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(uk(l+r)—nx/)x — uk(l-H‘)

k(I+7)

kl+n=ny! is a left inverse of x with identity u .

Therefore u
From the discussion above we know that G is a group.
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A family of integrals over infinite intervals appears frequently in the
statistical literature on non-parametric regression. This note presents two
simple transform methods, based on beta function and Parseval identity, to
explicitly evaluate these integrals. These methods will benefit researchers and
practitioners working in non-parametric regression, whenever they encounter
similar types of problems to solve.

1. Introduction
A family of integrals over infinite intervals,

o0 1

for parameters k > 0 and » > (21@)_1 , as well as other integrals that can be expressed
as a linear combination of forms (1.1), has frequently appeared in the statistical
literature on non-parametric regression. In the setting of curve estimation, these
integrals arise from deriving the asymptotic expressions of non-parametric func-
tion estimators. Similarly, in the context of hypothesis testing, these integrals
emerge from calculating the asymptotic mean and variance of test statistics based
on non-parametric estimation. Henceforth, information on the true values of (1.1)
plays an important role in making non-parametric inference, evaluating relative
asymptotic efficiency, simplifying technical arguments, and will bring great con-
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venience to practitioners. Examples can be found in, for instance, Watson and
Leadbetter ([1], p. 486), Wahba ([2], p. 390), Davis ([3], p. 533), Craven and Wahba
([4], p. 391), Rice and Rosenblatt ([5], pp. 148—-149), Cox ([6], p. 544 and p. 548),
Cox ([7], p. 800), Eubank and Spiegelman ([8], p. 389), Messer ([9], p. 828),
Eubank and LaRiccia ([10], pp. 5-6), Chen ([11], p. 68), Jayasuriya ([12], p. 1628),
and Ramil-Novo and Gonzalez-Manteiga ([13], p. 237). Although this reference
list is not exhaustive, it does indicate the extent to which statisticians need a simple
and quick method to obtain explicit results of (1.1). It seems that statisticians of
the work above may not have been aware of an analytically transparent expression
for (1.1), except in certain special cases. Silverman ([14], p. 589) provides the value
of some integral, fgo(l + t4)7ldt, with reference to (2.141.4) of Gradshteyn and
Ryzhik ([15]). Formulas for a particular type of integrals,

1 (™ t 2 2k —2s—1
— dt = 1.2
21 J_m < 1+ t2k> 4k? sin {n(2s + 1)/2k} (1.2

can be found in Messer and Goldstein ([16], p. 187); there, the derivational detail
is not mentioned. The explicit expressions for (1.1), when » = 1,2, 3,4, are given
in Fan, Zhang and Zhang ([17], p. 178), who used the computational power of
Mathematica that may not work easily in other cases of 7.

In recent years, the non-parametric regression technique has been developing
rapidly. It is anticipated that more applications of (1.1) will be encountered and
developed by statisticians in their future research work. Our goal in this paper is
to present two simple transform methods which can easily and conveniently be
applied by researchers working in the area of non-parametric regression. The first
method, addressed in section 2, uses the change-of-variable and beta function, and
is applicable to all examples above. The second method, illustrated in section 3,
offers a statistical perspective on (1.1), i.e. applying Parseval identity to the
probability density function of a gamma random variable. As will be seen, both
methods do not need efforts put into searching tables in voluminous books, do not
require background knowledge of contour integration (which is non-trivially
complicated and requires integer-valued k& and 7) in complex analysis, and do
not rely on machine intelligence and advanced level of computing skills in
numerical integration.

2. The change-of-variable approach: beta function
To illustrate the first approach, we will introduce an auxiliary function,
denoted by

00 1 t2k

Z(k,r, €)= JO (1 ! tzk)r(l : tzk)gdt, (2.1

for valid parameters k, 7, and £. Consideration of (2.1) offers two advantages. First,
when £=0, (2.1) reduces to (1.1). Second, the right side of (2.1) can easily be
obtained by making a change-of-variable transform. Namely, in (2.1), setting
1/(1 + ) = x, ie. t = (1/x — 1)V Jeads to dt = 1/(2k)(1/x — 1)V~ (=1/x)dx.
Consequently,
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00 1 r t2k ¢ 1 . 1 1—x 1/(2k)—1 1
dt = "(1 — — —d
J() (1 + t2k> (1 + tZk) Jo (1 =) 2k ( X ) A

1 1
- ﬁj xR — )t/ CR=T g (2.2)
0

Notice that (2.2) is the integral representation of a beta function. Thus for & > 0,
r> (2k)~', and £ > —(2k)™', we obtain from (2.1) and (2.2) that

= (e ot ) = (e ) rovo @

where B(:,-) and I'(-) denote the beta function and the gamma function, respec-
tively.

All the integrals in the special cases, considered by previous authors, can easily
be deduced from the method for obtaining (2.3). To see this point, some
illustrations are given below.

(1 For
¢=0,r=1, and k > 1/2, result (2.3) indicates that
©dt 1 1 1 n/(2k)
—— =7k 1,0)==T(1—-—= I ) =—————— 2.4
L 1+ 2% (k,1,0) 2k ( 2k> <2k> sin {t/(2k)} 2:4)

in which validity of the last-step equality uses the reflection formula

(cf. Abramowitz and Stegun, [18], p. 256),
['(1 — 2)I'(2) = n/sin (n2) (2.5)

which holds for any 0 < 2 < 1.
(2
More generally, for /=0 and r > (Zk)_l, where £ > 0, an immediate application of
(2.3) to (1.1) leads to

1 T(r — (1/2k)T(1/2K)
2k I'(»)

J aT 12k) dt = I(k, r,0) = (2.6)

Furthermore, if 7, satisfying r > (2k)”', is an integer (> 2), then (2.6),
combined with (2.5), becomes

S 1\ /2R
(Zk)l{ﬂ(rﬁﬂr(l >(2k>/ HJ - ( ﬁf)sin{n/(zk)}

CNZIQR 1) n/(2k)
T (2R — 1)! sin{n/(2k)}

2.7)

Clearly, the explicit expressions (2.7) and (2.4) are very easy to use, because
only the sine function needs to be evaluated.
In particular, for integers » = 2, 3,4, (2.7) gives the identities,
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© _2k—1 w/(2k)
o (14 2k)? =" sin {1/(2k)}

YU (kD=1 m/QR)

o (14228 8k2 sin {1/(2k)}
© 1 _(6k—1)(4k—1)(2k—1) 7/(2k)
o (1+20* 48k3 sin {1/(2k)}

These results, along with (2.4), are exactly the same as given in ([17],
p. 178).
(3 We
now use (2.3) to illustrate (1.2) given in [16]. Note that the integrand function in
(1.2) can be written as,

428 (tzk)x/k 1 2—(s/k) 12k s/k
(A48 (A0 (1 + tz’*) (1 + tZk)

Thus the left side of (1.2) becomes

1 1 2s+1 25+ 1
—Z(k,2 — s/k,s/k) =——T(2 — r rQ
L1 s/,s/>2kﬂ( 2k><2k)/(>
1 2s+1 2s+1 2s+1
_%(1_ 2k )F<1_ 2k >F< 2k )

1 25+ 1 n
_%( 2k )sin{n(23+1)/(2k)}

which coincides with the right side of (1.2).

3. The Fourier-transform approach: Parseval identity

Fourier analysis is one of the most useful tools in statistical inference; see [19]
for details and the references therein. In this section, we explore the applicability
of Parseval identity, a well-known result in Fourier analysis, to evaluating (1.1).
Given a'function f, satisfying J‘fooo | f(x)|dx < oo, its Fourier transform, ¢(t) =
ffooo f(x)e"™dx, can be well defined for every real t. Conversely, the knowledge of ¢
also enables f to be recovered, according to the inverse Fourier transform,
f(x) = 2n)~! ﬁooo @(t)e~ "™ dt. Parseval identity establishes the connection between
the L,-norm of f and the L,-norm of ¢ via the expression,

(o] 1 00

| wrav=g | ieora (1)
—00 —0o0

In statistics, if f is the probability density function of a random variable, then the

Fourier transform ¢ of f, is also called the characteristic function of that random

variable. This observation motivates us to study (1.1) via Parseval identity.
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3.1. The case when k=1
To provide a simple illustration of how Parseval identity can be used to
evaluate (1.1), we first consider the integral, fgo(l +t%)7"dt, where r > 1/2,
corresponding to (1.1) with k=1. To this end, we will use the probability density
function, of a gamma random variable with parameter r, expressed as
e /T(r), ifx>0
f = {o, if x <0 -2

The characteristic function of this random variable, via some straightforward
calculus, is given by

o(t)=(1—ity”",  te(—00,00) (3.3)

see also Evans, Hastings, and Peacock ([20], p. 55) and many other standard texts
on mathematical statistics. We observe that

(D) = (1 +1%)7
The Parseval identity (3.1), applied to f in (3.2) and ¢ in (3.3), yields

J_ ﬁ:%cj {xr_le_x/l"(r)}zdx

0
_ 2n J‘” Yy e o 2nl(2r—1)
Sy repr YT 2 re)P
and thus
00 1 B _ wlh@2r—1)
L eyt =T0n0 =5y (3.4)

Does Z(1,r,0) obtained from (3.4), via Parseval identity, coincide with the
counterpart resulted from (2.6), via Beta function? In other words, could we
equate /T ['(2r — 1) with 220=YT(r — 1/2)[(r)? Readers can answer this question
by directly applying the Legendre duplication formula (cf. [18], p. 256),

VATQ2z) =22""T(x)M(z+1/2) z2>0

and setting z = v — 1/2.

3.2. The case when k> 1
For k> 1, we could not find ¢(¢), among the commonly used characteristic
functions, that satisfies |¢(#)|> = (1 4+ t2*)™". As a result, the approach illustrated in
the previous case of k=1 needs to be modified.
We first extend Parseval identity (3.1) as follows.

Lemma 1. For j=1,2, assume that jfooo | fi(x)|dx < oo and that ¢;(t) is the
Fourier transform of fi(x). Then

j (0o d =21—nj $1() B2 dt (3.5)

—00

where the overline denotes complex conjugate.
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Proof. Since the Fourier transforrn of fi+ /1 1s b1+ ¢, (3.1) gives f|f1 +hH)1>=

JUAP+ 21+ 11" = Q07 [ 191+l = )" [(1611° +2¢162 + [¢2%), which
combined with Parseval identities, f|]§| =(2n)" f|(/§]|2 7=1,2, leads to the
desired (3.5). |

We now apply lemma 1 to (1.1). For k> 1 and r > (2k)"', we substitute
t* = §*. This vields
© © 1 1 1 (™ 1 1
. —sl/k=1g :—J S 3.6
J, weee=], e e w] arergeme 09
Define ¢1(¢) = 1/(1 + 2)", and ¢,(¢) = 1/]#|'~'/*. Thus (3.6) indicates

| =] sm@ar (67)

The inverse Fourier transform of ¢{(f) can be obtained, from (17.34.4) of
Gradshteyn and Ryzhik ([1 5], p. 1151) and a scaling factor 1/4/27, by

fi(x) =

x| 2K, 1 2(1x]) x € (=00, 00)

N

where K, (2) is the ‘Bessel function of imaginary argument’, whereas the inverse
Fourier transform of ¢,(¢) is given, via (17.23.5) of [15, p. 1147] and a scaling
factor 1/4/2m, by

Sy < DA/Rsin (L —1/k/2) 1
2= x| 7% = 2sin {(1/(2R)IT( — 1/k)|x| "

x € (—00, 00)

Direct application of lemma 1 to the right side of (3.7) leads to

T[OO

J 1+ 1t2k) dt_;Jf fi(x) fo(x) dae

2n 1 * k12
=== ’ K,_ d
k 2sin {1/ (2R)IT(1 — 1/k) /AT (r)2—1/2 L N 1/2(x) dx
in which
Joo xy—l/k—l/ZK‘ (x)dx — 21’—1//2—1/2—11—*(7_ _ l)]’*(l _ l)
0 r-172 k) \2 7 2k

(cf. [15], (6.56.16), p. 684). Thus

*_1 _Vr ! pepfy~ L\ L
L A+ 27 Y= % sin(m/@RIrG — (A7~ ¢ (’ 2k>r<2 2k>

i 1
~ ksin {r/(2R)}2-VET((1/2) — (1/2R)T(1 — (1/2k))[(¥)

x 21/’*11“(7—21]?)1“(;—22)
- 21kr<21k) (“i)/rm

This result agrees with (2.6).
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Variations in the solution of linear first-order
differential equations
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A special project which can be given to students of ordinary differential
equations is described in detail. Students create new differential equations
by changing the dependent variable in the familiar linear first-order equation
(dv/dx) + p(x)v = g(x) by means of a substitution v=f(y). The student then
creates a table of the new equations and describes how they are solved.
Applications are also given.
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CORRECTION

A note on beta function, parseval identity, and a family of integrals in non-parametric
regression

By CHUNMING ZHANG AND YUEFENG LU
International Journal of Mathematical Education in Science and Technology (2004), 35, 303-309

The authors of the paper would like to correct the following errors.

1. On page 309, [14] in References should be

Silverman, B. W. (1984). A fast and efficient cross-validation method for smoothing parameter
choice in spline regression. J. Amer. Statist. Assoc., 79, 584-589.
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