
The Canadian Journal of Statistics
Vol. 37, No. 1, 2009, Pages 119–139

La revue canadienne de statistique

119

New aspects of Bregman divergence in
regression and classification with parametric
and nonparametric estimation
Chunming ZHANG*, Yuan JIANG and Zuofeng SHANG

Department of Statistics, University of Wisconsin, Madison, WI 53706, USA

Key words and phrases: Asymptotic normality; Bayes optimal rule; consistency; local polynomial regres-

sion; loss function; prediction error.

MSC 2000: Primary 62F12, 62G20; secondary 62E20, 60F99.

Abstract: In statistical learning, regression and classification concern different types of the output variables,
and the predictive accuracy is quantified by different loss functions. This article explores new aspects

of Bregman divergence (BD), a notion which unifies nearly all of the commonly used loss functions in

regression and classification. The authors investigate the duality between BD and its generating function.

They further establish, under the framework of BD, asymptotic consistency and normality of parametric

and nonparametric regression estimators, derive the lower bound of their asymptotic covariance matrices,

and demonstrate the role that parametric and nonparametric regression estimation play in the performance

of classification procedures and related machine learning techniques. These theoretical results and new

numerical evidence show that the choice of loss function affects estimation procedures, whereas has an

asymptotically relatively negligible impact on classification performance. Applications of BD to statistical

model building and selection with non-Gaussian responses are also illustrated. The Canadian Journal of
Statistics 37: 119–139; 2009 © 2009 Statistical Society of Canada

Résumé: En apprentissage statistique, la régression et la classification demandent différents types de vari-

ables de sortie et la précision prédictive est quantifiée par des fonctions de perte différentes. Cet article explore

des nouveaux aspects de la divergence de Bregman (DB), une notion qui unifie presque toutes les fonctions

de perte usuelles utilisées en régression et en classification. Les auteurs étudient la dualité entre la divergence

de Bregman et sa fonction génératrice. De plus, ils établissent, dans le cadre DB, la cohérence asymptotique

et la normalité des estimateurs de régression paramétrique et non paramétrique. Ils ont aussi obtenu une borne

inférieure de leur matrice de variance-covariance asymptotique et ils ont démontré le rôle que les estimateurs

de régression paramétrique et non paramétrique jouent dans la performance des procédures de classification

et les techniques d’apprentissage machine. Ces résultats théoriques et de nouvelles évidences numériques

semblent indiquer que le choix de la fonction de perte affecte les procédures d’estimation tandis qu’il a un

impact non significatif sur les performance de classification. Cet article présente aussi des applications de

la divergence de Bregman à la construction de modèles statistiques et à la sélection avec des variables non

gaussiennes. La revue canadienne de statistique 37: 119–139; 2009 © 2009 Société statistique du Canada

1. INTRODUCTION
In statistical learning, the primary goals of regression and classification seem to be kept separate.

Regression methods concern the “orderable” output variable and aim to estimate the regression

function at points of the input variable, whereas the primary interest of classification rules for the

“categorical” output variable is to forecast the most likely class label for the output.

As discussed in Friedman (1997), both regression and classification can be viewed from the

common perspective of real valued prediction. Namely, given the training sample
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T = {(Xi, Yi), i = 1, . . . , n}, (1)

the goal of a supervised learning algorithm is to use (1) to construct a prediction rule for a future

output Y at the observed value of the input variableX. Depending on the nature of Y , the predictive
error is quantified by different error measures. For example, the quadratic loss has nice analytical

properties and is usually used in regression. However it is clearly not the most suitable loss

function in classification problems where the 0–1 loss (or misclassification loss) is more realistic

and commonly used in classification.

This article aims to study new aspects of Bregman divergence (BD), a notion which unifies

nearly all of the commonly used loss functions in regression and classification. Particularly, we

investigate the duality between BD and its generating function, which is shown to capture all

the important statistical properties of BD. We further establish, under the framework of BD,

asymptotic consistency and normality of parametric and nonparametric regression estimators,

derive the lower bound of their asymptotic covariance matrices, and demonstrate the role that

parametric and nonparametric regression estimation play in the performance of classification

procedures and relatedmachine learning techniques. The results will provide amore global insight

into regression and classification methods.

There has been extensive research on relating divergence minimization to regression and

classification. See Altun & Smola (2006), Nguyen, Wainwright & Jordan (2008) and references

therein. This article takes a different approach. For instance, our inverse method not only provides

necessary and sufficient conditions for a given loss being a BD but also derives an explicit formula

for solving the generating function. From another perspective, our study reveals that under mild

regularity conditions, the asymptotic distributionof the parametric regression estimator, underBD,

relies on the loss only through the second derivative of its generating function; such dependence

continues to arise from local regression estimation in the varying-coefficient regression model

(Hastie & Tibshirani, 1993) with multivariate predictors, but, curiously, is entirely absent from a

univariate nonparametric regression model. In the former two cases (i.e., parametric and varying-

coefficient estimation), wemanifest that if the generating function satisfies a “generalized Bartlett
identity,” then the asymptotic covariance matrix of the estimator achieves the lower bound; in

the third case (i.e., univariate nonparametric regression estimation), we bypass the need to seek

an optimal loss function. Besides, the impact of the estimation error of the regression estimator

on the misclassification risk can analytically be assessed. These theoretical results, and new

numerical evidence, show that the choice of loss function affects estimation procedures, whereas

has an asymptotically relatively negligible impact on classification performance. Moreover, we

illustrate that BD offers a versatile and useful tool for statistical model building and selection

with non-Gaussian responses.

This article is organized as follows. Section 2 briefly reviews BD and quantifies a range

of its new statistical properties. Section 3 explores the duality between BD and its generating

function. Section 4 studies the asymptotic behaviours of parametric estimation under BD, whereas

Section 5 establishes the asymptotic distribution of nonparametric function estimation under BD.

Section 6 applies results developed in Sections 2–5 to classification. Section 7 presents simulation

evaluations and demonstrates the applicability of BD to model building and selection. Technical

details are postponed to Appendix.

2. STATISTICAL PROPERTIES OF BREGMAN DIVERGENCE

2.1. Bregman Divergence
For a given concave q-function, Brègman (1967) introduced a device for constructing a bivariate

function,
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Figure 1: Illustration of Q(ν, µ) as defined in (2). The concave curve is the q-function; the two dashed
lines indicate locations of ν and µ; the solid strict line is q(µ) + (ν − µ)q′(µ); the length of the vertical line

with arrows at each end is Q(ν, µ).

Q(ν, µ) = −q(ν) + q(µ) + (ν − µ)q′(µ), (2)

defined for (ν, µ) ∈ M0 × M1, where Mk is the set of points at which the kth derivative of

the q-function exists. Figure 1 displays Q and the corresponding q-function. It is readily seen

that the concavity of q ensures the non-negativity of Q. Moreover, for a strictly concave q-

function, Q(ν, µ) = 0 is equivalent to ν = µ. However, since Q(ν, µ) is not generally symmetric

in arguments,Q is not a “metric” or “distance” in the strict sense. Hence, we callQ the “Bregman

divergence” (BD) and call q the “generating function” of Q. Refer to Lafferty, Della Piestra

& Della Piestra (1997) for certain examples of BD in the machine learning literature, Lafferty

(1999) and Azoury & Warmuth (2001) for the use of BD in the construction and analysis of on-

line learning algorithms, Kivinen &Warmuth (1999) for a generalized boosting update using BD,

Grünwald & Dawid (2004) for decision-based divergence function, Efron (1986, 2004) for the

estimation of prediction error under BD, and Altun & Smola (2006) for the duality of divergence

minimization and statistical inference methods.

2.2. Convexity and Bartlett Identity for BD Q
Part I: Convexity. We first examine the convexity of a BD Q(·, ·) in its first argument. Since the

q-function is concave, it is straightforward to show that for any fixed µ ∈ M1, Q(ν, µ) is convex

in its first argument ν ∈ M0.

We then discuss the convexity of a BDQ(·, ·) in its second argument. Note that some functions

Q(ν, µ), like those associated with q(µ) = −µ4 and themisclassification loss (in Section 3.3), are

non-convex in its second argumentµ. For a general discussion, let us assume stronger smoothness

conditions on the q-function. It follows from (2) that

∂Q(ν, µ)

∂µ
= (ν − µ)q′′(µ), µ ∈ M2, (3)

∂2Q(ν, µ)

∂µ2
= (ν − µ)q′′′(µ) − q′′(µ), µ ∈ M3. (4)

Thus, for fixed ν ∈ M0,Q(ν, µ) is typically a V -shaped function ofµ, but is not necessarily con-

vex in µ, even if stronger assumptions are imposed on q. Furthermore, it can be deduced from (3)

and (4) that all the kth order partial derivatives ofQ(ν, µ) with respect toµ ∈ Mk+1 are linear in ν.
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Part II: Bartlett identity. In what follows, we denote bym(x) = E(Y |X = x) the conditional
regression function, and by var(Y |X = x) the conditional variance function. From (3) and (4), we

observe that

E

{
∂Q(Y, m(x))

∂m(x)

∣∣∣X = x

}
= 0, and E

{
∂2Q(Y, m(x))

∂m(x)2

∣∣∣X = x

}
= −q′′(m(x)).

Accordingly, under a BD Q, the Bartlett identity

E

{
∂2Q(Y, m(x))

∂m(x)2

∣∣∣X = x

}
= E

[{
∂Q(Y, m(x))

∂m(x)

}2 ∣∣∣X = x

]

holds if and only if

q′′(m(x)) = −1/var(Y |X = x). (5)

This result provides a likelihood view point of BD.

2.3. Bayes Rule and Pythagorean Equality
The assessment and estimation of prediction error play an important role in developing reliable

prediction rules in regression and classification. Theorem 1 states that the risk E{Q(Y, µ(X))},
associated with a BD Q, is minimized (with respect to µ) by the optimal “Bayes” rule m(X). The
proof follows from the definition (2) and can be found in Banerjee, Guo & Wang (2005).

Theorem 1. Suppose that Q is a BD as defined in (2) for (ν, µ) ∈ M0 × M1 and Y ∈ M0 is a
random variable. Assume that m(X) is measurable and m(x) ∈ M1. Then among all measurable
functions µ such that µ(x) ∈ M1, argminµ∈M1 E{Q(Y, µ(X))} = m(X).

Throughout the rest of the article, we assume that (Xi, Yi), i = 1, . . . , n, in the training sample

(1) are independent pairs from a common distribution of (X, Y ), and that m̂(x) is an estimate of

m(x), based on the training sample. Suppose that a test point (Xo
, Yo) follows the distribution of

(X, Y ) and is independent of the training sample. The conditional prediction error (cPE) of the

rule m̂(x) is defined as

r(x) = E{Q(Yo, m̂(x))|T , Xo = x},
and the expected prediction error (ePE) is defined byE{Q(Yo, m̂(x))|Xo = x}. Theorem2 supplies

an additive decomposition of cPE and indicates that ePE under BD, when projected on the Bayes

rule m(x), satisfies the Pythagorean equality.

Theorem 2. Suppose that Q is a BD as defined in (2) for (ν, µ) ∈ M0 × M1 and Y ∈ M0 is
a random variable. Assume that m(X) is measurable and m(x) ∈ M1. Define

rB(x) = E{Q(Yo, m(x))|Xo = x} = q(m(x)) − E{q(Yo)|Xo = x}. (6)

Then cPE has the decomposition,

r(x) = rB(x) + Q(m(x), m̂(x)), (7)

and ePE fulfills the Pythagorean equality,

E{Q(Yo, m̂(x))|Xo = x} = E{Q(Yo, m(x))|Xo = x} + E{Q(m(x), m̂(x))}. (8)

Thus both cPE and ePE are minimized, with respect to m̂(x), at the Bayes rule m(x).
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On the right side of (8), the first term is rB(x), an irreducible error due to the nature of the re-
sponse,whereas the second term,E{Q(m(x), m̂(x))}, corresponds to the function estimation error.

Hence, the function estimate m̂ affects the prediction error only through the function estimation

error.

3. DUALITY BETWEEN Q AND q

Given any concave q-function, the bivariate functionQ(ν, µ) is well defined by (2). In this section,

we aim to address the inverse question: Given a loss function Q(Y, µ), how to recover the gener-

ating q-function? Investigating this inverse problem has the following important implications:

I. As can be seen from (6), the ideal Bayes rule under a BDQ serves as a benchmark, achieving

the lowest possible risk which only depends on the q-function.

II. Evaluation of the function estimation error in (8) requires not only Q(Y, µ), but also the

full knowledge of Q(ν, µ). However, in general, Q(Y, µ) alone may not entirely determine

Q(ν, µ). For example, consider Q(Y, µ) = Y (1 − µ)2 + (1 − Y )µ2 where Y is a binary ran-

dom variable. There is a need to recover the q-function before obtaining Q(ν, µ).

III. As we will show in Section 3.4, once we know the q-function for binary classification, the

counterpart and loss function for multi-class classification can easily be accommodated.

IV. The asymptotic distributions of parametric and nonparametric regression estimators under

BD depend on Q only through q′′. See Theorems 5 and 8.

Nonetheless, explicitly solving the generating q-function from a given Q-loss is non-trivial

and some approach via differential equationwill be unnecessarily complicated. Theorem 3 reveals

that the q-function can explicitly be obtained from Q(Y, µ),

Q(Y, µ) = −q(Y ) + q(µ) + (Y − µ)q′(µ). (9)

Theorem 3. Let a = µ0 < µ1 < · · · < µK < µK+1 = b and set I = ∪K
j=0(µj, µj+1), where

K ≥ 0. For a random variable Y taking values only in [a, b], suppose that Q(Y, µ) is a loss
function defined for µ ∈ I ∪ {a, b} which fulfills that Q(Y, Y ) = 0 for all Y . Assume that Q(Y, µ)

is continuous for µ ∈ I ∪ {a, b} and (∂/∂µ)Q(Y, µ) is continuous for µ ∈ I. Then Conditions A
and B are equivalent:

A. There exists a concave function q such that (9) holds for all µ ∈ I ∪ {a, b};
B. For all µ ∈ I and Y �= µ,

1

Y − µ

∂Q(Y, µ)

∂µ
≤ 0, and is free of Y ; (10)

for j = 1, . . . , K, Q(Y, µj+) = limµ↓µj Q(Y, µ) and Q(Y, µj−) = limµ↑µj Q(Y, µ) finitely
exist, and for Y �= µj ,

Q(Y, µj+) − Q(Y, µj−)

Y − µj

≤ 0, and is free of Y.

Moreover, if Condition B holds, then the generating q-function is piecewisely given by

q(µ) =
∫ µ

µj

µ − s

Y − s

∂Q(Y, s)

∂s
ds + (µ − µj)Cj + Dj, (11)
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forµ ∈ [µj, µj+1), j = 0, . . . , K, whereC0 = D0 = 0 and for j = 1, . . . , K,Cj = ∑j
k=1(pk +

δk), andDj = ∑j
l=1{

∫ µl

µl−1

µl−s
Y−s

∂Q(Y,s)
∂s

ds + (µl − µl−1)Cl−1}, inwhichpj = ∫ µj

µj−1

1
Y−s

∂Q(Y,s)
∂s

ds

and δj = {Q(Y, µj+) − Q(Y, µj−)}/(Y − µj).

Remark 1. Throughout the article, we will not distinguish between equivalent functions q1 and
q2 in M (i.e., there exist constants a and b such that q1(µ) = q2(µ) + aµ + b for all µ ∈ M),
since equivalent q-functionswill generate an identicalQ-function. In thef -divergence setting, the
non-uniqueness of the corresponding generating function was also stated in Nguyen, Wainwright
& Jordan (2008).

On the other hand, if E{Q(Y, µ)|X = x} depends on the conditional distribution of Y only

through its conditional regression functionm(x), then Corollaries 1–2 will produce the generating
q-function more easily and under weaker smoothness assumptions on Q than Theorem 3.

Corollary 1. Suppose that Q(Y, µ) is a loss function, well defined for µ ∈ N1 and a random
variable Y . Assume that E{Q(Y, µ)|X = x} depends only on µ and m(x). Denote by E(µ;m(x))
the expression E{Q(Y, µ)|X = x}, with all additive terms independent of µ removed. If (9) holds
for all µ ∈ N1, then the generating q-function is given by

q(µ) = E(µ;µ), µ ∈ N1. (12)

Corollary 2. Assume that Y |X = x ∼ Bernoulli{m(x)}. Suppose thatQ(Y, µ) is a loss function,
defined for µ ∈ N1 ⊆ [0, 1], which fulfills Q(Y, Y ) ≡ 0 for all Y ∈ {0, 1} and {0, 1} ⊆ N1. If (9)
holds for all µ ∈ N1, then the generating q-function is given by

q(µ) = µQ(1, µ) + (1 − µ)Q(0, µ), µ ∈ N1. (13)

In particular, the q-function given by the form (13) satisfies

q(Y ) ≡ 0, q′(µ) = Q(1, µ) − Q(0, µ), µ ∈ N1. (14)

In summary, to recover the q-function from a given loss Q(Y, µ), we first check Condition B
for the validity of (9). Then apply (11), or (12), or (13) to acquire the q-function. Applications of

(11), (12), and (13) are illustrated below to three situations, ranging respectively from general to

specific assumptions on the probability distribution of Y .

3.1. Quasi-Likelihood Function: Application of (11)
A quasi-likelihood function Q∗ was introduced in Wedderburn (1974) to relax the distributional

assumption on a random variable Y via the specification, ∂Q∗(µ;Y )/∂µ = (Y − µ)/V (µ), in

which it is assumed that var(Y |X = x) = σ2V {E(Y |X = x)} for a nuisance parameter σ2 > 0 and

a given continuous function V > 0. Since Condition B is satisfied, (11) yields

q(µ) =
∫ µ

−∞
s − µ

V (s)
ds. (15)

3.2. Exponential Family of Probability Functions: Application of (12)
A special case of the quasi-likelihood function is the exponential family distribution, where the

conditional probability function of Y given X = x is f
Y |X(y|x) = exp[{yθ(x) − b(θ(x))}/a(ψ) +
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c(y, ψ)], for some known functions a(·), b(·), and c(·, ·), where θ(x) is called a canonical param-

eter and ψ is called a dispersion parameter, respectively. For the commonly used Kullback–

Leibler divergence (or the deviance loss) defined by Q(Y, µ) = 2[Y (θ̃ − θ) − {b(θ̃) − b(θ)}],
where b′(θ̃) = Y and b′(θ) = µ, assume that b′ is a bijection. Since Condition B is fulfilled,

(12) gives

q(µ) = 2{b(θ) − µθ}, where b′(θ) = µ. (16)

This approach is more convenient than (11) for obtaining the q-function.

3.3. Binary Response: Application of (13)
For a binary variable Y |X = x ∼ Bernoulli{m(x)}, its distribution belongs to the exponential

family. We apply (13) to obtain q(µ) and Q(ν, µ) associated with four types of loss functions

Q(Y, µ), where 0 < µ < 1.

Example 1. The exponential loss used in AdaBoost (Hastie, Tibshirani & Friedman, 2001) is

Q(Y, µ) = e−(2Y−1)F (µ), where F (µ) = 2−1 ln{µ/(1 − µ)}. Since Condition B is fulfilled, (13)

gives that q(µ) = 2{µ(1 − µ)}1/2. Hence (2) gives the Q-function, Q(ν, µ) = [{µ(1 − ν)}1/2 −
{ν(1 − µ)}1/2]2/{µ(1 − µ)}1/2.
Example 2. The misclassification loss is

Q(Y, µ) = |Y − c| I{Y �= I[µ > c]}, (17)

where I[·] is an indicator function, and the constant c ∈ (0, 1) denotes the misclassification cost

with c = 1/2 for equal cost. Since Condition B is fulfilled, (13) gives that

q(µ) = min{µ(1 − c), (1 − µ)c}. (18)

Hence from (2), we get

Q(ν, µ) = |ν − c| I{I[ν > c] �= I[µ > c]}. (19)

Example 3. The polynomial loss is Q(Y, µ) = |Y − µ|k = Y (1 − µ)k + (1 − Y )µk, where

k > 0 is a constant. For Y �= µ, we observe that (∂/∂µ)Q(Y, µ) = −k(Y − µ)|Y − µ|k−2. Thus

Condition B is fulfilled if and only if k = 2 which corresponds to the quadratic loss. As a re-

sult, the absolute loss with k = 1 does not belong to BD. For the quadratic loss, (13) gives that

q(µ) = µ(1 − µ). Hence from (2), we obtain the Q-function, Q(ν, µ) = (ν − µ)2.

Example 4. The twice negative binomial log-likelihood is Q(Y, µ) = −2{Y ln(µ) + (1 −
Y ) ln(1 − µ)}, where 0 ln(0) = 0 by definition. Since Condition B is fulfilled, (13) gives

that q(µ) = −2{µ ln(µ) + (1 − µ) ln(1 − µ)}. Hence (2) gives the Q-function, Q(ν, µ) =
2[ν ln(ν/µ) + (1 − ν) ln{(1 − ν)/(1 − µ)}].
3.4. Multi-Class Response
For a multi-class response Y ∈ G = {G1, . . . ,GK}, where K ≥ 2, we now demonstrate that

the notion of Bregman divergence can be generalized from binary responses. For vectors

ν = (ν1, . . . , νK)
T and µ = (µ1, . . . , µK)

T, both of which are discrete probability measures,

the definition (2) can be extended from scalar arguments to vectors ν and µ as follows,

Q(ν, µ) = −q(ν) + q(µ) + (ν − µ)T�q(µ),

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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where �q(µ) = ((∂/∂µ1)q(µ), . . . , (∂/∂µK)q(µ))
T is the gradient vector of q. Define y = (I(Y =

G1), . . . , I(Y = GK))
T. In addition, the choice of q(µ) can be extended from the counterpart

developed in Section 3.3 for binary responses. The scheme is illustrated below with four types of

multi-class loss functions.

Example 1. Define q(µ) = ∑K
j=1 2{µj(1 − µj)}1/2. Then

Q(ν, µ) =
K∑

j=1

[{µj(1 − νj)}1/2 − {νj(1 − µj)}1/2]2/{µj(1 − µj)}1/2

This gives the exponential loss Q(y, µ) = ∑K
j=1 e

−{2I[Y=Gj]−1}F (µj), where F (µ) =
2−1 ln{µ/(1 − µ)}. Hastie, Tibshirani & Friedman (2001, p. 310) mentioned “We know of no
natural generalization of the exponential criterion for K classes.” The derivation we provide

above indeed generalizes the exponential loss from 2-classes to K-classes.

Example 2. Define q(µ) = 1 − max1≤j≤K µj and k∗(µ) = argmax1≤j≤K µj . ThenQ(ν, µ) =
νk∗(ν) − νk∗(µ), which gives the misclassification loss, Q(y, µ) = I[Y �= Gk∗(µ)].

Example 3. Define q(µ) = ∑K
j=1 µj(1 − µj). Then Q(ν, µ) = ∑K

j=1(νj − µj)
2. This gives

the quadratic loss Q(y, µ) = ∑K
j=1(yj − µj)

2.

Example 4. Define q(µ) = − ∑K
j=1 µj ln(µj). ThenQ(ν, µ) = ∑K

j=1 νj ln(νj/µj). This gives

the relative entropy, and the corresponding multinomial deviance (or negative log-likelihood),

Q(y, µ) = − ∑K
j=1 I(Y = Gj) ln(µj).

4. PARAMETRIC ESTIMATION UNDER BREGMAN DIVERGENCE

In this section, we aim to study the parametric estimation of m(x) under BD. This is achieved
by estimating F (m(x)), for a known link function F (·). Define η(x) = F (m(x)). We assume that

η(x) = α0 + xT
α for some unknown parameters α0 and α. Based on the independent training

data {(Xi, Yi)
n
i=1} from the population (X, Y ), the minimum BD parametric estimator (α̂0, α̂) of

(α0, α) is defined to be the minimizer of the criterion function,

	n(α0, α) = 1

n

n∑
i=1

Q(Yi, F
−1(α0 + XT

i α)), (20)

where the loss functionQ is a Bregman divergence. DefineX = (X1, . . . , Xd)
T and X̃ = (1, XT

)
T
.

Set α̃ = (α0, α
T)

T
, which is in a parameter space
 ⊂ Rd+1. The asymptotic consistency and nor-

mality of the minimum BD parametric estimator are presented in Theorems 4 and 5, respectively.

Theorem 4. Let α̃(0) denote the true value of α̃. Suppose that Q is a BD. Assume Condition C
in Appendix. Define ̂̃α = (α̂0, α̂

T)T. Then as n → ∞, the minimum BD parametric estimator ̂̃α is
asymptotically consistent to α̃

(0).

Theorem 5. Let α̃
(0) denote the true value of α̃. Suppose that Q is a BD. Assume Con-

dition D in Appendix. Define ̂̃α = (α̂0, α̂
T)T. Then as n → ∞, the minimum BD paramet-

ric estimator ̂̃α is asymptotically normal,
√

n{̂̃α − α̃
(0)} L−→ N(0, H−1

0 �0H
−1
0 ), where �0 =

E[var(Y |X){q′′(m(X)}2{F ′(m(X))}−2(X̃X̃
T
)] and H0 = −E[q′′(m(X)){F ′(m(X))}−2(X̃X̃

T
)].
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Theorem 5 reveals that the asymptotic distribution of the parametric estimator under BD

depends on the choice of the loss function Q only through the second derivative of its generating

q-function. Aswill be seen from nonparametric estimators in Section 5, this dependence continues

to arise (in Theorem8) from the varying-coefficient regressionmodelwithmultivariate predictors,

but is entirely relieved (in Theorem 7) from the univariate nonparametric regression model.

Is there an optimal choice of the q-function such that the asymptotic covariance matrix in

Theorem 5 achieves its lower bound? (For two symmetric matrices A and B, we say A ≥ B if

A − B is non-negative definite.) Theorem 6 manifests that the optimal q-function satisfies the

“generalized Bartlett identity,”

q′′(m(x)) = −c/var(Y |X = x), for a constant c > 0, (21)

which includes the conventional Bartlett identity (5) as a special case.

Theorem 6. If the q-function satisfies (21), then the asymptotic covariance matrix of ̂̃α in

Theorem 5 achieves the lower bound (E[1/var(Y |X){F ′(m(X))}−2X̃X̃
T
])−1.

Using the criterion (21), we are able to show that the q-functions given in (15) and (16) for

quasi-likelihood function and exponential family of probability functions respectively satisfy the

“generalized Bartlett identity.” In the particular case of binary responses, the binomial deviance

loss satisfies the “generalized Bartlett identity,” but the misclassification loss, quadratic loss and

exponential loss do not.

5. NONPARAMETRIC ESTIMATION UNDER BREGMAN DIVERGENCE

In this section, we study the nonparametric estimation of m(x) under BD, via local estimation

techniques. Recall that the conventional local polynomial estimation (Fan & Gijbels, 1996) is

conducted under the quadratic loss, and the local-likelihood estimation (Tibshirani & Hastie,

1987) is conducted under the deviance loss for exponential family responses. In contrast, the loss

function in the current article is the broader class of Bregman divergence.

5.1. Univariate Nonparametric Regression
To facilitate presentations, we first assume that X is univariate. Suppose that the function η(·) =
F (m(·)) has a (p + 1)th continuous derivative at a fitting point x. Let βj(x) = η(j)(x)/j!, j =
0, 1, . . . , p. For Xi close to x, the Taylor expansion implies that

η(Xi) =̇ β0(x) + (Xi − x)β1(x) + · · · + (Xi − x)pβp(x) ≡ xi(x)
Tβ(x),

in which xi(x) = (1, (Xi − x), . . . , (Xi − x)p)T and β(x) = (β0(x), . . . , βp(x))
T. Based on the

independent training data {(Xi, Yi)
n
i=1}, the vector of local parameters β(x) can be estimated by

the local minimum BD nonparametric estimator β̂(x) = (β̂0(x), . . . , β̂p(x))
T which minimizes

	n(β; x) = 1

n

n∑
i=1

Q(Yi, F
−1(xi(x)

Tβ))Kh(Xi − x), (22)

with respect to β, in which Kh(·) = K(·/h)/h is re-scaled from a kernel function K and h > 0 is

termed a bandwidth parameter. Then, the local BD estimates of η(x) andm(x) are given by η̂(x) =
β̂0(x) and m̂(x) = F−1(η̂(x)), respectively. We now define S = (µi+j−2)1≤i,j≤p+1 with µk =∫

tkK(t) dt and S∗ = (νi+j−2)1≤i,j≤p+1 with νk = ∫
tkK2(t) dt. The asymptotic distribution of

the local BD estimator is delivered in Theorem 7.
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Theorem 7. Define η(x) = F (m(x)) and H = diag{1, h, . . . , hp}. Assume that the degree p is
odd. Suppose that Q is a BD. Suppose that Condition E in Appendix holds. If n → ∞, nh → ∞
and nh2p+3 = O(1), then for the local minimum BD estimator β̂(x) at an interior point x of the
design density, we have that

√
nh

[
H{β̂(x) − β(x)} − S−1cp

η(p+1)(x)

(p + 1)!
hp+1

]
L−→ N(0, S−1S∗S−1v(x)/fX(x)),

where cp = (µp+1, . . . , µ2p+1)
T and v(x) = var(Y |X = x){F ′(m(x))}2.

Theorem 7 has the following useful consequences: The asymptotic distributions of the local

BD estimator β̂(x), and hence η̂(x) and m̂(x), do not depend on either the choice of the loss

function Q, or the distributional assumption of Y , but rely on the choice of the link function F .

The adaptation of the local BD estimator, with one-dimensional predictors, to the choice of the

loss function is an interesting result that has not been seen in the literature. Thus, Theorem 7

indeed gains new insight into nonparametric function estimation.

From a function estimation perspective, Theorem 7 enables us to derive the asymptotically

optimal bandwidth by minimizing certain criterion. If the criterion is AMISE
η̂
(h), the asymptotic

mean integrated squared error of η̂(·), then the minimizer of AMISE
η̂
(h) is

hAMISE(η̂) = Cp(K)

[∫
var(Y |X = x){F ′(m(x))}2w(x)/fX(x) dx∫ {η(p+1)(x)}2w(x) dx

]1/(2p+3)

n−1/(2p+3), (23)

where w(·) ≥ 0 is a weight function, and Cp(K) is a constant depending only on the degree and

kernel of the local regression. In practice, the data-driven optimal bandwidth can be selected via

cross-validation.

From a classification point of view, since a classifier only depends on the sign of F−1(η̂(x)),

the classification performance using the margin-based loss functions, such as the quadratic loss,

log-likelihood loss and the exponential loss, are expected to be similar. In the context of boosting,

Bühlmann & Yu (2003) found comparable performances between L2Boost and LogitBoost. We

will revisit this issue in more detail in Section 6.

5.2. Varying-Coefficient Regression Model
This section extends the techniques of Section 5.1 to a useful class of multi-predictor models. Con-

sider multivariate predictor variables, consisting of a scalar U and a vector X = (X1, . . . , Xd)
T.

For the response variable Y , define by m(u, x) = E(Y |U = u, X = x) the conditional mean

regression function, where x = (x1, . . . , xd)
T. The varying-coefficient model assumes that

F (m(U, X)) = η(U, X) =
d∑

j=1

aj(U)Xj = XT
A(U), (24)

for a vector A(u) = (a1(u), . . . , ad(u))
T of unknown smooth coefficient functions.

We first describe the local minimum BD estimation of A(u), based on the independent obser-

vations {(Ui, Xi, Yi)
n
i=1}. Assume that aj(·)’s are (p + 1)-times continuously differentiable at a fit-

ting point u. PutA(	)(u) = (a
(	)
1 (u), . . . , a

(	)
d (u))T. Denote by β(u) = (A(u)T, . . . ,A(p)(u)T/p!)T

the d(p + 1) by 1 vector of coefficient functions along with their derivatives, ui(u) = (1, (Ui −
u), . . . , (Ui − u)p)T, and Id a d × d identity matrix. For observed covariates Ui close to the

point u,

A(Ui) =̇ A(u) + (Ui − u)A(1)(u) + · · · + (Ui − u)pA(p)(u)/p! = {ui(u) ⊗ Id}Tβ(u),
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in which the symbol ⊗ denotes the Kronecker product, and thus, η(Ui, Xi) =̇ {ui(u) ⊗ Xi}Tβ(u).

The local minimum BD estimator β̂(u) minimizes the criterion function,

	n(β; u) = 1

n

n∑
i=1

Q(Yi, F
−1({ui(u) ⊗ Xi}Tβ))Kh(Ui − u).

The first d entries of β̂(u) supply the local minimum BD estimates Â(u) of A(u), and the local

minimum BD estimates of η(u, x) and m(u, x) are given by η̂(u, x) = xT
Â(u) and m̂(u, x) =

F−1(η̂(u, x)), respectively. Theorem 8 establishes the limiting distribution of β̂(u).

Theorem 8. DefineH = diag{1, h, . . . , hp} and H = H ⊗ Id . Assume that the degree p is odd.
Assume that Q is a BD. Suppose that Condition E′ in Appendix holds. If n → ∞, nh → ∞ and
nh2p+3 = O(1), then for the local minimum BD estimator β̂(u) at an interior point u of the design
density, we have that

√
nh

[
H{β̂(u) − β(u)} −

{
S−1cp ⊗ A(p+1)(u)

(p + 1)!

}
hp+1

]
L−→ N

(
0,

[
S−1S∗S−1 ⊗ {
(u)−1�(u)
(u)−1}

] /
fU (u)

)
,

where �(u) = E[var(Y |U = u, X){q′′(m(u, X))}2{F ′(m(u, X))}−2XXT |U = u] and 
(u) =
−E[q′′(m(u, X)){F ′(m(u, X))}−2XXT |U = u].

Apparently, the asymptotic distribution of the local BD estimator β̂(u) relies on the q-function.

Does this dependence contradict the previous Theorem 7 which shows the lack of dependence

on q? Here we add an explanation. It is easily seen that when the dimension of the predictor

X is d = 1 and X1 ≡ 1, varying-coefficient models reduce to the particular case of univariate

nonparametric regression models. As a result, the q′′ term in 
(u)−1�(u)
(u)−1 is cancelled.

Therefore, no contradiction arises from Theorems 7 and 8. Furthermore, similar to Theorem 6,

if q′′(m(u, x)) = −c/var(Y |U = u, X = x) for a constant c > 0, then 
(u)−1�(u)
(u)−1 in the

asymptotic covariance matrix of β̂(u) in Theorem 8 achieves the lower bound(
E

[
1/var(Y |U = u, X){F ′(m(u, X))}−2XXT|U = u

])−1
.

6. APPLICATIONS TO CLASSIFICATION

In this section, we focus on the binary response Y ∈ {0, 1}, for which m(x) = P(Y = 1|X = x).
Classification aims to produce a classification rule, Ŷ (x) ∈ {0, 1}, for the class label Y at every

input point x of X. The optimal rule is to minimize the misclassification risk E{L(Y, Ŷ (X))} with
the loss function L(Y1, Y2) = |Y1 − c| I[Y1 �= Y2] for Y1 ∈ {0, 1}, Y2 ∈ {0, 1} and c ∈ (0, 1).

6.1. Function Estimation Error and Classification Error
For c = 1/2 representing equal misclassification costs, it is well known that the optimal classifier

is the Bayes rule YB(x) = I[m(x) > 1/2]. Since the true class probabilities m(x) are usually

unknown, probability estimates m̂(x) via function estimation procedures can be used to form a

classification rule, that is, Ŷ (x) = I[m̂(x) > 1/2]. In this case, Friedman (1997) studied the way

in which function estimation error of m̂(x) affects the misclassification rate, and illustrated with

the naive Bayes estimator and nearest-neighbour estimator.
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We now investigate the extent to which function estimation error of the minimum BD estima-

tors m̂(x) affects the classification error, in the nonstandard situation with unequal misclassifica-

tion costs. It is easy to show that the Bayes classifier YB(x) = I[m(x) > c] minimizes the misclas-

sification risk E{L(Y, Ŷ (X))} with respect to Ŷ . We now study the classification performance of

Ŷ (X) = I[m̂(X) > c], which substitutes the true function in the Bayes rule by the function estimate.

The correspondingmisclassification loss isL(Y, Ŷ (X)), which agrees withQ(Y, m̂(X)) in (17) asso-
ciatedwith q in (18). Combining (6) and (14), we deduce rB(x) = min[m(x)(1 − c), {1 − m(x)}c].
Applying (19) to (7) yields Q(m(x), m̂(x)) = |m(x) − c|I{YB(x) �= I[m̂(x) > c]}. Thus the func-
tion estimation error of m̂(x) in (8) is E{Q(m(x), m̂(x))} = |m(x) − c|P{YB(x) �= I[m̂(x) > c]},
in which

P{YB(x) �= I[m̂(x) > c]} = I[m(x) ≤ c]P{m̂(x) > c} + I[m(x) > c]P{m̂(x) ≤ c}. (25)

According to Theorems 5, 7, and 8, theminimumBDestimator m̂(x) has an asymptotically normal

distribution. Thus, by using the idea of normal approximation similar to that of Friedman (1997),

an asymptotic approximation of the probability in (25) is provided by

�

(
sign{c − m(x)}sign[E{m̂(x)} − c]

|E{m̂(x)} − c|√
var{m̂(x)}

)
,

where�(z) is the cumulative distribution function of the standard normal distribution. Thus, when

m(x) and the aggregated predictor E{m̂(x)} are on the same side of the classification boundary

{x : m(x) = c}, the misclassification risk will decrease as E{m̂(x)} departs farther away from c

irrespective of the function estimation bias m(x) − E{m̂(x)}; when m(x) and E{m̂(x)} are on

opposite sides of the classification boundary, the misclassification risk will increase with the

distance between E{m̂(x)} and c.

6.2. Relation Between Margin-Based Loss Function and BD
Intuitively, the misclassification loss (17) should be used as the training loss, since it is the loss

function used to evaluate the performances of classifiers. However, this function is neither convex

nor continuous in µ, and causes problems for computation. Therefore many margin-based loss

functions are used as training loss functions in many classification procedures (Shen et al., 2003).

The margin-based loss function is expressed in the form,

V (Y∗F (µ)),

where Y∗ = 2Y − 1 ∈ {−1, +1} and Y∗F is called the “margin” with F playing the role similar

to that in Section 5. Margin-based loss functions have been motivated as being upper bounds

of the misclassification loss and have been widely used in the machine learning literature. One

important application ofmargin-based loss functions, such as the exponential loss function (Freund

& Schapire, 1997; Friedman, Hastie & Tibshirani, 2000), is to show the convergence rate of

boosting procedures (Schapire, 2002) and in turn indirectly bound the misclassification error.

We are interested in studying the role of margin-based loss functions in classification. We will

show that most of the commonly used margin-based loss functions are BD. Thus the results on

the prediction error conveyed by Theorem 2 makes the comparison much easier. For a given loss

functionL(Y, µ), we first illustrate how to represent it by amargin-based loss functionV (Y∗F (µ)).

Lemma 1. Suppose that L(Y, µ) is a loss function for a binary variable Y . Assume that Condi-
tions F and G below hold:

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2009 NEW ASPECTS OF BREGMAN DIVERGENCE 131

F. L(0, µ) = L(1, 1 − µ);
G. F (µ) is monotone increasing, satisfying F (1 − µ) = −F (µ), and F−1(s) is right-continuous

(or equivalently, continuous), where F−1(s) = inf{u : F (u) ≥ s}.
Define V (s) = L(1, F−1(s)). Then L(Y, µ) = V (Y∗F (µ)).

Lemma 1 actually supplies a simple method to represent L in the form of V (Y∗F ). Condition

F holds in the equal-cost misclassification loss and all other loss functions in Section 3.3. The

choice of F satisfying Condition G is flexible and certainly not unique. However, since L is not

necessarily a BD, its alternative form V (Y∗F ) in Lemma 1 is not necessarily either. Recall that

we have shown in Section 3.3 the misclassification loss is BD. Theorem 9 asserts that under very

mild conditions on V and F , the (centralized) margin-based loss function is indeed a BD.

Theorem 9. Suppose that V (Y∗F ) is a margin-based loss function for a binary variable Y .
Assume that Conditions H and I below hold:

H. There exists FB such that (∂/∂µ)V (Y∗FB(µ)) is continuous in µ ∈ (0, 1), and

F ′
B(µ) ≥ 0; (26)

I. For µ ∈ (0, 1), V ′(FB(µ)) ≤ 0 and

µV ′(FB(µ)) = (1 − µ)V ′(−FB(µ)). (27)

Then the centralized form of V (Y∗FB(µ)), that is,

Q(Y, µ) = V (Y∗FB(µ)) − V (Y∗FB(Y )), (28)

is a BD, for which the generating q-function is given by

q(µ) = µV (FB(µ)) + (1 − µ)V (−FB(µ)), µ ∈ [0, 1]. (29)

The applicability of Theorem 9 relies on finding FB. In the case of convex V , Lemma 2 draws

connections between FB and the Bayes rule, whereas Lemma 3 indicates that Condition H is also

necessary in certain situations.

Lemma 2. Assume thatV (s) is continuous and convex. IfV ′(s) exists at s ∈ F2, then the existence
of FB(m(x)) such that ±FB ∈ F2 and

FB(m(x)) = arg min
F∈F2

E{V (Y∗F )|X = x} (30)

implies (27).

Lemma 3. Assume V ′′(s) ≥ 0 for all s ∈ F2, and FB satisfies Condition I. Then (26) must hold.

Below, we illustrate that five margin-based loss functions are BD.

Example 1. V (s) = (1 − s)2 for the quadratic loss. We have that V ′(s) = −2(1 − s). From (27),

we have FB(µ) = 2µ − 1. Thus Conditions H and I are satisfied and V (Y∗FB(µ)) = Y (2 −
2µ)2 + (1 − Y )(2µ)2. By (28)–(29), Q(Y, µ) = 4(Y − µ)2, and q(µ) = 4µ(1 − µ).

Example 2. V (s) = (1 − s)5 for the arching loss given in Breiman (1998). We have that V ′(s) =
−5(1 − s)4 ≤ 0. From (27), we have FB(µ) = {µ1/4 − (1 − µ)1/4}/{µ1/4 + (1 − µ)1/4}. Thus
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Conditions H and I are satisfied and V (Y∗FB(µ)) = Y [{2(1 − µ)1/4}/{µ1/4 + (1 − µ)1/4}]5 +
(1 − Y )[{2µ1/4}/{µ1/4 + (1 − µ)1/4}]5. By (28)–(29), Q(Y, µ) = V (Y∗FB(µ)) and q(µ) =
25µ(1 − µ)/{µ1/4 + (1 − µ)1/4}4.

Example 3. V (s) = ln(1 + e−s) for negative log-likelihood. We have that V ′(s) =
−1/(1 + es) ≤ 0. From (27), we haveFB(µ) = ln{µ/(1 − µ)}. Thus ConditionsH and I are satis-
fied and V (Y∗FB(µ)) = −{Y ln(µ) + (1 − Y ) ln(1 − µ)}. By (28)–(29), Q(Y, µ) = V (Y∗FB(µ))

and q(µ) = −{µ ln(µ) + (1 − µ) ln(1 − µ)}.

Example 4. V (s) = e−s for the exponential loss. We have that V ′(s) = −e−s ≤ 0. From (27),

we have FB(µ) = 2−1 ln{µ/(1 − µ)}. Thus Conditions H and I are satisfied and V (Y∗FB(µ)) =
Y{(1 − µ)/µ}1/2 + (1 − Y ){µ/(1 − µ)}1/2. By (28)–(29), Q(Y, µ) = V (Y∗FB(µ)) and q(µ) =
2{µ(1 − µ)}1/2.

Example 5. V (s) = max(1 − s, 0) = (1 − s) I[s ≤ 1] for the hinge loss used in support vec-

tor machine. We have that V is continuous, convex and V ′(s) = −I[s < 1] for s ∈ F2 = {s :
s �= 1}. By a graphical approach, we observe that the desired FB to minimize E{V (Y∗F )|X =
x} is FB(µ) = sign(2µ − 1). Thus V (Y∗FB(µ)) = 2{Y I[2µ < 1] + (1 − Y )I[2µ > 1]}. Define
Q(Y, µ) = V (Y∗FB(µ)). Since Condition I does not hold, we could not use Theorem 9. Nonethe-

less, we can directly verify Condition B in Theorem 3 and apply Corollary 2 to obtain q(µ) =
2{µI[2µ < 1] + (1 − µ)I[2µ > 1]}.

Theorem 7 implies that for the margin-based loss functions V (Y∗FB(µ)), the asymptotic

distribution of (non-regularized) m̂(x) will be the same. Thus, the classification performance

will be similar. Again, the corresponding prediction error can be assessed by the application of

Theorem 2. This is particularly useful for the assessment when the true m(x) is known.

7. SIMULATIONS

7.1. Impact of BD on Parametric Regression and Classification
To evaluate the impact of loss functions on parametric regression and classification, we conduct

the simulation study. We generate data with two-classes from the following model,

X = (X1, . . . , X6)
T ∼ N(0, I6), Y |X = x ∼ Bernoulli{m(x)},

where

F (m(X)) = ln

{
m(X)

1 − m(X)

}
= α0 +

6∑
j=1

αjXj, (31)

with true values of the parameters αj = 3 × (−1)j , j = 0, . . . , 6.

First, we generate 500 sets of random samples {(Xi, Yi)}ni=1 of size n = 500 from the distribu-

tion of (X, Y ). The estimates α̂j , j = 0, . . . , 6, are numerically obtained to minimize the criterion

function (20). Figure 2 compares the boxplots of α̂j − αj , j = 0, . . . , 6, using the deviance loss

and the exponential loss. It is clearly seen that the regression estimates under the deviance loss are

more centered around the true values with smaller variabilities than those under the exponential

loss. This lends support to Theorem 6 which reveals that regression estimates under the deviance

loss achieves the asymptotically lower bound for the covariance matrix of the estimators. From

the regression point of view, the deviance loss does exhibit superiority over the exponential loss

in the finite-sample cases.
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Figure 2: Boxplots of α̂j − αj , j = 0, . . . , 6 (from left to right in each panel). Panel (a): using the deviance
loss; panel (b): using the exponential loss.

Table 1: Comparing test misclassification rates using deviance loss and exponential loss.

Loss Test misclassification rates

Deviance 0.064 0.079 0.078 0.080 0.067 0.071 0.071 0.061 0.073 0.071

Exponential 0.068 0.075 0.079 0.078 0.066 0.074 0.072 0.060 0.070 0.079

Next, we examine the behaviours of classification procedures constructed under different loss

functions in the two-class classification. One single training set of size 500 is used for estimating

parameters αj , j = 0, . . . , 6. Test samples are randomly generated from model (31) of size 1,000.

A comparison of the test misclassification rates in 10 sets of test samples is listed in Table 1. The

results indicate that the difference from the deviance and exponential loss functions in regression

estimates has a negligible impact on the classification performance.

7.2. Penalized BD: Application to Model Building and Selection
Model selection methods, such as Lasso (Tibshirani, 1996), choose the model parameters by

minimizing the sumof aquadratic loss plus a penalty on the parameters. To illustrate the application

of BD as a versatile and useful tool for statistical model building and selection, we consider the

penalized estimator (α̂0, α̂) by minimizing the “penalized BD,”

1

n

n∑
i=1

Q(Yi, F
−1(α0 + XT

i α)) +
d∑

j=1

Pλn (|αj|),

where Q is a BD, F is a link and Pλn (·) is a penalty function indexed by a tuning parameter

λn > 0. The Lasso uses theL1-penalty, Pλ(|x|) = λ|x|. Similar to the simulation study in Section

7.1, we generate random samples from the following model,

X ∼ N(0, I8), Y |X = x ∼ Bernoulli{m(x)}, (32)

where F (m(x)) = logit{m(x)} = α0 + xT
α, with α0 = 3 and α = (0, 0, 1.5, 0, 0, 2, 0, 0)T. The

penalized estimates are numerically obtained from modifying the LARS algorithm.

First, to examine the effect of penalized and non-penalized regression estimates under BD on

model fitting, we generate 100 training sets of size 200. For each training set, the model error (ME)

is calculated by
∑L

l=1{m̂(xl) − m(xl)}2/L at a sequence {xl}L=5,000
l=1 randomly generated from

(32), and the relative model error (RME) is the ratio of ME using penalized estimators and ME

using non-penalized estimators. Table 2 tabulates MRME, the median of RMEs obtained from
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Table 2: Simulation results from penalized BD estimates.

Penalty Loss Regression MRME Variable selection Classification MAMR

Correct zeros Incorrect zeros

L1 Deviance 0.7636 2.38 0.00 0.1180

Exponential 0.6849 2.31 0.00 0.1181

100 training sets. Evidently, if the true model has sparse coefficients, the penalized estimators

reduce the function estimation error compared with the non-penalized estimators, under both the

deviance and exponential loss functions.

Next, to study the utility of penalized estimators in revealing the effects in variable selection

under different loss functions, Table 2 lists a column labelled “Correct zeros” as the average

number of parameters which are correctly estimated to be zero when the true parameters are

zero, and a column labelled “Incorrect zeros” as the average number of parameters which are

erroneously estimated to be zero when the true parameters are nonzero. Overall, using either the

deviance or exponential loss, penalization helps yield a sparse solution and build a sparse model.

Last, to investigate the performance of classification rules using penalized estimators, we

evaluate the average misclassification rate (AMR) for 10 independent test sets of size 10,000.

Table 2 reports MAMR, the median of AMRs calculated from 100 training sets. The results

indicate that the classification rules constructed from penalized estimators under both exponential

and deviance loss perform as well as the Bayes optimal rule (whose MAMR is 11.06%).

7.3. Impact Of BD on Nonparametric Logistic Regression
We generate independent observation pairs {(Xi, Yi)

400
i=1} according to X ∼ U(0, 1) and

Y |X = x ∼ Bernoulli{m(x)}, where η(x) = F (m(x)) = logit{m(x)} = 7[exp{−(4x − 1)2} +
exp{−(4x − 3)2}] − 5.5. To assess the sampling variability of η̂(x) obtained from (22) using

local estimation method (with degree p = 1 and the Epanechnikov kernel), the AMISE-optimal

bandwidth h = 0.108 in (23) is used, where w(·) = fX(·). Figure 3 compares the estimates

associated with the deviance loss and exponential loss. Panels (a)–(b) present the estimated

curves η̂(·) from three sets of random samples. For illustrative simplicity, panels (c)–(d) give the

boxplots of η̂(x) at points x = 0.1, 0.3, 0.5, 0.7, 0.9, based on 100 random samples. Clearly, the

estimates, as well as their sampling variations, are nearly indistinguishable under the deviance

loss and exponential loss. (The results for other choices of h are similar and thus omitted.) This

is consistent with the asymptotic theory in Theorem 7.

APPENDIX
We first impose some technical conditions, which may not be the weakest possible.

Condition C:

C1. 
 is compact in Rd+1.

C2. X is on a compact support �, and X has the design density fX(·) with fX(·) > 0.

C3. F (·) is a bijection, with F−1(·) continuously differentiable.
C4. q is twice continuously differentiable with q′′(·) < 0.
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Figure 3: Comparison of local BD estimates η̂(·) using the deviance and exponential losses. Panels (a)–
(b): solid curve is the true curve η(·); the dotted, dashed and dash-dotted curves are η̂(·) from three random
samples. Panels (c)–(d): boxplots of η̂(x) from 100 random samples at points x = 0.1, 0.3, 0.5, 0.7, 0.9.

C5. There does not exist a vector c̃ �= 0 such that X̃
T
c̃ = 0 almost surely.

C6. E(|Y |) < ∞.

Condition D: D1, D2, and D5 are identical to C1, C2, and C5 respectively, and

D3. F (·) is a bijection, with F−1(·) twice continuously differentiable.

D4. q′′′(·) is continuous and q′′(·) < 0.

D6. E(Y2) < ∞.

Condition E:

E1. q is concave, q′′(m(x)) < 0 and q(4)(·) is continuous in a neighbourhood of m(x).

E2. Let qj(y; θ) = (∂j/∂θj)Q(y, F−1(θ)). Assume that q2(y; θ) > 0 for θ ∈ R and y in the range

of the response variable.

E3. There exists some δ > 0 such that E(|Y |2+δ|X = ·) is bounded in a neighbourhood of x.

E4. The kernel function K is a symmetric probability density function with bounded support.

E5. X has the design density fX(·) which is continuous in a neighbourhood of x, and fX(x) > 0.

E6. Both m(·) and var(Y |X = ·) are continuous in a neighbourhood of x, and var(Y |X = x) > 0.

E7. F (·) is a bijection.F ′(m(x)) > 0 andF (3)(·) is continuous in a neighbourhood ofm(x).F−1(·)
is continuous in a neighbourhood of η(x).

E8. η(p+1)(·) is continuous in a neighbourhood of x.

Condition E′: E2′ is identical to E2, and

E1′. q is concave, q′′(m(u, x)) < 0 and q(4)(·) is continuous in a neighbourhood of m(u, x).
E3′. There exists some δ > 0 such that E(|Y |2+δ|U = ·, X = x) is bounded in a neighbourhood

of u, for a.e. x.
E4′. The kernel function K is a symmetric probability density function with bounded support.

E5′. U has the design density fU (·) which is continuous in a neighbourhood of u, and fU (u) > 0.
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E6′. Both m(·, x) and var(Y |U = ·, X = x) are continuous in a neighbourhood of u, and

var(Y |U = u, X = x) > 0 for a.e. x.
E7′. F (·) is a bijection.F ′(m(u, x)) > 0 andF (3)(·) is continuous in a neighbourhood ofm(u, x).

F−1(·) is continuous in a neighbourhood of η(u, x).

E8′. a
(p+1)
j (·), j = 1, . . . , d, are continuous in a neighbourhood of u.

E9′. 
(·) is continuous at u and 
(u) > 0. �(·) is continuous in a neighbourhood of u and

�(u) > 0.
E10′. E(XXT |U = u) > 0 for a.e. u.

We next introduce some necessary notations and definition.

Notations: Define qj(y; θ) = (∂j/∂θj)Q(y, F−1(θ)). Let θ = F (µ), which impliesµ = F−1(θ)

and dθ/dµ = F ′(µ). Direct calculations via (3)–(4) give that

q1(y; θ) = q′′(µ)(y − µ)/F ′(µ),

q2(y; θ) = [−q′′(µ)F ′(µ) + (y − µ){q′′′(µ)F ′(µ) − q′′(µ)F ′′(µ)}]/{F ′(µ)}3.

Accordingly, qj(y; θ) is linear in y for fixed θ.

Proof of Theorem 2. The argument is similar to that for Theorem 1 and is thus omitted. �

Proof of Theorem 3. We first consider the caseK = 0, that is, ∂Q(Y, µ)/∂µ is continuous for

µ ∈ (a, b).

If Condition A holds, then Condition B will directly follow from (3). Conversely, assume that

Condition B holds. Define a function q by

q(µ) =
∫ µ

a

{∫ t

a

1

Y − s

∂Q(Y, s)

∂s
ds

}
dt for µ ∈ [a, b]. (33)

It follows that q is continuous on [a, b], and

q′(µ) =
∫ µ

a

1

Y − s

∂Q(Y, s)

∂s
ds for µ ∈ [a, b].

According to Condition B, the integrand above is free of Y and less than or equal to zero, so

q′(µ) is monotone decreasing for µ ∈ [a, b]. Thus the concavity of q is implied. Note that (10) in

Condition B guarantees the use of Fubini theorem in (33), and thus for Y ∈ [a, b] and µ ∈ [a, b],

q(µ) =
∫ µ

µj

µ − s

Y − s

∂Q(Y, s)

∂s
ds (34)

=
∫ µ

a

∂Q(Y, s)

∂s
ds − (Y − µ)

∫ µ

a

1

Y − s

∂Q(Y, s)

∂s
ds

= Q(Y, µ) − Q(Y, a) − (Y − µ)q′(µ), (35)

which also indicates, by replacing µ by Y in (35) and using Q(Y, Y ) = 0, the identity q(Y ) =
−Q(Y, a). This combined with (35) implies the result desired in Condition A.

For K ≥ 1, that is, ∂Q(Y, µ)/∂µ has K points of discontinuity in µ ∈ (a, b), the proofs are

similar to those used in the previous case K = 0. In particular, the q-function can be piecewisely

defined on each interval as in (34) and made continuous by using the equivalent version of q in

Remark 1. We omit the lengthy details. �
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Proof of Corollary 1. It follows from (9) that for µ ∈ N1,

E{Q(Y, µ)|X = x} = −E{q(Y )|X = x} + q(µ) + {m(x) − µ}q′(µ).

Note E{q(Y )|X = x} is independent of µ. By the definition, E(µ;m(x)) = q(µ) + {m(x) −
µ}q′(µ) for µ ∈ N1, which implies q(µ) = E(µ;µ) for µ ∈ N1. �

Proof of Corollary 2. For a binary random variable Y , we see that Q(Y, µ) = YQ(1, µ) +
(1 − Y )Q(0, µ) and thus E{Q(Y, µ)|X = x} = m(x)Q(1, µ) + {1 − m(x)}Q(0, µ), which de-

pends on the conditional distribution of Y only through m(x). An application of Corollary

1 yields E(µ;m(x)) = m(x)Q(1, µ) + {1 − m(x)}Q(0, µ) and hence E(µ;µ) = µQ(1, µ) +
(1 − µ)Q(0, µ). The conclusion (13) follows from applying (12). From (13), it follows immedi-

ately that q(Y ) = Q(Y, Y ) and thus q(Y ) ≡ 0.

To show the second part of (14), we see from (9) that

Q(1, µ) = −q(1) + q(µ) + (1 − µ)q′(µ) for µ ∈ N1,

Q(0, µ) = −q(0) + q(µ) + (−µ)q′(µ) for µ ∈ N1,

which implies that q′(µ) = Q(1, µ) − Q(0, µ) + q(1) − q(0) for µ ∈ N1, namely, (14), due to

the fact that q(Y ) ≡ 0. �

Proofs of Theorem 4 and 5. The lengthy details can be found in Zhang, Jiang&Shang (2007).

�

Proof of Theorem 6. Before showing Theorem 6, we need the following Lemma 4.

Lemma 4. For appropriately dimensioned random matrices A and B, if E(BBT) is positive
definite, thenE(AAT) ≥ E(ABT){E(BBT)}−1E(BAT).Moreover, ifB = cA for a constant c �= 0,
then the inequality becomes an equality.

Proof. Let C = A − E(ABT){E(BBT)}−1B. Then E(CBT) = 0. Thus

E(CCT) = E(AAT) − E(ABT){E(BBT)}−1E(BAT),

which yields the matrix inequality and equality. This completes the proof of Lemma 4. �

To showTheorem 6, letA = {var(Y |X)}−1/2{F ′(m(X))}−1X̃ andB = −var(Y |X)q′′(m(X))A be

two randommatrices. Then H0 = E(ABT) = E(BAT) and �0 = E(BBT). Employing Lemma 4,

H−1
0 �0H

−1
0 ≥ {E(AAT)}−1 =

(
E[1/var(Y |X){F ′(m(X))}−2X̃X̃

T
]

)−1

,

and ≥ is = when q′′(m(x)) = −c/var(Y |X = x) for a constant c > 0. �

Proof of Theorem 7. Note that a varying-coefficient model (24) with X = X1 ≡ 1 reduces to

a univariate nonparametric regression model. Thus Theorem 7 can be deduced from Theorem 8.

�

Proof of Theorem 8. The lengthy details can be found in Zhang, Jiang & Shang (2007). �

Proof of Lemma 1. For a binary Y , L(Y, µ) = YL(1, µ) + (1 − Y )L(0, µ). Then Condition

F leads to L(Y, µ) = YL(1, µ) + (1 − Y )L(1, 1 − µ). Condition G combined with the continuity
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assumption on F−1 implies that 1 − µ = F−1(−F (µ)). Thus L(Y, µ) = YL(1, F−1(F (µ))) +
(1 − Y )L(1, F−1(−F (µ))) = L(1, F−1(Y∗F (µ))). �

Proof of Theorem 9. We notice that for a generic F ,

V (Y∗F ) = YV (F ) + (1 − Y )V (−F ), (36)

∂V (Y∗F )/∂F = YV ′(F ) − (1 − Y )V ′(−F ). (37)

Combining Condition I, we have that for allµ, ∂V (Y∗FB(µ))/∂µ = V ′(FB(µ))F
′
B(µ)

Y−µ
1−µ

, which

along with Condition H implies that V (Y∗FB(µ)) ≥ V (Y∗FB(Y )). It follows that Q(Y, µ), as

defined in (28), satisfies Q(Y, Y ) = 0, (∂/∂µ)Q(Y, µ) is continuous, and fulfills Condition B. By
Theorem 3, (9) holds. An application of Corollary 2, particularly (13), gives the q-function in

(29). �

Proof of Lemma 2. Define L(F ) = E{V (Y∗F )|X = x}. From (36), it follows that L(F ) =
m(x)V (F ) + {1 − m(x)}V (−F ) for F ∈ F2. Since V is convex, we observed that L(F ) is

convex in F , and L′(F ) = m(x)V ′(F ) − {1 − m(x)}V ′(−F ), for ±F ∈ F2. Thus (30) implies

L′(FB(m(x))) = 0 for any m(x) such that V ′(FB(m(x))) and V ′(−FB(m(x))) exist, namely, (27).

�

Proof of Lemma 3. Taking the derivatives with respect to µ on both sides of (27) leads to

V ′(FB(µ)) + µV ′′(FB(µ))F
′
B(µ) = −V ′(−FB(µ)) − (1 − µ)V ′′(−FB(µ))F

′
B(µ),

that is, {µV ′′(FB(µ)) + (1 − µ)V ′′(−FB(µ))}F ′
B(µ) = −V ′(FB(µ)) − V ′(−FB(µ)). �
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