
 
Abstract— This paper addresses the issue of the interval 

forecasting (constructing prediction intervals for future 

observations) of the traffic data time series using one of local 

polynomial nonparametric models – the local linear predictor.

Two methods are proposed and compared. One is based on 

the theoretical formulation of the asymptotic prediction 

intervals and another is an empirical procedure using 

bootstrap, both for the local linear predictor. Finally, a case 

study using real-world traffic data will be presented for both 

approaches, along with the results compared with each other. 

The results coincide with expectations and have validated the 

proposed methods. 

I. INTRODUCTION

RAFFIC forecasting systems could be improved 

significantly by the development of interval prediction 

at a given probability (confidence level) in addition to point 

prediction. Not only can the provision of interval prediction 

increase the user comfort by reducing error risk associated 

with the information, it can also be used to assess the 

predictor forwards (not afterwards) for model selection and 

preemption in an adaptive or cooperative setting. A 

reduction in prediction variance (that is, smaller prediction 

interval) can increase the transportation system reliability 

and quality by reducing travelers’ uncertainty thus 

increasing their comfort. 

Short-term prediction by means of regression consists of 

two steps[1]: The first step uses training data (historical 

and/or real-time) to approximate the conditional mean 

regression function between inputs (data at one or more 

time instants) and the output (data at future time instants, 

with respect to the input data). Once this function is 

established, the second step uses it to estimate future data 

relative to current inputs. Usually, the value of the 

conditional mean function for the given input data is used as 
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the point prediction. Prediction intervals often can be 

constructed if the prediction of mean, variance and bias can 

be calculated. The derivatives of the mean function can be 

used to obtain bias.

The regression model can be parametric (such as linear 

regression, AR model, Kalman filter, multifractal) or 

nonparametric (such as neural network, local polynomial, 

wavelet, chaos). It is known that local polynomial models 

are advantageous over other nonparametric models such as 

neural networks, in that they have explicit and solid math 

formulation, real-time computing, and potential for adaptive 

and parallel implementation. Such properties are usually 

only available for parametric models which, however, due 

to their requirement for assumptions normally unavailable 

in real-world data, tend to be eclipsed by nonparametric 

models due to their lower accuracy.

Estimating bias, variance and prediction interval is not 

new for most parametric models. This is especially true for 

the linear regression predictor and for Gaussian data for 

which strategies have been well established. Although such 

measurements are in increasing demand in transportation 

application, the usually high complexity of nonparametric 

models has led to little research in this area.

All these results can be derived for the local polynomial 

regression by extending the results from global models to 

local models. For example, the prediction interval in linear 

models can be applied to local linear models [2]. A closed-

form expression of asymptotic estimation for prediction 

intervals will be elaborated in this paper for the local linear 

traffic predictor proposed in [1].

On the other hand, such derived expressions based on 

certain assumptions may not perform very well for real-

world traffic data. For example, the mean function for 

traffic prediction is usually not smooth enough to have the 

second derivative. In that case, the bias cannot be estimated 

using the equations. Also, the residual error distribution for 

the small sample is often unknown instead of being assumed 

as normal or t-distribution. In this context, the more general 

bootstrap method may be proposed.

Bootstrap is a simple resampling procedure which 

generates samples by randomly resampling the original 

training set with replacements [3-5]. The idea borrows the 

spirit similar to Monte Carlo simulation. This paper will 
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propose a method of applying bootstrap to time series 

prediction when implemented by the local linear model.

While it could be quite straightforward to compute the 

well-established prediction intervals for parametric traffic 

prediction models such as in [6], few concrete research 

results on interval prediction seem to be presented so far for 

nonparametric traffic predictors. One related literature 

found so far, is a presentation by Rilett [7] in which the 

LOESS (a software program for smoothing multivariate 

scattered data by locally weighted least square criteria) was 

used to analyze historical traffic patterns such as mean, 

variance and confidence limit. A recently published paper 

by Lint [8] explored two methods to assign confidence 

intervals to the outcome of a neural network based freeway 

travel time predictor, both using bootstrap methods. 

However, confidence intervals are not prediction intervals 

and no explicit formulas for confidence intervals or 

prediction intervals for that model are available. As neural 

network models do not have rigorous and explicit 

mathematical formulation available. It is noted that another 

bootstrap procedure that is plausibly similar for prediction 

interval was described in [9]. However, the prediction 

interval in that paper refers to the interval of prediction 

error which was calculated after the observations in order to 

verify the accuracy of the forecast. Instead, the prediction 

interval in this paper is constructed before observations 

arrive. Therefore, it seems that our paper is the first 

presented work that addresses the prediction intervals for 

nonparametric traffic prediction both theoretically and 

empirically.

This article is organized as follows. Section II and III 

will describe the closed-form equation and the bootstrap 

scheme of interval prediction for the local linear regression 

model. Section IV will be devoted to numerical study. 

Discussion and future research directions will be provided 

in Section V.

II. ASYMPTOTIC PREDICTION INTERVAL

This section will, first, briefly review the mean prediction 

of the local linear model and address the variance 

prediction. Then the estimator bias and variance will be 

introduced. Finally, interval prediction will be derived. 

Given the observations {(
i

T

i

Y,X ): i = 1, …, n} of the 

multivariate covariate X and a univariate response Y, the 

relationship between X and Y can  be modeled as:

Y = m(X) + σ(X)ε,                     (1) 

where X and ε are not necessarily independent, ε is the 

additive error term with E(ε|X) = 0                            (2) 

and Var(ε|X) = 1.                                                       (3) 

Here n is the number of the observations,

X = (X
1
, …, X

d
)

T

                                                        (4) 

and X
i
 = (X

i1
, …, X

id
)

T

                                               (5) 

with d the dimension of X.

It is of interest to estimate the mean regression function

m(x) = E(Y|X = x)                                                       (6) 

and the possible heteroscedasticity (conditional variance 

function) σ2

(x) = Var (Y|X = x),                                  (7) 

where x
T

 = (x
1
,.., x

d
)                                                    (8) 

is a point in R
d

.

Once the estimated mean regression function (denoted as 

m̂ ( )) is obtained, the fitted regression is used as a 

mechanism for prediction of response values. That is, if the 

prediction of Y at X = x is denoted as ŷ (x), then

ŷ (x) = m̂ (x).                                                            (9) 

A. Mean Prediction 

A local polynomial model is formed much as a Taylor 

series model, a function in the neighborhood of a query 

point x. In the local linear model, the Taylor expansion 

terms up to the first (linear) order are used to make the local 

approximation. That is, the function m is estimated m(X) ≈
m(x) + g

T

(X - x),                                                         (10) 

where g = (β
1
, …, β

d
)

T

. For the convenience of a matrix 

expression, redefine the vectors taking into account the 

constant term. Write β = (β
0
, β

1
, …, β

d
)

T

,                  (11) 

whereβ
0
 = m(x),                                                          (12) 

and X

~

 = (1, (X - x)
 T

)
 T

,                                             (13) 

Then m(X) ≈ β X
~

                                                     (14) 

The observations {(
i

T

i

Y,X ): i = 1, …, n} are used as 

training data to estimate β. The weighted least square 

criterion is used to obtain the fit [10].

The estimation of β

β
ˆ  = arg ( ) ( )βX-yWβX-y

β

d

T

d
min                    (15) 

is β
ˆ

= (
0

ˆβ ,…,
d

βˆ )
T

 = ( ) WyXWXX
T

dd

T

d

1−
,      (16) 

where

X
d
 =

⎟
⎟

⎟

⎟

⎟

⎠

⎞

⎜
⎜

⎜

⎜

⎜

⎝

⎛

−−

−−
−−

dndn

dd

dd

xXxX

xXxX

xXxX

L

MMM

L

L

11

2121

1111

1

1

1

,                (17) 

W = diag{K
B
(X

i
- x)},                                                  (18) 

y = (Y
1
, …., Y

n
)

T

                                                         (19) 

and K
B
 (u) = 

||

1

B

K(B
-1

u),                                              (20) 

where K( • ) is a multivariate probability density function  

(weighting kernel function) with mean zero and the 

covariance matrix of µ
2
(K)I

d
, with I

d
 the d × d identity 

matrix. B is called bandwidth matrix and |B| denotes its 

determinant. In this study, K is chosen as a Gaussian 

function and B = hI
d
, where h is called bandwidth. That is,

411



K (u) = 

2

))(( udis

e

−
                                                     (21) 

The distance function dis( • ) used in this study is the 

Euclidean distance. dis (u) = uu

T

                      (22) 

Thus m̂ (x) =
0

ˆβ ,                                                (23) 

and (

j
x

m

∂
∂
^

)(x) = 
j

βˆ , j = 1, …, d.                           (24) 

The prediction value ŷ  is equal to 
0

ˆβ . That is,

ŷ (x) =
0

ˆβ = p
x

T

y = ∑
=

n

i

ii

Yp

1

)(x                           (25) 

where q = (1, 0, …, 0)
T

.                                            (26)

The vector p
x
, also written as p(x), will be useful for 

calculating the bias and variance of the local model.

p
x

= p(x) = ( )( )TT

dd

T

d

T

WXWXXq

1−
                  (27) 

It is easy to find that

x

pp
x

T

 = ( ) qWXXq

1−
d

T

d

T

                                  (28) 

and Σp
i
(x) = 1.                                                          (29) 

B.  Variance Prediction 

[11] derived an estimate of σ2

(x), the local noise 

variance, that is, the variance for the traffic data in our 

study. A local linear regression produces residuals at all 

training points. The weighted residual r
i
(x) is given by: 

r
i
(x) = w

i
(x)

T

i

X β(x) - w
i
(x)Y

i
                                  (30) 

where w
i
(x) = )),(( xX

i

dK .                              (31) 

The training criteria is to minimize the weighted sum of 

the squared errors C(x): 

C(x) = ∑
i

i

r )(
2

x = ( ) ( )βX-yWβX-y
d

T

d
        (32) 

A reasonable estimator for the local value of the noise 

variance is )(ˆ
2

xσ  = C(x)/n
LL

(x)                               (33) 

where n
LL

 is a measure of the number of data points: 

)(x
LL

n  = ∑
=

n

i

i

w

1

2

=∑
=

⎟

⎠

⎞

⎜

⎝

⎛
n

i

i

h

Xd

K

1

),( x

                 (34) 

The bias of the estimate )(ˆ
2

xσ can be reduced by taking 

into account the number of parameters in the local linear 

regression:

s
2

(x) = ))()(/())((
2

xxx
LLLLi

pnr −∑                       (35) 

where )(x
LL

p  is a measure of the local number of the free 

parameters in the local model: 

)(x
LL

p =∑
−

i

id

T

d

T

ii
XXw

14

)( WXX                 (36) 

C. Estimator Variance and Bias 

For any estimator m̂ (x), define 

Bias( m̂ (x)) = E { m̂ (x) | X= x} – m (x)                    (37) 

Var( m̂ (x)) = Var { m̂ (x) | X= x}                              (38) 

Mean Squared Error MSE (x) = Bias
2

(x) + Var(x)     (39) 

In order to develop the intervals, the parameter 

Var( ŷ (x)) must be determined. A standard error 
)(ˆ xy

s of

ŷ (x) can be interpreted as the standard error of the 

estimator of mean response, conditional on x. The notion 

standard error evokes the image of precision or variation. In 

this case, it reflects the variation of ŷ at x, if repeated 

regressions were conducted, based on the same X-levels

and new observations on Y each time.

The variance and bias of the multivariate local linear 

estimator are shown below as given by Atkeson et al. [11]. 

E ( ŷ (x)) = m(x) + p
x

T

 (m – X
d
β) = m(x) + p

x

T

t       (40) 

where m = [m(X
1
), …, m(X

n
)]

T

                                   (41) 

and t = m – X
d
β .                                                        (42) 

Var ( ŷ (x)) = Var( m̂ (x)) = σ2

(x) p
x

T

p
x
                     (43) 

From (40), it is easy to get 

Bias ( ŷ (x)) = p
x

T

 (m – X
d
β)                                      (44) 

If the estimator σ2

(x) is substituted by s
2

(x), from (43) 

the standard error of prediction can be defined as 

)(ˆ xy

s = s(x)
x

pp
x

T

                                (45) 

Using Taylor’s expansion of m(X) [10],

m(X) = X
d
β + higher terms of (X - x)                         (46) 

Denote τ
i
 = m(X

i
) – X

d
β = higher terms of (X

i
 - x) and τ

= [τ
1

τ
2
 … τ

n
]
T

 ,  the estimation of Bias ( ŷ (x)) is

^

Bias ( ŷ (x)) = p
x

T τ                                                  (47) 

D. Asymptotic Prediction Interval 

To derive confidence intervals requires the distribution of 

the error. Here, the error is assumed normal, ε ~ N(0,1).

From (1), Y ~ N(m(x), σ(x)). If m(x) is linear in x, the local 

linear estimator is unbiased [11]. That is,

Bias ( ŷ (x)) = E ( ŷ (x)) - y
true

(x) = 0.                        (48) 

The following section will first give the derivation of the 

prediction interval for the unbiased case and then will 

discuss the biased case. Under the condition of normal 

errors, ŷ (x) is normal, and a confidence interval at the 

100(1- α)% confidence level for E(Y| x) can be written 

ŷ (x)
)(ˆ2,2/ xyn

st −± α                                                   (49) 

The expression in (49) is, indeed, that of a confidence 

interval and is not to be confused with the prediction level 

on a new response observation at X = x. The latter reflects 

bounds in which the analysts can realistically expect an 
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observation of y at X = x to fall. 

The standard error of prediction, given by (45), is used in 

constructing a confidence interval on the mean response. 

However, it is not appropriate for establishing any form of 

inference on a future single observation. Suppose the mean 

response at a fixed X = x is not of interest. Rather, one is 

interested in some type of bound on a single response 

observation at x. Consider a single observation at X = x

denoted symbolically by y
new

(x), independently of ŷ (x). A 

prediction interval on y can be constructed by beginning 

with y
new

(x) - ŷ (x).

Note that Var (y
new

(x) - ŷ (x)) = σ2

(x) ( )
x

pp
x

T+1 . This 

reflects both the additive noise in sampling at the new point 

(σ2

(x)) and the prediction error of the estimator (σ2

(x)

p
x

T

p
x
).

Under the assumption (48), 

E [y
new

(x) - ŷ (x)] = m(x) – E( m̂ (x))  = -Bias ( ŷ (x)) = 0, 

then, )1)(/())(ˆ)((
x

ppxxx

x

T

new
yy +− σ ~ N (0,1) under 

the normal theory assumptions. In many nonparametric 

regression situations, there may be only a few local data 

points in the neighborhood of x and the asymptotic 

normality is not accurate enough. Therefore [11] replace σ

by s and )1)(/())(ˆ)((
x

ppxxx

x

T

new
syy +− ~ t

n-2
   (50) 

From (50) a probability bound or prediction interval can 

be placed on y
new

, i.e., an interval in which y
new

 is contained 

with a fixed probability (1-α).

This prediction interval is given by 

ŷ (x)
x

ppx
x

T

n

st +± − 1)(
2,2/α

This expression of the prediction intervals is independent 

of the output values of the training data Y
i
, and reflects how 

well the data is distributed in the input space (see (27)).

When the bias is not zero, however, the variance only 

reflects the difference between the prediction and the mean 

prediction, and not the difference between the prediction 

and the true value, which requires knowledge of the 

predictor's bias. Only when the local model structure is 

correct will the bias be zero. 

Under certain regularity conditions, extending the 

univariate case [10], it can be shown that asymptotically 

)/()))(ˆ()(ˆ(
)(ˆ

^

x

xx
y

syBiasy − � N (0,1)

Therefore, the prediction interval can be estimated as

ŷ (x) – 

^

Bias ( ŷ (x))
x

ppx
x

T

n

st +± − 1)(
2,2/α  (51) 

Considering the t-distribution may not be valid for our 

data, the bootstrap method is proposed. 

III. BOOTSTRAP PREDICTION INTERVAL

The bootstrap is a method for estimating the distribution 

of an estimator or a test statistic by resampling one’s data or 

a model estimated from the data. The bootstrap principle is 

that the distribution of (resampled – sample), which can be 

computed directly from data, approximates the distribution 

of (sample – true). Often, the bootstrap provides 

approximations that are more accurate than those of the 

first-order asymptotic theory.

 Bootstrap is a popular method despite its disadvantage 

of being time consuming. In terms of obtaining prediction 

intervals, it could be applied to many prediction models and 

needs few assumptions. Bootstrap can provide a reliable 

solution and it is easy to implement when the asymptotic 

equations are not available or not valid. This may occur due 

to a small sample size, or the limitations set by the problem 

characteristics such as smoothness of the mean function.

From an original sample 
n

Ψ  = 
1

(Y ,
2

Y ,…, FY

iid

n
~) ,

draw a new sample of n observations among the original 

sample with replacements, each observation having the 

same probability of being drawn (= 1/n). A bootstrap 

sample is often denoted 

*

n

Ψ
 = 

*

1
(Y

,

*

2
Y

,…,
n

iid

n
FY ~)

*

where F
n
 is the empirical distribution. The behavior of a 

random variable θˆ  = θ (
n

Ψ , F) can be studied by 

considering B new values obtained through computation of 

B bootstrap samples. An approximation of the distribution 

of the estimate θˆ  = θ (
n

Ψ , F) is provided by the 

distribution of 
b*ˆθ  = θ (

b

n

*Ψ , F
n
), b = 1,…, B.

A. Bootstrap Bias 

In general, let θ be a parameter and θˆ  an estimate. Let 

*ˆθ  be the bootstrap estimate calculated in the same way as 

θˆ . Then the bootstrap assessment of the bias is 

Bias = Mean of (
*ˆθ ) - θˆ . The bias-corrected estimate of θ

is then θ = θˆ  - Bias = 2θˆ  - Mean of (
*ˆθ )

B. Bootstrap Prediction Interval 

A residual-based bootstrap with bias correction is 

proposed to compute the prediction interval based on the 

percentile method [3]. 

Denote the bootstrap distribution of 
*ˆθ  by 

*

n

G (t) = 

)
ˆ

(
*

tP
n

F

≤θ , approximated by 
*ˆ

n

G (t) = # Bt /}
ˆ

{
* ≤θ

The percentile method takes the 1-2α confidence interval 

for θ  as being )]1(
ˆ

),(
ˆ

[

1
*

1
* αα −

−−
nn

GG . Theoretically this is 

equivalent to the replacement of the unknown distribution 
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)
ˆ

(),(
*

tPFtG
n

F

≤= θ  by the estimate G(t, F
n
).

The bootstrap interval prediction procedure can be 

divided into three steps: 

1. Given training data {(
i

T

i

Y,X ): i = 1, …, n} of size n

(n = 14 for our case study), fit the local linear model m(X)

and calculate the corresponding residuals 
i

ε̂ = Y
i
  - 

i

ŷ  = Y
i

- m̂ (X
i
), i = 1, …, n. Since Eε =0 and Var ε = 1 are 

assumed by our model ((2) and (3)), 
i

ε̂  needs to be divided 

by the square root of Var( ŷ (x)) (45) before standardization 

to avoid a system error in the bootstrap. The standardization 

includes centering by subtracting the average [12], so 
i

ε~  = 

i

ε̂ - ∑
=

k

k

k

n
1

ˆ

1 ε , k = 1, …, n.  

2. Then, draw B bootstrap errors {
*

i

ε (b), i = 1, …, n; b = 

1, …, B} each of size n with replacement from the sample 

distribution given by the centered residuals. Finally B

bootstrap outputs are formed as 
*

i

Y (b) = 
i

ŷ +
*

i

ε (b) to get 

B bootstrap training datasets (
T

i

X ,
*

i

Y (b)), i = 1, …, n; b = 

1, …, B. To each bootstrap dataset a local linear model is 

fitted as 
)(

ˆ
b

m (X) and the prediction 
)(

ˆ
b

m (x) for the testing 

data query point x is computed. Bias could be estimated by 

using average of 
)(

ˆ
b

m (x). A bias corrected prediction 

)(

ˆ
b

y (x) = 2
)(

ˆ
b

m (x) - ∑

=

B

b

b

xmB

1

)(

)(ˆ)/1( .

3. The prediction interval for ŷ (x) with the confidence 

level of 100(1- α) percent is obtained as [ ŷ (x
)*(ψ)

, ŷ (x
)*(1-

ψ)

], where ŷ (x
)*(ψ)

 is the 100ψ-th percentile of the 

bootstrap distribution {
)(

ˆ
b

y (x)}(b = 1, …, B) and 

ψ = 0.5α.

IV. NUMERICAL STUDY

The detailed process for obtaining and preparing the 

data, the preliminary data analysis and experimental design 

is basically the same as in the study in [1] for the point 

prediction performance of the local linear predictor. the 

selected road segment for study is US-290 from the cross 

street Sam Houston toll way to the cross street Fairbanks 

based on Houston’s US-290 Northwest freeway eastbound 

traffic time(speed) data collected from February 2002 to 

July 2002 every five minutes. The differences between this 

numerical study from that study are pointed out as below. 

First is the performance index or evaluation criterion. 

Since the main concern of the interval prediction is the 

predicted bounds instead of the predicted value, therefore, 

the relative mean error (RME) won’t be used as the 

performance index.

The expected result is that the predicted bounds should 

include the predicted values and the bootstrap method is 

better in terms of giving narrower prediction intervals. 

Thus, the predicted values should fall within the intervals 

formed by predicted upper bounds and lower bounds. 

Provided this premise is verified, the narrower prediction 

intervals give better performance. Also, when comparing 
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Fig. 1.  95% Prediction Upper and Lower Bounds for One-Day Traffic 

Time Series, Computed by Asymptotic Equations of the Local Linear 

Predictor.
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Fig. 3.  Zoom-In Results for 95% Prediction Upper and Lower Bounds 

for One-Day Traffic Time Series, Computed by the Bootstrap Procedure 

for the Local Linear Predictor. 
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different methods of interval prediction, results over  

multiple experimental runs may not require to be averaged. 

If consistent results for each run are observed then one-run 

results may be enough to infer comparison conclusions. In 

this paper, one-day results are given to illustrate the 

comparison since all other runs show the same trends.

Secondly, results using 16-day data instead of 32-day 

data as the data set are given. Since a smaller data set has 

less total computation time and it is found that the two data 

sets give the same comparison results for the two interval 

prediction approaches.

A resampling size B of 500 is used in the bootstrap 

procedure. Fig. 1 to 3 show one-day prediction upper-

bounds and  lower-bounds at a confidence level of 95% 

computed by asymptotic equations and the bootstrap 

method, respectively. Fig. 3 is a zoom-in view of Fig. 2 for 

a clearer display. Fig. 4 compares the one-sided prediction 

intervals obtained by these two methods. 

It is observed that the prediction intervals given by both 

methods can include the prediction values. This is self-

evident for the asymptotic method since the bounds are 

derived after computing one-sided intervals. So the results 

validate the proposed bootstrap procedure using the 

percentile method. On the other hand, the similarity of the 

trends of both results validates the asymptotic equations. 

The average and maximum one-sided prediction interval 

are approximately ± 10Mph and ± 16Mph for the 

asymptotic equation approach, ± 0.3Mph and ± 2.5Mph

for the bootstrap approach. The latter is much smaller than 

the former thus the bootstrap is better than that of the 

asymptotic results. This is in accordance with the expected 

outcome of the experimental design. 

From Fig. 4, it is shown that both approaches have a 

larger interval when entering and leaving peak hours than at 

other times. But the bootstrap method gives much more 

stable intervals than the asymptotic method. This also 

proves the bootstrap is advantageous. 

V. CONCLUSIONS

Pioneering work from theoretical methodologies to 

implementations is presented on achieving more 

informational traffic forecasting by providing interval 

predictions. Both the asymptotic equations and an empirical  

bootstrap method were derived for the local linear interval 

prediction. The experimental results using a set of real-

world data were given and have validated the proposed 

methodologies. The case study results are consistent with 

what are expected. That is, both methods are valid and the 

bootstrap method gives better results. 
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