space. Let I I k  = (00+ O1x+ . . . + Okxk : 0 = 
(80,81,  . . . ,Ok)'  E lRktl) denote the set of polynomial regression functions of degree k, where 
the superscript ' stands for the transpose of a vector or matrix. Suppose we are interested in 
testing 

310 : m(x)E I Ik  versus 311 : m(x)E M\IIk. (2) 

To derive the GLR statistic, consider the conditional log-likelihood function from (I), expressed 

Let mg ( . ) stand for the maximum likelihood estimator (MLE) under 310, in which denotes the 
MLE of the unknown parameter 0. Usually, the MLE of m(.)will not exist under 311. In such 
instances, one could carry out a nonparametric fit, for example the pth degree local polynomial 
estimate (Fan & Gijbels 1996), which is denoted by &h ( . ). That is, at a fitting point x, &h ( x )  

* * * 
is the estimated intercept PO,where p = (PO,. . . ,Pp)' minimizes the weighted sum of squared 
residuals, 

Here, the smoothing parameter h > 0 is the bandwidth which governs the size of the local 
neighbourhood, and K is called the kernel function. Denote by RSSo the residual sum of squares 
under 310,and by RSSl (h)  under 311;that is, RSSo = xy=l{ K  -mg (Xi)) ' ,  and RSSl (h)  = 
Cy=l{Y, - Then the logarithm of the conditional nonparametric likelihood ratio & h ( ~ i ) ) 2 .  
statistic for (2), given by 

A, (h)= en ( H I )- en (Ho)= (n/2) log{RSSolRSSl ( h ) ) ,  (3) 

is called a GLR statistic. It is asymptotically equivalent to the Azzalini & Bowman (1993) 
statistic. We make another remark here; that is, even if we drop the normality assumption in (I), 
A, (h )itself as a valid statistic can still be utilized to assess the goodness of fit of a polynomial 
regression, under the general nonparametric regression model, 

In this case, the conditional variance function u2( x )is assumed only to be smooth. 
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The bandwidth h plays an important role in tuning the performances of the curve estimator 
Gh( . ) and the resulting test statistic A, ( h ) .  In case of extremely undersmoothing, i.e., h + 0 , it 
follows from (3) that A, ( h )  ++m,whereas at the opposite extreme of oversmoothing, namely, 
h + +m, it is seen that A,(h) + 0. In general, X,(h) with smaller h tends to be more 
powerful in detecting alternative regression functions containing higher-frequency components, 
while A, ( h )  with larger h tends to have better powers against lower-frequency components of 
the alternatives (Hart 1997, p. 160). However, in the absence of prior knowledge about the 
alternative models, it is not clear how to determine a suitable value of h E (0, +m),for which 
the test is sensitive to as broad a set of alternatives as possible. This indicates that one particular 
choice of h either is subjective or suffers from power loss; see also the simulations in Section 5 
below. Inspired by the idea of ANT proposed by Fan (1996), an alternative suggestion that 
takes into account multiple bandwidths is based on the maximum value of the normalized GLR 
statistics with J distinct bandwidths, h l ,  . . ., h J .  We shall refer to a test formed in this manner 
as a multiscale generalized likelihood ratio (MGLR) test. Nonetheless, the application of the 
"multi-scale" adaptive version is not restricted to a GLR statistic; it can be applied analogously 
to other types of smoothing-based test statistics, a comprehensive survey of which can be found 
in Hart (1997). 

Traditional kernel regression, or local constant fit @ = O ) ,  has also been employed frequently 
for model assessment. Due to the inherent boundary bias problem introduced by kernel estima- 
tors, kernel-based test statistics need bias corrections via either the boundary modifications of 
Rice (1984) or employing "boundary kernels" (Gasser & Miiller 1979). This approach was uti- 
lized in Azzalini, Bowman & Hiirdle (1989) and Huang (1997). Using boundary kernels, Hart & 
Wehrly (1992) proposed the data-driven bandwidth as a test statistic for assessing the adequacy 
of polynomial regression models. Compared with kernel smoothing of regression functions, local 
polynomial estimators enjoy the theoretical advantages of design-adaptation, automatic bound- 
ary correction, and minimax efficiency. 

A local polynomial estimator of degree p is unbiased for a kth degree polynomial function, if 
k _< p. This flexibility makes it attractive to develop tests based on local polynomial fit. For this 
reason, we shall assume p > k when conducting the MGLR test combined with the pth degree 
local polynomial fit. (Setting p = k is convenient to avoid stronger smoothness assumptions 
on m(x).) 

2.2.Large-sample property of the MGLR test. 

A sequence of GLR statistics evaluated at multiple bandwidths no longer consists of mutually in- 
dependent terms. When the null hypothesis in (2) holds, however, their asymptotic joint distribu- 
tion will be derived in Theorem 1 below, under the general nonparametric regression model (4). 
After that, we will deduce the asymptotic null distribution of the MGLR statistic. For ease of 
presentation, we fist introduce some necessary notations. We denote by K ( t ;p) the equivalent 
kernel function (defined in (18) of the Appendix), induced from the pth degree local polyno- 
mial smoother with a basic kernel function K ( t ) ;the dependence of K  ( t )  on p will be dropped 
wherever this simplification is clear from the context. Define cx = K  ( 0 )  - 2-'K * K ( 0 ) and 

K ( 0 )- 2 - l K  * K ( 0 )
TK = 

J { K ( t )  - 2 - l K  * K ( t ) 1 2  d t '  

where * denotes the convolution operator. For C # 0 , set KC ( .) = K ( ./C ) /C .For an integer 
J 2 1and constants Cij > 0 , put 

c;i2J { K ( ~ )- 2-'K * K ( t ) } { K c i j ( t )- 2-'h-c,, * Kc,, ( t ) }  d t  
Yij = S { n ( t )- 2 - 1 ~* ~ ( t ) ) 2 d t  

, l < i L j < J .  (5 )  
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THEOREM1. Assume the general nonparametric regression model (4).Assume 

(Al) 	The marginal density f ( 2 )of X is Lipschitz continuous and bounded away from 0. The 
variable X has a bounded support Q. 

(A2) The mean regression function m ( x )has the continuous (p+ 1)th derivative and u 2 ( x )is 
continuous. 

(A3) 	The kernelfunction K ( t )is a symmetric probability densityfunction with bounded support, 
and is Lipschitz continuous. 

For afinite integer J > 1, let hl < . . .  < h ~ ,  = h > 0, and define Cijwhere hi = hj/hi .  
Assume that Cij,  1 5 i < j 5 J ,  are constants. Then under the null hypothesis in ( 2 )  with 
k <- p, as n +co,h + 0, nh3I2 -+ co,it follows that 

T ~ A n ( h j )-Dn(hi )  A max Z,,max Jwl < j < ~  	 ~ < . I < J  

where +c 
denotes converges in distribution, 

and ( Z 1 ,. . .,ZJ)' is a mean-zero normal random vector with a correlation coeficient matrix 
R = ( ~ j j ) l < j ,j g  J with yjj, 1 < i 5 j 5 J ,  as given in (5 ) .  

The detailed proof of this theorem is rather involved; a short sketch is given in the Appendix. 
For notational convenience, we denote { T K  An (h )  -Dn ( h )  ) / d mby GLR(h),and denote 
maxl<j<J GLR(hj)  by MGLR. As a consequence, the MGLR test rejects X0at a significance 
level a. if 

max GLR(hj)  = max 
TKAn (h j )  -Dn (h j )  2Z a ; J ,

l < j < J  l < j < J  d w 
where the critical value, z,; J ,  satisfies 

Numerical calculation of 2,; J is described in Section 3. For the special case of J = 1 and 
p = 1, Theorem 1 reduces to a GLR test, proposed in Fan, Zhang & Zhang (2001), for assessing 
linearity, based on the local linear fit. 

From a practical point of view, the variance function 02( .) is usually unknown, and thus the 
variance-dependent quantities in (7) need to be estimated. An appeal to Slutsky's theorem shows 
that u2 ( . ) can be replaced by any consistent estimate of u2 ( .) without altering the conclusion 
of Theorem 1; see the local variance estimator of Fan & Yao (1998) based on local polynomial 
regression. Hence, the MGLR test can be used to make inference about a regression function in 
a heteroscedastic regression model. 

Clearly, for a homoscedastic model (i.e., u2(x )  u2), we obtain from (7) that T K  = T K  and 
Dn ( h j )  = rxcx lR lh i  l ,  and therefore statement (6) simplifies to 

max 
r ~ A n ( h j )- ~ K C KlQlhrl +L 

maX Z j ,  
l < j < J  ~ < . I S J  
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where 1RI represents the length of a. Thus the null distribution of the MGLR test, in this case, 
is asymptotically independent of the nuisance parameters, 8 and u2,and the design density f .  

As evidenced by Theorem 1, the normality assumption for the stochastic error E in (4) is not 
required. Divergence from this assumption may deteriorate powers of some other test procedures, 
e.g., the normal-theory F-test and the adaptive Neyman test. On the other hand, when the errors 
are indeed normally distributed, the exact distributions of some proposed test statistics can be 
derived; see examples given in Diblasi & Bowman (1997). 

TABLE1: Kernel-dependent constants of rK and CK from the pth degree local polynomial fit. 

Kernel K rK C K  rK CK rK CK 

Uniform 1.1999 0.2500 1.3964 0.5625 1.4998 0.8789 

Epanechnikov 2.1153 0.4500 1.9755 0.7812 1.9336 1.1043 

Biweight 2.3061 0.5804 2.1283 0.9370 2.0620 1.2715 

Triweight 2.3797 0.6858 2.1946 1.0682 2.1219 1.4161 

Gaussian N(0,3-') 2.5375 0.7737 2.3569 1.0812 2.2849 1.3081 

To facilitate implementing the MGLR test, we tabulate in Table 1 the constants rK and CK 
for several commonly used kernel functions belonging to the "symmetric Beta family" (Fan & 
Gijbels 1996, p. 15), 

There, the Uniform, Epanechnikov, Biweight, and Triweight kernels correspond to the index C, 
in (lo), equal to 0, 1, 2, and 3, respectively. Note also that, in Theorem 1, the bounded support 
assumption on K is merely for technical simplicity; it can possibly be relaxed. Hence, for the 
sake of comparison, we include the Gaussian kernel as a limit of (10) when the index 1tends 
to infinity; in particular, the Gaussian kernel with mean 0 and standard deviation 3-' can be 
regarded as having a support comparable with the support [- 1,1] of the Beta-family. The figures 
in Table 1 also demonstrate that the constants rK and c ~ :  induced from the local polynomial 
estimation of an odd degree p = 21 + 1coincide with those obtained from the local polynomial 
estimation of an even degree p = 2C. This relation can indeed be verified analytically, as shown 
in the following lemma. 

LEMMA 1. Assume that K (t) is a symmetric probability densityfunction. Then K (t;21 + 1) = 
K(t;21),fort E R a n d 1 = 0 , 1 ,  . . . .  

2.3. Correlation structure of MGLR. 

In this section, we examine the structure of 12, the correlation coefficient matrix obtained in 
Theorem 1. Under the null hypothesis, for 1 5 i 5 j 5 J, each entry y j j  asymptotically 
measures the degree of linear association between GLR(h,) and GLR(hj). For brevity, let us 
first consider the case where p = 0 or p = 1,either of which by Lemma 1 implies K = K. In 
this case, the positive correlation is established in Theorem 2, under general assumptions on K. 
For degrees p 2 2, we conjecture that the y i j  are positive, under the assumption on K given in 
Theorem 2; numerical evaluations of the yij, when p = 2,3,4,5,  and K is given by (10) with 
1= 0 , 1 , 2 , 3 ,oo,lend support to this conjecture. 

THEOREM2. For p = 0, 1, if K is a symmetric unimodal probability density, then the y j j  as 
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dejined in ( 5 )are strictly positive with a lower bound equal to 

for any C,j 2 1. 

Applying the Cauchy-Schwartz inequality to (3,we can only deduce lyij 1 5 1. Moreover, 
the use of Theorem 2 enables us to verify the condition on Ci j  under which yij achieves its upper 
bound 1. 

COROLLARY 0 ,1 ,  i f K  is a symmetric unimodalprobabilitydensity,then forthe yjj,1. Forp = 
dejined in ( 5 )with C j j  2 1, it follows that yjj = 1 i f fCjj  = 1 iff i = j .  

For numerical illustration, we evaluate below the matrix R for J = 5, in which p = 0 (or 
p = 1)  is used. For simplicity of implementation we choose a geometric grid of bandwidths, 
{ h j  = C j - l h ,  j = 1 , .  . . ,J ,  C 2 11, which results in bandwidth ratios C i j  = Cj-< The 
matrix 721.2corresponds to C = 1.2, whereas R1.5 corresponds to C = 1.5. 

( 1 )  If Ii' is the Epanechnikov kernel function, 

- 1 .9655 3927 3126 .7388-

.9655 1 .9655 23927 2126 

Rl,2= 3927 .9655 1 .9655 3927 , 
3126 3927 .9655 1 .9655 

-.7388 A126 .8927 .9655 1 _ 
1 3747 .7084 .5765 .4703-

A747 1 A747 .7084 .5765 

?2.1.5 = .7084 3747 1 3747 .7084 . 

.5765 .7084 3747 1 3747 

,.4703 .5765 .7084 3747 1 -
For instance, the figures, 3747,  .7084, .5765, and .4703, in the first row of 721.5, represent 
the correlation coefficients between G L R ( h )and GLR(1.5h),  GLR(2.25h), GLR(3.375h), and 
GLR(5.0625h), respectively. The lower bounds for the distinct off-diagonal entries of 721.2, 
according to Theorem 2, are .7204, .6787, .6337, and .5879; in R 1 . 5 ,  the lower bounds are 
.6688, .5676, .4721, and .3889. 

( 2 )  If K is the Gaussian kernel function, 
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The lower bounds for the distinct off-diagonal entries of R1.2are .7168, .6868, .6538, and .6 176; 
in the lower bounds are .6797, .6005, .5127, and .4280. 

In summary, the matrix R, evaluated in the cases discussed in the paragraph before Theo- 
rem 2, leads to several interesting conclusions for the joint distribution of GLR(hj), 1 < j < J, 
under the null hypothesis. First, GLR(h) and GLR(Ch), for any factor C 21, are positivelycor- 
related. This is consistent with the observation that the visual difference between the estimated 
regression curves, with bandwidths, say h, 1.2h and 1.5h, does not appear substantial. Therefore, 
for the same set of observed data, the associated GLR test statistics are anticipated to produce 
consistently large or small P-values. Secondly, the larger C is, the further h deviates from Ch, 
and the smaller the correlation between GLR(h) and GLR(Ch) is. Thirdly, given the same factor 
C 2 1, a Gaussian kernel yields a slightly larger correlation between GLR(h) and GLR(Ch) 
than the Beta-family kernels. These three conclusions justify the empirical findings (see Intro- 
duction) that P-values tend to be stable over a range of smoothing parameters, especially when a 
Gaussian kernel is employed in such numerical work. For the sake of computational expediency, 
we shall take the Epanechnikov kernel, throughout our subsequent simulations. Fourthly, R pro-
vides helpful guidance on how to select the bandwidth grid {hj , 1 < j < J )  for GLR statistics, 
without introducing extreme undersmoothing and oversmoothing. Typically, J = 3 and J = 5 
suffice for practical implementations. Further discussions on choosing J and C are addressed in 
Section 3. 

3. COMPUTATION METHODS FOR LEVEL-a CRITICAL VALUE AND P-VALUE 

3.1. Asymptotic method: large-sample sizes. 

We now discuss the computation of z,; J ,  specified in (8), the theoretical 100(1- a)th percentile 
of the MGLR statistic under the null hypothesis. As in Section 2.3, we always consider the geo- 
metric style of bandwidth grid. Using local polynomial regression, of degrees p = 0,1,2,3,4,5,  
the quantiles are listed in Table 2. For J = 3, 2,; J is evaluated using the method proposed in 
Yang & Zhang (1997); for J = 5, due to the lack of available numerical procedures, z,; J is 
estimated based on Monte-Carlo percentage points, using 1,000,000 samples. 

TABLE2: The 100(1 - a) th percentile 2,; J as defined in (8) associated with the pth degree local 
polynomial regression method, using the Epanechnikov kernel function and the geometric bandwidths 

h, = CJ-'h, 15 j 5 J .  

Recall that in Theorem 1, the matrix 72 = (yjj) is determined by only J - 1distinct entries, 
which are strictly positive in the cases discussed in the paragraph before Theorem 2. Hence 
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following Slepian's theorem (Gupta 1963, p. 805), we can approximate the asymptotic P-value 
of the MGLR test, P { m a x ( Z 1 ,. . . ,Z J )  > z ) ,  by its lower and upper bounds given in the 
inequalities, 

1 - Jm- @ ~ ( ~ ~ + ~ 5) P~( l ( j < Jm a x  Z j  ~ >) z1d( ~ 

Here, y,i, and y,, represent the smallest and largest off-diagonal values of yjj; + ( x )  and 
@ ( x )denote the probability density and cumulative distribution functions of the standard normal 
distribution. 

Plotting (omitted here) the Slepian bounds of P ( m a x ( Z 1 ,. . .,Z J )  > z )  with respect to 
z shows that when values of z are large, the approximation of the exact tail probability by the 
Slepian bounds improves greatly without producing computational burden. For the same value 
of z ,  the approximation gets poorer for larger J ;  for the same level a of significance, the Slepian 
bounds when C = 1.2 are similar to those when C = 1.5. This observation also justifies the 
adoption of C = 1.5 and J = 3, by which the MGLR test can simultaneously adapt to broader 
alternatives and enhance the approximation accuracy of its quantiles. 

3.2. Simulation method: small sample sizes. 

For realistic finite sample sizes, the limiting normal distribution may not approximate well the 
null distribution of an individual GLR statistic, expressed in a quadratic form. Similarly, the 
distribution of the maximum of correlated normal random variables may not provide a good 
approximation for the null distribution of the MGLR statistic. 

To deal with this problem, we propose a simulation method which consists of three steps. 
This method works well even for sample sizes equal to 50; see the simulation study in Section 4. 

Step 1: For the original set of observations, { ( X i ,X),i = 1, . . .,n ) ,  obtain the bandwidths 
h l , . . .,hJ ,  using the method described in Section 4 below. Compute MGLkb,, the ob- 
served MGLR statistic. 

Step 2: Choose regressor variables, Xi, i = 1, . . .,n ,  equally spaced on the interval [0,  11. 
(This choice can serve to ease a heavy computation.) Generate independent responses Yi 
following a standard normal distribution. (This choice does not lose generality.) Based on 
the set of simulated data { ( X i ,Y i ) , i = 1 , .  . .,n ) ,  obtain GLR(hl), . . .,GLR(hJ ) ,  and 
MGLR. 

Step 3: Replicate Step 2 many times, say 1000,and obtain the estimated cutoff points of z,; J for 
the MGLR statistic. Similarly, compute the proportion of times that the simulated MGLR 
statistics exceed MGLbb,; this yields the estimated P-value. 

4. BANDWIDTH SELECTION 

As discussed in the Introduction, the bandwidth h should be chosen to yield the most powerful 
test. In striking contrast to the extensive studies on optimal bandwidth selection in the areas of 
kernel density and local polynomial regression estimations, this equally important key issue in 
nonparametric testing has not received the attention it deserves, partly due to the difficult nature 
of this problem. 

Recently, Fan, Zhang & Zhang (2001) showed that using the pth degree local polynomial 
estimation with the optimal bandwidth of rate n-2/(4J'+5), the GLR test can detect alternatives 
converging to the null at the rate n-2(p+1)f(4p+5),which is the optimal rate of convergence of 
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nonparametric testing (Ingster 1982; Lepski & Spokoiny 1999). Recall that n - ' / ( ' ~ + ~ )is the op- 
timal rate of bandwidth for nonparametric function estimation. Comparing the rates n-2/(4pS5)  
with n-1/(2pt3),we see that a powerful nonparametric test requires undersmoothing. 

In order to develop a simple choice of bandwidth for conducting the (M)GLR tests, we shall 
first rescale the range of the observed regressor variable X to the interval [0, 11. Call X* the 
rescaled variable. Based on the optimal rate of bandwidth above and the dispersion of X * ,  we 
suggest a deterministic choice of bandwidth, calculated from an empirical formula, 

where 7) stands for a constant. According to Theorem 1, the null distribution of the (M)GLR 
statistic, under a homoscedastic regression model, is asymptotically independent of the nuisance 
parameters 8 and u 2 and the design density f .  This property enables us to simulate directly the 
null distribution of a GLR statistic, which incorporates h* in (12), to compare this simulated 
distribution with reference to the asymptotic normal (or chi-squared) distribution, and to seek 
7) resulting in close approximation, in terms of agreement of the type-I errors. For multiple 
bandwidths, we set as in Section 2.3 the geometric type of bandwidth grid, {. ..,C W 2 h * ,C-I h*,  
h* ,Ch*,C 2 h * ,. . .),for undersmoothing and oversmoothing, and in turn the MGLR test will be 
adaptive to differing patterns of the alternative models. In the simulations below, J = 3 and 
C = 1.5 are used. 

(c) (dl 

FIGURE1: The kernel density estimate of GLR(h*) when data are generated from model 

Y = 1+2X + E, where X and& are independent. Panel (a) -X -U(-2,2) and E - aN(0,l); 


(b)-X - U(-2, 2) and E - a{Beta(2,3) - .4}; (c) -X - N(0,l) and E - aN(0,l); 

(d) -X - N(0,l) and E - a{Beta(2,3) - .4}. The variance of the error E is determined 


such that the signal-to-noise ratio equals 4. 


To illustrate this procedure, in a first series of simulations, 1000 replicates of observations 
{ ( X i ,x), i = 1,. . . ,n ) are generated from a simple linear regression model, 
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where X and E are independent. In this example, the null distributions of the GLR(h*) and 
MGLR tests for linearity are examined. Four values of the sample size n, 50,100,200, and 400, 
are considered. To conduct the GLR(h*) test combined with local linear fitting, we set q = 1.5 
and p = 1in (12). Figure 1 presents the kernel density estimate (Fan & Gijbels 1996, p. 47) 
of the test statistic GLR(h*). Among the four panels, case (a) represents X - U(-2,2) and 
E - uN(0, l) ;  case (b) represents X - U(-2,2) and E - a{Beta(2,3) - .4); case (c) represents 
X - N (0 , l )  and E - 8 N  (0 , l ) ;  case (d) represents X - N(0,l) and E - a{Beta(2,3) - .4). 
In each case, u is determined such that the signal-to-noiseratio, defined by var{m(X))/ va r (~ ) ,  
equals 4. Based on the sample standard deviation of X*,  we take std(X*) = .29, when X -
U(-2,2); when X - N(0, l ) ,  we take std(X*) equal to .22, .20, .18 and .17 for sample size 
equal to 50,100,200 and 400, respectively. All plots show that, in the presence of either Gaussian 
or non-Gaussian errors, the simulated null distributions of GLR(h*) are not well approximated 
by normal distributions. However, the approximation by a distribution, (xif- df)/(2df)lI2, is 
good, where Xifhas a chi-squared distribution with degrees of freedom equal to ?'KcK/~*; see 
also (9). 

Table 3 summarizes the proportion of rejections in 1000 samples. There, the cutoff points of 
GLR(h*) are from those of the chi-squared distribution, whereas the cutoff points of MGLR use 
the approximate z,;3 described in Section 3.2. We observe from Table 3 that our suggested meth- 
ods for approximating the cutoff points of GLR and MGLR tests perform reasonably well. On 
the contrary, the asymptotic null distribution (type I extreme-value distribution) of ANT cannot 
provide a good approximation to the finite-sample distribution of ANT even with sample sizes 
as large as n = 800 (Fan 1996; Fan & Huang 2001). This drawback hampers the applicabilityof 
ANT to real data inference problems. 

To assess whether the choice q = 1.5 works well with other degrees p in the empirical for- 
mula (12), in the second simulation series we generate observations from a quadratic regression 
model, 

where X and E have the same distributional specifications as given in the four cases above. This 
time, local quadratic fits of degree p = 2 are conducted. Again we find that with q = 1.5, the 
X2 approximation to the null distribution of GLR(h*) is satisfactory, and therefore this choice is 
adopted throughout the remaining simulations. 

5. POWER COMPARISON 

To investigate both the size and power of the (M)GLR tests in finite samples, we conduct a small 
sample simulation, based on three models studied in Fan & Huang (2001). They are 

Example 1: Y = 1 + OX2 +E, 0 E [O,l], where X - U (-2,2) and E - N (0 , l ) ;  

Example 2: Y = 1 +cos(8Xn) +E, 0 E [O, 101, where X - N(0,l) and E - N(0,l); 

Example 3: Y = i0{1+ 0 e x p ( - 2 ~ ) ) - ~  + E, e E [0,2], where X - N(O,  1) and 
E - N(0,l). 

In each of the three examples, we test the hypothesis that the real regression function m(x) 
is linear, and it is assumed that X and E are independent. We also include the parametric F-
test for linearity versus quadratic nonlinearity. The paper by Fan & Huang (2001) has shown 
the adaptive optimality property of the ANT and demonstrated its power advantages over many 
other useful thresholding-style nonparametric tests. Regarding smoothing-based nonparametric 
tests, our present paper focuses more on examining the multiscale version of a given GLR test, 
for which a simple smoothing rule is developed in Section 4; however, a study of the amount of 
smoothing incorporated in other kernel-type nonparametric tests is not available in the literature. 
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TABLE3:Simulated rejection probabilities of the GLR(h8)and MGLR tests for linearity of model (13). 

In each case, 1000replicationsare used. The cutoff points of the GLR(h8)test are from those of 


X : K , I C , h . ,  whereas the cutoff points of the MGLR test use the approximate r , , ~described in Section 3.2. 


Case Test statistic n cu = .Ol ~u = .025 a = .05 a = .10 

(a) GLR(h8) 50 .011 .031 .058 .I17 
100 .009 .022 .052 .096 


200 .012 .025 .045 .084 


400 .009 .023 .043 .083 

MGLR 50 .009 .017 .041 .099 
100 .008 .037 .061 .I17 

200 .017 .027 .060 .I13 


400 .012 .027 .048 .lo3 


(b) GLR(h*) 50 .019 .032 .054 .lo5 
100 .003 .014 .038 .lo2 


200 .013 .025 .053 .091 


400 .004 .014 .042 .086 
MGLR 50 .029 .040 .058 .lo9 

100 .005 .023 .049 .I33 

200 .013 .031 .057 .lo9 

400 .007 .027 .061 .I14 


(c) GLR(h8) 50 .015 .049 .084 .I44 
100 .016 .039 .070 .I34 


200 .009 .023 .048 .I10 


400 .011 .025 .049 .lo6 

MGLR 50 .021 .042 .078 .I35 

100 .013 .037 .080 .I34 


200 .017 .032 .061 .I53 

400 .013 .027 .062 .I35 


(d) GLR(h8) 50 .008 .025 .060 .I14 

100 .010 .028 .053 .I17 


200 .010 .026 .051 .I13 

400 .006 .021 .053 .lo3 

MGLR 50 .008 .022 .042 .089 
100 .009 .030 .064 .I19 

200 .009 .029 .057 .I41 

400 .020 .044 .076 .I44 


For the purpose of illustration, we shall only make a power comparison between the (M)GLR, 
ANT, and F tests. To make the (M)GLR and ANT tests have significance level a = 5% we 
generate 10,000 independent samples {(Xi,Y,) ,i = 1 , . . . ,n) of sizes n = 50 and n = 100 
from each null model, with the index 0 = 0;  the critical values of these tests are determined 
by their 95th sample percentiles of the test statistics across 10,000 samples. For the (M)GLR 
test, three bandwidths hl = 1.5-lh*, h2 = h*,  and h3 = 1.5h* are employed in the local 
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linear smoothing. The empirical powers are estimated by the proportion of observed rejections 
in 500 samples of size n and are plotted in Figure 2 (left panels for n = 50, and right panels 
for n = 100). In all cases, the proposed tests hold their nominal levels well. Our simulations 
reveal that in Examples 1and 3, the GLR(h2)test is about as powerful as the MGLR test, but in 
Example 2 falls far behind the MGLR test. Thus for brevity of exposition,power curves by the 
GLR(h2)test are omitted. 

(a) Example 1: n S O  

(c) Example 2: n=50 

, 

(8) Example 3:  n=50 

(b) Example 1: n=100 

(d) Example 2:  n=100 

(f) Example 3:  n=100 

FIGURE2: Comparison of Power Curves. Dashed curves with star * : F-test; solid curves with circle o : 
MGLR; solid cwes with dot : adaptive Neyman test; dotdashedcurves with o :GLR(h1);dotdashed 

curves with : GLR(h3). The bottom dotted line represents the .05 significancelevel. 

Example 1attempts to compare the (M)GLR tests and ANT in a case where the parametric 
F-test performs best. Figures 2(a)-2(b) show that the GLR(h3) test is more powerful than the 
GLR(h1) test, and outperformsANT. The power of the MGLR test falls between powers of the 
GLR(hl) and GLR(h3) tests, and also slightly outperformsANT. As sample size increases, the 
power of MGLR is closer to that of GLR(h3).Example 2 intends to examine how powerful each 
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testing procedure is in detecting alternatives with different frequency components; the larger 
the 8, the higher the frequency. Since ANT is constructed specifically to detect high frequency 
alternatives, it is anticipated to be superior in this example to other tests. Figure 2(c) shows 
that the GLR(h3) test is more powerful in detecting alternatives of lower frequency, whereas 
GLR(h1) outperforms higher-frequency alternatives. Figure 2(d) shows that the MGLR test 
apparently performs much closer to the GLR(h1) test. The alternative model in Example 3 is 
ideal for the (M)GLR tests to detect. Figure 2(e) shows that GLR(h3) is more powerful than 
GLR(hl), and MGLR is closer to GLR(h3). Both GLR(h3) and MGLR are superior to ANT. 

In summary, the power of the GLR test depends on the choice of bandwidth parameter. 
Nonetheless, the MGLR test performs always close to the best of the three GLR tests, which is 
GLR(h3) in Example 1, GLR(h3) against lower-frequency (GLR(hl) against higher-frequency) 
alternatives in Example 2, and GLR(h3) in Example 3. Unlike the individual GLR tests, the 
adaptive feature enjoyed by the MGLR test makes it more desirable to be used in nonparametric 
testing. 

(a) k=l , h'=0.084452 (b) k=2, h'=0.12618 

(c) k=3, h'=O 15606 (d) k=4, h*=0.17801 
28 28 

FIGURE3: Fits to the Babinet Data. Circle : response; dotted line : the least-squares regression fit; dashed 
dotted curve, solid curve and dashed curve : the kth degree local polynomial fit with bandwidths 1.5-'h*, 

h* and 1.5h8,respectively. 

6.REAL DATA EXAMPLE 

As an illustration, we apply our MGLR test to a data set of moderate sample size found in Cleve- 
land (1993). The data consist of 355 observations resulting from an experiment on the scattering 
of sunlight in the atmosphere (Bellver 1987). The response variable Y is the Babinet point, the 
scattering angle at which the polarization of sunlight vanishes, while the explanatory variable X 
is the cube root of a measure of particulate concentration in the atmosphere. These data have 
been previously analyzed in Hart (1997) to test for the linearity of the underlying regression, the 
procedure of which essentially relies on the assumption of homoscedasticity. However, a residual 
plot considered by Hart (1997, p. 258) showed a certain amount of heteroscedastic pattern, which 



2003 ADAPTIVE TESTS OF REGRESSION FUNCTIONS 165 

can also be revealed from the nonparametric variance function estimation of Fan & Yao (1998). 
Naturally, our (M)GLR tests can take into account this structural variability. Figure 3 displays 
a scatter plot of the data (X has been re-scaled to the interval [0, I]), super-imposed with the 
kth degree polynomial regression line, k = 1,2,3,4,  and the kth degree local polynomial fits 
with three bandwidths, hl = 1.5-'h*, h2 = h* and hs = 1.5h*. In each panel of Figure 3, 
the bandwidth h* calculated from the empirical formula (12) for nonparametric testing, seems to 
work well for nonparametric curve fitting. 

Table 4 gives P-values of the MGLR and GLR tests for the polynomial regression of de- 
gree k. Notice that the P-values of the MGLR tests, based on the Slepian bounds (1 1) and the 
simulation method described in Section 3.2, are similar. The similarity can also be observed in 
the GLR tests, the P-values of which are calculated from the chi-squared approximation and 
the normal approximation. All four tests clearly indicate that a linear model for the observed 
data is not appropriate, which agrees with the conclusion based on the F-test and reached by 
Hart (1997) under the assumption of homoscedasticity. Furthermore for k = 2, the MGLR and 
GLR(h1) tests report evidence that a quadratic model does not describe the data well. However, 
all four tests give no evidence against a cubic model with k = 3. For k = 4, unlike the GLR(h2) 
and GLR(h3) tests, the MGLR and GLR(hl) tests are significant. Considerations of parsimony 
suggest the cubic nature of the regression. 

TABLE4: Babinet data: the estimated P-values. 

Test statistic Method k = l  k = 2 k = 3  k = 4  

MGLR simulation-based 
Slepian bounds 

GLR(h1) X2 -based 
N(0, 1)-based 

GLR(h2) x2-based 
N(0, 1)-based 

GLR(h3) x2-based 
N(0, 1)-based 

7. CONCLUSION 

In this article, we have focused on the smoothing parameter selection in nonparametric tests. 
We offer a simple empirical rule of bandwidth for performing the GLR test (Fan, Zhang & 
Zhang 2001), an optimal nonparametric test under the formulation of Ingster (1982). Based on 
power considerations, we further proposed the MGLR test employing multiple bandwidths, the 
rates of which are optimal in the sense of Ingster (1982) and Fan, Zhang & Zhang (2001). Sim-
ulations have shown that the MGLR test is nearly as powerful as the GLR test with an unknown 
optimal bandwidth. Furthermore, the power of the MGLR test is competitive with that of ANT, 
but compared with ANT, the finite-sample null distribution of MGLR can be approximated more 
accurately. Development of multiscale versions of other nonparametric tests will be straight- 
forward. Although our current work focuses on the local polynomial smoother, (M)GLR tests 
can be carried out in similar fashion for other nonparametric function estimation techniques, 
such as smoothing splines (see Zhang 2001) and wavelets. As demonstrated in Zhang (2000) 
and Zhang & Cheng (2003), the MGLR test can easily be extended to goodness of fit, partially 
linear models, multiple regression models, generalized varying coefficient models, etc. With 
the automatic and optimal smoothing parameter selection, and the well controlled type-I error 
and P-value, our test is ready to be used in practice as a useful diagnostic tool. Theoretically, 
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the finite-dimensional weak convergence of (GLR(hl) ,. . .,GLR(hJ ) ) '  in (6 )to a multivariate 
Gaussian random vector with mean zero and nontrivial covariance function also indicates the 
possibility of deriving a version of (6), with continuous scales of bandwidth in terms of the 
Gaussian random fields. Likewise, approximate formulas for the level, P-value, or more gener-
ally the tail probability, of this proposed statisticmight be obtained from results of Adler (1990) 
and Sun (1993). 

APPENDIX: DERIVATIONS 

Proof of Theorem 1. Tedious calculations(Zhang 2000) show that, under the null hypothesis, 

h 1 I 2 { ~ ~ ~ o- RSSl ( h ) )  

-- h-'12 [{21(0)  K * ~ ( 0 ) )  dx -310 2 ( x ) /f(.)- J ~ Z ( ~ )  dx]
nh 

Now denote the quadraticform in (14) by 

Slight modificationsof the arguments used in Theorem 5 of Fan, Zhang & Zhang (2001) guaran-
tee that 

To determine entries of the covariance matrix C = ( o i j )explicitly, we only need to evaluate the 
covariance a12 between Tn( h l )and Tn(h2).For any constants l1  and 12, we have 

where Wje= n-l {a l ( j ,f )  + a2 ( j ,e)- as(j ,f ) )&j&e,1 5 j < f 5 n7 with 

It followsthat 
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where 

{ 1 ~ ) / fx 2 r h 2( X I- X z ) / f( X i )- X:h2 ( x i  - v ) K h 2( X 2  - ( v )d V ) .  

Algebraic manipulations yield the following four expressions, 

These lead to 

lim var{f lTn ( h i )  + e2Tn ( h 2 ) )  
n--too 

Using the CrarnCr-Wold device, we deduce 
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where 

{ ~ ~ C ( ~ ) - X : * I C ( ~ ) ) ~ ~ ~ ,  

For al2, using properties of the convolution operator, we see that 

Similar arguments show 

Combining n- lRSSl(hj )  = E { a 2 ( X ) )+ op(n- ' I2)  + O p { ( n h j ) - l ) (Fan, Zhang & 
Zhang 2001) with (14), (15) and (16),we could then show that the joint distribution of 

converges in law to NJ ( 0 ,R),where R = ( y i j )with entries yij = aj j /o i i .  To derive the 
distributionofAn ( h j ) ,j = 1, . . . ,J,in(3), we apply the inequality, x(l+x)-I 5 log(l+x) 5 x 
for x > -1,which implies that 

An(hj)= 
n RSSo - RSSl(hj)  = -n RSSo - RSSl(hj)+ Op(n- 'h j2) .+~ p ( n - ~ h ; ~ )-
2 { RSs l (h j )  ) 2 RSSl(hj) 

This combined with (17) implies the asymptotic joint distribution; that is, 

which in turn leads to (6). 

Proof of Lemma 1. Let el,p+l = (1,0,. . . ,0)' denote a (p + 1) x 1 vector, and S p  = 
(pj+~)olj ,elpa (p+ 1) x (p+ 1)matrix, where pj = S t jK ( t )  dt. Then the equivalent kernel 
function K (t ;p) is expressed as 

(for details, see Fan & Gijbels 1996, p. 64). For p = 2&+ 1, we can write S p in the form, 
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where q = ( 0 ,pp+l,0 , pp+3, . . . , 0 ,pqp- l ) , O ) I .  The zero entries of q result from the assump- 
tion on the kernel K. Since p2, # 0 , we have 

where the symbol * denotes an entry whose explicit expression is not required in the following 
derivations. Applying the Sherman-Morrison-Woodbury formula (Golub & Van Loan 1996, 
p. 50) gives 

Observing that the zero entries of S;l ,  for any integer r > 0 ,  occur at the same locations as 
those of S , ,  we can easily show that e i , p ~ z l q= 0 .  Using this identity and putting (20) into 
(19), we obtain e i , p + l ~ p l  01, which leads to = [ e i , p ~ ; : l ,  

This, combined with (18), yields K ( t ;2&+ 1 )  = K ( t  ;2 4 .  

Proof of Theorem 2. Writing g = ( 4 K  * K c , ,  - 2K * ( K  * K c , , )  - 2 K c , ,  * ( K  * K c , , )  + 
( K  * K c , , )  * ( K  * K c , , ) } ( 0 ) ,  the numerator in (5) is equal to 4 - ' ~ : / ~ ~ .It suffices to check the 
expression, g - K * Kc, ,  ( 0 )  - ( K c , ,  - K * K c , , )  * ( K c , ,  - K * K c , , ) ( O ) ,which equals 

3K * K c , , ( O )  - 2K * ( K  * K c , , ) ( O )- K c , ,  * Kc, , (O) .  (21) 

For p = 0 and p = 1, we have K K. In this case, since both K and Kc, ,  are symmetric 
unimodal probability densities, the convolution K * K c , ,  is unimodal (Feller 1966, p. 164) and 
symmetric. It follows that 

K * ( K  * K c . , )  ( 0 )  = J K ( t )  K  * K G ,  ( t )  dt 5 sup K * KC, ,  ( t )  J K ( t )  dt = K * Kc, ,  ( 0 ) .  (22)
t€R 

Again since K is symmetric and unimodal we deduce K ( t )  5 K ( t / C i j ) ,if Cij 2 1, and thus 

Applying (22) and (23) to (21) indicates the desired lower bound. 
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