
A Computational Perspective on
Projection Pursuit in High Dimensions:
Feasible or Infeasible Feature Extraction

Chunming Zhang1 , Jimin Ye2 and Xiaomei Wang3

1Department of Statisics, University of Wisconsin-Madison, Madison, WI 53706, USA
2School of Mathematics and Statistics, Xidian University, Xi’an, Shaanxi 710071, China
3School of Management, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
Correspondence Chunming Zhang, Department of Statisics, University of Wisconsin-Madison,
Madison, WI 53706, USA. Email: cmzhang@stat.wisc.edu

Summary

Finding a suitable representation of multivariate data is fundamental in many scientific disci-
plines. Projection pursuit (PP) aims to extract interesting ‘non-Gaussian’ features from multivariate
data, and tends to be computationally intensive even when applied to data of low dimension. In
high-dimensional settings, a recent work (Bickel et al., 2018) on PP addresses asymptotic character-
ization and conjectures of the feasible projections as the dimension grows with sample size. To gain
practical utility of and learn theoretical insights into PP in an integral way, data analytic tools
needed to evaluate the behaviour of PP in high dimensions become increasingly desirable but are
less explored in the literature. This paper focuses on developing computationally fast and effective
approaches central to finite sample studies for (i) visualizing the feasibility of PP in extracting fea-
tures from high-dimensional data, as compared with alternative methods like PCA and ICA, and (ii)
assessing the plausibility ofPP in cases where asymptotic studies are lacking or unavailable, with the
goal of better understanding the practicality, limitation and challenge of PP in the analysis of large
data sets.

Key words: density estimation; empirical distribution function; exploratory data analysis; Gaussian
mixture; ICA; PCA.

1 Introduction

The projection pursuit (PP), proposed by Kruskal (1969) and first implemented in Friedman
& Tukey (1974), is a technique for finding ‘interesting’ structures from multivariate data. It is
based on the idea of pursuing low-dimensional projections of multivariate data to display highly
‘non-Gaussian’ features. To be explicit, consider n independent data vectors X · ; i ¼
ðX 1; i; …; Xp; iÞT ; i ¼ 1; …; n , from the distribution of a p -variate random vector X ¼
ðX 1; …; XpÞT , namely,

X · ; 1; …; X · ; n ∼i:i:d:X : (1:1)
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Along each projection vector z of unit length (zT z ¼ 1), the n original data vectors are trans-
formed to n projected data scalars,

zTX · ; 1; …; zTX · ; n; (1:2)

with the empirical distribution function (E:D:F:),

ĜzðsÞ ¼ 1

n
∑
n

i¼1
IðzTX · ; i ≤ sÞ; (1:3)

where Ið · Þ denotes the indicator operator. It is anticipated that

ĜzðsÞ tends to a target distribution GðsÞas n tends to infinity; (1:4)

where Gð · Þ is a cumulative distribution function (C:D:F:). Loosely speaking, a target distribu-
tionG is ‘feasible’ if there exist projections whose empirical distribution could possibly approx-
imateG. Numerically, the one-dimensional PP seeks a projection onto a unit length vector z, such
that

the target distribution G in ð1:4Þ is as‘non-Gaussian’as possible; (1:5)

associated with interesting structural features, such as clusters, inhomogeneity, modes, trends
and skewness in the data. The search for the desired direction z solves an optimization problem
which maximizes a suitable projection index, measuring the degree of interestingness or
non-Gaussianity of the projected data. In this regard, projection pursuit methods tend to be com-
putationally intensive (Tyler et al., 2009) even for comparatively low-dimensional datasets. Re-
fer to Huber (1985), Friedman (1987), Jones & Sibson (1987), Sun (2006),
Daszykowski (2007), Jee (2009), and Loperfido (2018) and references therein, for more com-
prehensive reviews and discussions of PP on a range of topics including the dimension of the
projection space, choices of the projection index and optimization approaches to the search
for interesting projections.
In recent years, high-dimensional data arise in many contemporary problems, where the sam-

ple size is small relative to the dimensionality, posing substantial challenges to data analysis and
motivating the development of new statistical methods. Yet relatively few works relevant to per-
forming PP on high-dimensional data are available in the statistics literature. For classification
of large p small n data, Lee & Cook (2010) devised and implemented a new projection pursuit
index. Blanchard et al. (2006), De Bie et al. (2016), Sasaki et al. (2016), Virta et al. (2016), and
Loperfido (2018) considered algorithms to find non-Gaussian components of a
high-dimensional distribution. Bickel et al. (2018) gave a more recent theoretically-focused re-
search on PP.
For data points in high-dimensional spaces, two important and challenging issues arise from

the feature extraction task by PP : issue (i) regarding asymptotic studies conducted on the
number p of variables, the number n of observations and the joint distribution of variables
X 1; …; Xp to guarantee the ‘existence’ of a plausible direction z such that a target distribution
G in (1.4) and (1.5) is feasible; issue (ii) concerning data analytic tools for evaluating the behav-
iour of PP in high dimensions and enabling the asymptotic feasibility results in issue (i) to be
accessible to users and computers.
As for the asymptotic issue (i), there have been many discussions (Geman, 1980; Diaconis &

Freedman, 1984; Huber, 1985) on the choice of projection vectors z . Particularly, for
high-dimensional data, where p ¼ pn tends to infinity as sample size n tends to infinity, a recent
work (Bickel et al., 2018) building on results (Rudelson & Vershynin, 2009) characterizes and
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conjectures impacts of the dimension p growing with n on the target distributionG in a variety of
settings (to be reviewed in Section 2.1 and summarized in Table 1), and identifies types of target
distributions G to be ‘feasible’, ‘uniquely feasible’, or ‘infeasible’ (formally defined in Section
2.1) for PP. These results are confined to the scenario where variables X 1; …; Xp are indepen-
dent, and standard Gaussian or zero-mean sub-Gaussian. Affirmative results are not available
yet for cases where variablesX 1; …; Xp either are non-independent, non-identically distributed,
or have other types of non-Gaussian distributions.

In responding to the practical issue (ii), computational strategies and data analytic tools needed
to evaluate the behaviour of PP for finite data samples in high dimensions and learn asymptotic
feasibility results in Bickel et al. (2018) become increasingly desirable but are less explored in
the literature. This paper focuses on developing computationally fast and effective approaches
and making practical suggestions, central to empirical studies and numerical experiments.

(a) Section 2.2 devises numerical schemes to be used in Section 3 for visualizing the feasibility
of PP in feature extraction. First, we integrate a closed-form expression of the
Kolmogorov–Smirnov distance into quantifying the maximum discrepancy between the
empirical distribution Ĝz and the target distributionG in one-dimensional PPs, while exem-
plify the demand for an approximate evaluation in the multiple-dimensional analogue. Sec-
ond, the developed non-parametric ‘empirical probability density function’ ĝz in (2.12)
enjoys numerical simplicity and better uncovers the multi-modal and/or non-Gaussian types
of features in the exploratory PP , from correlated projected data fzTX · ; igni¼1 onto
data-dependent directions z, than the kernel smoothing method which is typically -suited
for estimating unimodal or Gaussian-type of densities underlying i:i:d: data. These

Table 1. Summary of asymptotic results in Bickel et al. (2018) of projection pursuit as n→∞; p→∞; p=n→γ for different
values of γ on mean-centred data.

γ ¼ lim

n→∞

p

n
zero-mean target distributions in (1.4) result in Bickel et al., (2018)

γ ¼ ∞ any G is feasible; Thm. 1
any G is feasible under (2.2); Remark 1
any multivariate G is feasible. Remark 2

γ ∈ ð1; ∞Þ G is feasible if μ2ðGÞ < γ � 1, Thm. 2ðiÞ

where μ2ðGÞ ¼ ∫x2d
˙

G˙ðxÞ;
G is feasible under (2.2) if μ2ðGÞ < ð ffiffi

γ
p � 1Þ2; Remark 3

G is infeasible if μ2ðGÞ > ð ffiffi
γ

p þ 1Þ2; Thm. 2ðiiÞ
Gðs � u0

σ0

Þ of ‘Type-G’ is feasible if μ2ðGÞ < ∞. Corollary 1

γ ∈ ð0; 1Þ γ
L
G þ ð1 � γ

L
ÞΦ is feasible if μ2ðGÞ < L � 1; L ∈ ð1; ∞Þ, Thm. 3,

where Φ is the standard Gaussian distribution;
G is infeasible if
max
s

jGðsÞ � ΦðsÞj > C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ logð1=γÞ

p
.

Thm. 4

γ ¼ 1 1

L
G þ ð1 � 1

L
ÞΦ is feasible if μ2ðGÞ < L � 1; L ∈ ð1; ∞Þ; Thm. 3,

G (not a mixture of Gaussian) may be feasible, Remark 4
relying on convergence rate to γ ¼ 1.

γ ¼ 0 Φ is uniquely feasible. Thm. 5
γ ∈ ð0; ∞Þ;
‖z‖0
n

→ 0

Φ is uniquely feasible. Thm. 6

See Appendix A for a complete list of notations.
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numerical schemes facilitate comparison with other commonly used feature extraction
methods, such as the principal component analysis (PCA) in Jolliffe (2002) and Jolliffe
& Cadima (2016) and the independent component analysis ( ICA ) in Hyvärinen &
Oja (2000) and Hyvärinen et al. (2001), both of which search for projection directions
using criterions with relevance to that of PP; see Section 3.2.1 and Appendix B.1, with
an emphasis on the two-dimensional PP.

(b) The plausibility of PP has yet to be evaluated in high-dimensional settings where theoret-
ical justifications are lacking, unsolved or unavailable. For instance, previous work
(Bickel et al., 2018) focused on one-dimensional projections, with the exception of its Re-
mark 2 extended to two or more-dimensional orthonormal projections where p=n diverges
to infinity; implications and existence of feasible multivariate projections remain less clear
for other cases, for example, the ratio p=n tending to a constant γ ∈ ð0; ∞Þ. Appendix A.1
presents some extended results to Lemmas E.1–E.2 and Results E.1–E.2 which allow bi-
variate and multivariate orthonormal projections and also serve to validate numerical
schemes in Sections 2.2.1 and 3.2.1. Again, the developed data analytic tools not only en-
able the extended feasibility results on PP to be visually inspected in Section 3.2.2, but
also inspire an empirical assessment of scenarios not yet covered by Bickel
et al., (2018) in Appendix B.2, where PP is performed on multivariate t data with an iden-
tity covariance matrix.

The rest of the paper is organized as follows. Section 2 incorporates an explicit expression
and an approximation scheme in quantifying the proximity between Ĝz and G, and devises a
non-parametric density estimation method better suited for visualizing structural features ex-
tracted by PP from high-dimensional data vectors. Section 3 utilizes the computational tool in
Section 2 to graphically illustrate the feasibility of PP in feature extraction on a case-by-case
basis, in contrast to PCA and ICA methods. Section 4 briefly concludes. Notations, expanded
results and additional illustrations are collected in Appendices A and B. All numerical results
are implemented in Matlab, with codes available at Github https://github.com/
ChunmingZhangUW/PP_high_dim.

2 Numerically Assessing Feasibility of PP in Feature Extraction

2.1 The High-dimensional Setup in Bickel et al. (2018)

To facilitate the numerical evaluation of feasibility of PP in high dimensions, we adopt the
high-dimensional settings consistent with those in Bickel et al. (2018) for PP applied to reali-
zations X · ; 1; …; X · ; n of a random vector X ¼ ðX 1; …; XpÞT , and start with a brief review
of assumptions on the distribution of X , in combination with dimension p and sample size n.
The assumption A1 on

variables X 1; …; Xp ∼i:i:d: ð0; 1Þ (2:1)

is made in all feasibility results except Remark 1 and Remark 3, where ð0; 1Þ denotes the stan-
dard Gaussian distribution.
The assumption A2 on

variablesX 1; …; Xp ∼i:i:d: a zero-mean sub-Gaussian distribution F (2:2)

is made in Remark 1 and Remark 3.
The assumption A3 on the dimension p growing with sample size n in various scenarios,
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n→∞; p→∞withp=n→γ ∈ ½0; þ∞�
¼ ∞;

∈ ð0; ∞Þ;
¼ 0;

8><
>: (2:3)

n→∞; p→∞withp=n→γ ∈ ð0; ∞Þ; and‖z‖0=n→0; (2:4)

where z denotes the projection vector in (1.2) and ‖z‖0 denotes the number of non-zeros.
For subsequent use, Table 1 concisely summarizes the asymptotically feasible projections in

Bickel et al. (2018) under settings (2.1)–(2.4), with additional notations gathered in Appendix
A. There, a target distribution G is called ‘feasible’, if there exists a sequence of unit-length di-
rections z ¼ zðX; GÞ relying on both the target distribution G and the data matrix X ¼
ðX · ; 1; …; X · ; nÞ ∈ ℝp � n, such that the E:D:F: s Ĝz of projected data points, fzTX · ; igni¼1,
converge uniformly to the distribution function G in probability as n tends to ∞; that is,

‖Ĝz � G‖∞ ¼ max�∞< s<∞
jĜzðsÞ � GðsÞj→P 0; (2:5)

where→
P
denotes converges in probability (van der Vaart, 1998); moreover, the distributionG is

‘uniquely feasible’, if the convergence (2.5) holds for all unit-length vectors z. Likewise, for an
‘infeasible’distribution G; no sequence of projections has corresponding E:D:F:s Ĝz that con-
verges to the distributionG and, consequently, the target distributionG can not be approximated
by any projections onto unit-length vectors.

Accompanying with Table 1, more detailed descriptions of and self-contained statements on
the feasible target distributions G in (Bickel et al., 2018) are provided below.
1. The Case pn=n→∞: Theorem 1 indicates that, under condition (2.1), any distributionG is

feasible. The same conclusion holds in Remark 1 under more general assumptions (2.2).
Remark 2 extends Theorem 1 to multi-dimensional projections.

2. The Case pn=n→γ ∈ ð1; ∞Þ: Theorem 2ðiÞ tells that G is feasible provided its second
moment μ2ðGÞ is below γ � 1, while Theorem 2ðiiÞ tells that μ2ðGÞ larger than
ð ffiffi

γ
p þ 1Þ2 leads to an infeasible G . Remark 3 extends Theorem 2ðiÞ to variables
X 1; …; Xp following the zero-mean sub-Gaussian distribution in (2.2). Corollary 1 en-

sures that a distributionGðs � u0

σ0

Þwith appropriate location parameter u0 and scale param-

eter σ0 is feasible whenever G has a finite second moment.
3. The Case pn=n→γ ∈ ð0; 1Þ : Theorem 3 tells that the mixture distribution ðγ=LÞG þ ð1 �

γ=LÞΦ is feasible, if μ2ðGÞ is below L � 1, with a finite constant L greater than 1. Theorem
4 shows that a distribution G is infeasible if it is ‘far’ from the standard Gaussian distribution
Φ, that is, the maximum discrepancy between G and Φ exceeds some value depending on the
limiting constant γ.

4. The Case pn=n→1: Theorem 3 continues to hold. Remark 4 points out that the feasibility of
certain distributions, which are not a mixture of Gaussian, depends on the convergence rate
of pn=n to 1.

5. The Case pn=n→0 : Theorem 5 says that the standard Gaussian distribution Φ is
uniquely feasible, and thus a non-Gaussian projection is rare.
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6. The Case of sparse projection with pn=n→γ ∈ ð0; ∞Þ and ‖z‖0=n→0: Theorem 6 states that,
analogous to Theorem 5, the standard Gaussian distribution Φ is uniquely feasible, and thus
a non-Gaussian projection is rare.

2.2 Ways of Assessing Feasible G in Feature Extraction

Following the previous review, the infeasibility of a distributionG in PP is verified by the de-
parture of ‖Ĝz � G‖∞ from zero for any arbitrary direction of unit-length. In contrast, the fea-
sibility of PP in extracting features of a distribution G hinges on both the ‘existence’ of certain
unit-length direction z and the ‘stochastic convergence’ of ‖Ĝz � G‖∞ to zero in (2.5). In Sec-
tions 2.2.1 and 2.2.2, we develop computationally fast and effective methods for verifying the
‘existence’ and quantifying ‘convergence’.

2.2.1 Verifying the ‘existence’ of a feasible unit-length vector z

For high-dimensional data with p ≥ n, major steps for validating the existence of a feasible
projection vector were described in Bickel et al. (2018) (p. 4., the proof of Theorem 1) and
are outlined as follows:
1. Step 1: For the target distributionG, find an n-element source vector a ¼ ða1; …; anÞT ¼ aðGÞ

such that maxsjn�1∑ n
i¼1Iðai ≤ sÞ � GðsÞj converges to zero with a high probability as n in-

creases. Choices of ai include ai ¼ G�1ð i

nþ 1
Þ; i ¼ 1; …; n , where G�1ðpÞ denotes the

quantile of the distribution G at the probability p ∈ ð0; 1Þ.
2. Step 2: For the data matrix X ¼ ðX · ; 1; …; X · ; nÞ ∈ ℝp � n, take an initial vector

z0 ¼ XðXTXÞ�1a ∈ ℝp; (2:6)

such that the length of z0 is less than or equal to 1 with a high probability as n diverges. Modify
z0 as needed to obtain a feasible direction z ¼ zðX; GÞ of unit length in asymptotic feasibility
results, such that

ðzTX · ; 1; …; zTX · ; nÞ ¼ ða1; …; anÞ; i:e:; XT z ¼ a: (2:7)

On the other hand, for low-dimensional data with p < n, the vector z in (2.7) based on z0
in (2.6) does not apply. Nonetheless, as seen from Table 1, the necessity of the existence of a
feasible direction in asymptotic feasibility results comes solely from Theorem 3. Hence, in
the setting of Theorem 3 with a finite constant L greater than 1 (appearing in Table 1), we set
n1 ¼ ½p=L� which ensures n1 ≤ p, where ½x� denotes the largest integer less than or equal to x,
and we can implement a modified version of the feasible direction,

zððX · ; 1; …; X · ; n1Þ; GÞof unit length; (2:8)

by substituting the full data matrixX and the n-element source vector a in Steps 1–2 above with
the subset ðX · ; 1; …; X · ; n1Þ ∈ ℝp � n1 and an n1-element source vector with entries, for exam-

ple, G�1ð i

n1 þ 1
Þ; i ¼ 1; …; n1, respectively. Similar arguments for our extended Lemma E.2

in Appendix A.1 will ensure that (2.8) offers the desired feasible direction in PP.
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2.2.2 Quantifying ‘convergence’ of ‖Ĝz � G‖∞ to zero for a given direction z

From the computational viewpoint, evaluating the closeness of the sup-norm ‖Ĝz � G‖∞ to
zero in (2.5) is essential for visualizing the recovery of the distributional feature of the C:D:F:G
from projection onto a vector z in PP. We now develop two types of non-parametric methods,
which are computationally efficient in implementing the evaluations.

The distribution-based Method 1 is inspired by comparing distribution functions G and the
E:D:F:Ĝz in (1.3) of the projected data fSigni¼1, where

Si ¼ zTX · ; i; i ¼ 1; …; n;

onto a vector z, that is, ĜzðsÞ ¼ n�1 ∑
n

i¼1
IðSi ≤ sÞ, for s ∈ ℝ. Then for distribution functionsG, we

utilize a result (Gibbons & Chakraborti, 2003, Theorem 4.3.1, p. 109) on the
Kolmogorov–Smirnov (KS) distance to simplify the computation of ‖Ĝz � G‖∞ via an explicit
expression,

‖Ĝz � G‖∞ ¼ max
max

1 ≤ i ≤ n

i

n
� GðSðiÞÞ

� �
;

max

1 ≤ i ≤ n
GðSðiÞÞ � i � 1

n

� �
; 0

� �
; (2:9)

where Sð1Þ ≤ … ≤ SðnÞ denote the order-statistics of fSigni¼1. Refer to van der Vaart (1998) and
Groeneboom & Wellner (2001) for related distributional results of the maximal deviation.

In the same vein, for a distribution function Gðs1; …; sKÞ in the K-variate setting with K ≥ 2
together with the K-variate E:D:F:Ĝz1;…; zK ðs1; …; sKÞ defined as

Ĝz1;…; zK ðs1; …; sKÞ ¼ 1

n
∑
n

i¼1
IðzT1X · ; i ≤ s1; …; zTKX · ; i ≤ sKÞ; (2:10)

the maximal deviation

‖Ĝz1;…; zK � G‖∞ ¼ max
ðs1;…;sKÞ∈ℝK

jĜz1;…; zK ðs1; …; sKÞ � Gðs1; …; sKÞj (2:11)

generalizes the univariate analogue (2.5). Still, the numerical complications and challenges as-
sociated with this sup-norm are considerable, due to the lack of a closed-form expression as
readily as (2.9); see Justel et al. (1997), Markatou & Sofikitou (2019) and references therein
for discussions of the multivariate KS distance, and Perisic & Posse (2005) for empirical ap-
proximations for a bivariate E:D:F: and a bivariate KS distance. In the context of PP, we suggest
approximating (2.11) via taking the greatest vertical distance between the two joint distribution
functions across grid points of ðs1; …; sKÞ in ℝK . For the bivariate case, computational effi-
ciency and statistical guarantee are seen from the boxplot of ‖Ĝz1; z2 � G‖∞ in Figure 11 and
Figure 13 in Appendix S2, obtained using simulated data matrices.

Different from the distribution-based Method 1, the density-based Method 2 directly esti-
mates the probability density function (p:d:f :) of the projected data points S1; …; Sn, and visu-
alizes features in the estimated p:d:f :. Here, the histogram counts of n points fSigni¼1 give B
non-overlapping (equally spaced) bins, for example, B ¼ 10 , associated with bin centres
c1; …; cB, and bin counts n1; …; nB satisfyingn ¼ n1 þ…þnB. The relative frequencies within
bins are nb=n; b ¼ 1; …; B, satisfying ∑B

b¼1nb=n ¼ 1. To strike a balance between flexibility
and interpretability, consider the estimated p:d:f : to be piecewise-constant within bins. It follows
that we estimate the p:d:f : gðcbÞ at the bin centre cb, by calibrating the ‘empirical probability
density function’ (Epdf ),

146 ZHANG ET AL.

International Statistical Review (2023), 91, 1, 140–161
© 2022 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.

 17515823, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12517 by C

hunm
ing Z

hang - U
niversity O

f W
isconsin - M

adison , W
iley O

nline L
ibrary on [04/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ĝzðcbÞ ¼
nb=n

c2 � c1
¼ relative frequency within the bth bin

width of the bth bin
; b ¼ 1; …; B; (2:12)

which ensures that the area under the estimated density function, ĝzð · Þ , is equal to
∑B
b¼1ĝzðcbÞ � ðc2 � c1Þ ¼ ∑B

b¼1ðnb=nÞ=ðc2 � c1Þ � ðc2 � c1Þ ¼ ∑B
b¼1nb=n ¼ 1.

In the literature, the kernel density estimator ðKDEÞ (Devroye & Gyorfi, 1985;
Silverman, 1986) also serves as a non-parametric method for estimating a density function,

via f̂ hðsÞ ¼ ðnhÞ�1
∑
n

i¼1
KððSi � sÞ=hÞ, where h > 0 is the bandwidth parameter and Kð · Þ is

a non-negative symmetric kernel function. Meanwhile, the performance of KDE relies largely
on the choice of h; data-driven methods of h include the normal-reference method, plug-in
method, and cross-validation; see Silverman (1986) for details. Additionally, the conventional
KDE is well-suited for estimating the unimodal, smooth or Gaussian-type of densities underly-
ing i:i:d: data. See Hall et al. (2004) for related discussions on KDE for i:i:d: data.
Nevertheless, in the search for features underlying

multi-modal; non-smooth; or non-Gaussian distributions (2:13)

from correlated data pointsfzTX · ; igni¼1 (2:14)

onto the data-dependent feasible vector z (discussed in Section 2.2.1), the proposed Epdf ĝz will
better uncover latent structures from the sampling distribution of fzTX · ; igni¼1 in a simpler way.
As an illustration, consider three types of bimodal distribution functions:G in (3.5), the ‘Type-G
’ distribution Gu0 ; σ0

in Section 3.1.5, and G∗ in (3.8). Three panels in Figure 1 compare the
finite-sample performance of the proposed Epdf ĝz using 10 bins with the KDE (via the Matlab
function ksdensity) applied to the same projected data fzTX · ; igni¼1. The Epdf retains the shape
of the bimodal mixture distribution, with the two modes more accurately caught. In comparison,
the KDE tends to be oversmoothed in fitting distributions which have multiple peaks, bumps or
spikes. Besides, the KDE in the left panel of Figure 1 is comparable to the example of KDE
(indicated by the blue solid line) given in Bickel et al., (2018) (on p. 5, Figure 1).
To overcome challenging issues (2.13) and (2.14), an adaptive choice of bandwidth parame-

ter could be developed to improve the accuracy of KDE while preserving the smoothness of the
estimates. The resulting procedure, in practice, will substantially escalate the computational
complexity, and would be time consuming as well. For the exploratory PP, the Epdf eases the
complexity and more closely resembles the shape (not necessarily smooth) of the sampling dis-
tribution of data points fzTX · ; igni¼1, and thus works well for finding the structure or pattern
from projected data, without a loss of sensitivity.

3 Graphically Illustrating Feasibility of PP in Feature Extraction

To illustrate the performance of the numerical tool in Section 2.2 used for assessing feasibil-
ity results of PP in Bickel et al. (2018) (reviewed in Section 2.1 and summarized in Table 1) and
the extended results (listed in Appendix A.1), we conduct numerical experiments. In each sim-
ulation study, for each sample, we randomly generate a data matrix X ¼
ðX · ; 1; …; X · ; nÞ ∈ ℝp � n consisting of data vectors X · ; 1; …; X · ; n ∼i:i:d:X ; where variables
X 1; …; Xp in X are i:i:d: ð0; 1Þ according to (2.1) as discussed in Bickel et al. (2018), unless
otherwise specified. To perform a visual assessment from a single data matrix X; we utilize the
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Epdf developed in (2.12) with 10 bins. To more precisely characterize theKS distance, we pres-
ent boxplots of ‖Ĝz � G‖∞ across 100 replicate samples calculated via either (2.9) for
one-dimensional PPs in Section 3.1 or a grid approximation for two-dimensional PPs in
Section 3.2.
For the sake of comparison, the following types of projection vectors are examined:

1. A data-dependent feasible vector which ‘exists’ in asymptotic feasibility results (abbreviated ‘z
(exist)’ in what follows),

zðXo; GÞof length 1; fromð2:6Þ � ð2:7Þ; using the data matrixXo ∈ ℝp � no ;

and source vector ao ∈ ℝno with entriesG�1ð i

no þ 1
Þ; i ¼ 1; …; no;

(3:1)

where

Xo ¼ X; ifp ≥ n;

ðX · ; 1; …; X · ; n1Þ; ifp < n;

�
and no ¼ n; ifp ≥ n;

n1; ifp < n;

�

with n1 ¼ ½p=L� discussed in Section 2.2.1 for the case p < n.
2. A data-dependent vector,

z ¼ d

ðdTdÞ1=2
; where d ¼ ðd1; …; dpÞT ; with entries dj ¼ ∑

n

i¼1
X j; i=n: (3:2)

3. A data-dependent vector,

z ¼ d

ðdTdÞ1=2
; where d ¼ ðd1; …; dpÞT is independent of ðX · ; 1; …; X · ; nÞ: (3:3)

4. A data-dependent ‘critical’ vector,

zcrt ≈ arg
min

z ∈ ℝp : zT z ¼ 1
∑
n

i¼1
ðzTX · ; i � aiÞ2; (3:4)

where ai’s are given in Step 1 of Section 2.2.1.
With regard to the choice between data-‘independent’ and data-‘dependent’ directions z for

the originally independent data vectors fX · ; igni¼1 , the former choice preserves the indepen-
dence among the projected data fzTX · ; igni¼1, whereas the latter one induces correlation among
those points for which typical results of KDEmay not hold. The feasible direction given in (3.1)
follows the discussion of (2.6)–(2.8) in Section 2.2.1. In the absence of a feasible direction, an
exhaustive search for all possible projection vectors is impractical. The candidate vectors
in (3.2), (3.3) and (3.4) are for illustrative purposes only; alternative vectors can be added when
necessary to the comparisons.

3.1 One-dimensional PP

3.1.1 Illustrate Theorem 1 and Theorem 2ðiÞ in Bickel et al. (2018) with p > n: feasible G

We assess the feasibility of PP in retrieving the bimodal feature in the Gaussian mixture
distribution,
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G ¼ 1

2
 �2;

1

22

� �
þ 1

2
 2;

1

22

� �
; withμ2ðGÞ ¼ 4:25; (3:5)

using simulated datasets of sample size n ¼ 100 and dimension p ¼ 1000, satisfying γ ¼ p=n ¼
10 > 1 and μ2ðGÞ < γ � 1.

In Figure 2, the left panel compares

(i) the true bimodal p:d:f : of the target distribution G in (3.5),
(ii) the developed Epdfs in (2.12) for the projected data fzTX · ; igni¼1 using four types of pro-

jection vectors: z1 ¼ zðX; GÞ in (3.1), z2 in (3.2), z3 in (3.3) with d ∼  ð0; IpÞ; where
Ip denotes a p� p identity matrix, and zcrt in (3.4),

based on one simulated data matrix X. Clearly, the direction ‘z1 (exist)’ outperforms zcrt in
extracting the true bimodal structure, whereas vectors z2 and z3 suggest unimodal distributions
that do not reflect the true structure. The right panel compares boxplots of ‖Ĝz � G‖∞ ,
exhibiting more pronounced distinction between choices of projection vectors. For the feasible
direction z1; ‖Ĝz1 � G‖∞ decreases to zero, and thus the data projection onto z1 can well re-
cover the two modes of the target distribution G; vectors z2; z3 and zcrt increase ‖Ĝz � G‖∞
up to 0.7, 0.4 and 0.26, respectively, substantially above zero, and hence are not eligible for
the feasible projection direction even when the distribution G is feasible.

3.1.2 Illustrate Remark 1 and Remark 3 in Bickel et al. (2018) with p > n: feasible G

To illustrate Remark 1 and Remark 3 in Bickel et al. (2018), we adopt the same target distri-
butionG as in (3.5), but assume that data are i:i:d: realizations of a non-Gaussian random vector
X ¼ ðX 1; …; XpÞT with i:i:d: variablesX 1; …; Xp following some non-Gaussian distributionF
according to (2.2). Sample size n ¼ 100 and dimension p ¼ 1000 are used, with γ ¼ p=n ¼
10 > 1 and μ2ðGÞ < ð ffiffi

γ
p � 1Þ2 . Two types of mean-zero sub-Gaussian distributions F

are considered,

F ¼ Uniformð�3; 3Þ; and F ¼ C:D:F: of 6ðB1; 2 � 1=3Þ;
where B1;2 denotes the random variable having a beta distribution with parameters 1 and 2. The
boxplots of ‖Ĝz � G‖∞ over 100 samples are displayed in Figure 3. Similar to the choices of

FIGURE 2. Illustrate Theorem 1 and Theorem 2ðiÞ summarized in Table 1 for Bickel et al. (2018) with p > n: feasible
distribution G in (3.5). Left panel: compare the Epdfs of fzTX · ; igni¼1 using vectors ‘z1ðexistÞ0 in (3.1) (dots ::Þ; z2 (dashed
line��Þ; z3 (dashed dotted line� · Þ; zcrt (solid line with circles ), and the true p:d:f : (solid line�Þ of theC:D:F:G:Right
panel: compare boxplots of ‖Ĝz � G‖∞ using vectors ‘z1 (existÞ ’, z2; z3 and zcrt: The online version of this figure is in colour
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data-dependent and data-independent projection vectors in Figure 2, the bimodal feature of the
distribution G can feasibly be reconstructed from projecting non-Gaussian datasets onto the
data-dependent vector ‘z1 (exist)’, while none of the other vectors achieves this goal.

3.1.3 Illustrate Theorem 2ðiiÞ in Bickel et al. (2018) with p > n: infeasible G

In an attempt to visually inspect the infeasibility result of Theorem 2ðiiÞ in Bickel
et al. (2018), we consider the target distribution,

G ¼ 1

2
 �3;

1

22

� �
þ 1

2
 3;

1

22

� �
; withμ2ðGÞ ¼ 9:25; (3:6)

and simulate samples of size n ¼ 100 , dimension p ¼ 200 , with γ ¼ p=n ¼ 2 , satisfying
μ2ðGÞ > ð ffiffi

γ
p þ 1Þ2 . Three types of projection vectors are compared: ‘data-dependent’ z1

in (3.2), ‘data-dependent’ z2 in (3.3) with d ∼  ð0; IpÞ, and zcrt in (3.4).

The magnitudes of the KS distance ‖Ĝz � G‖∞ in boxplots of Figure 4 consistently exceed
0.4, across all these projection vectors, lending numerical support to the claim that PP is not

FIGURE 3. Illustrate Remark 1 and Remark 3 summarized in Table 1 for Bickel et al. (2018) with p > n
: feasible distribution G in (3.5). The caption is similar to the right panel of Figure 2. Left:

X 1; …; Xp ∼i:i:d:F ¼ Uniformð�3; 3Þ; right: X 1; …; Xp ∼i:i:d:F ¼C.D.F.of 6ðB1;2 � 1=3Þ. The online version of this
figure is in colour

FIGURE 4. Illustrate Theorem 2ðiiÞ summarized in Table 1 for Bickel et al. (2018) with p > n: infeasible distribution G
in (3.6). Compare boxplots of ‖Ĝ z � G‖∞ using different projection vectors. The online version of this figure is in colour
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capable of recovering the distribution G in (3.6) when γ ∈ ð1; ∞Þ and μ2ðGÞ > ð ffiffi
γ

p þ 1Þ2, no
matter which vector of unit length is used.

3.1.4 Illustrate the length of z0 in Theorem 2ðiÞ and ðiiÞ in Bickel et al. (2018) with p > n

Recall from Section 2.2.1 that the algorithmic simplicity in the search for the feasible projec-
tion vector z , in asymptotic feasibility results, is partly attributed to the achievability
of (2.6)–(2.7). It is thus natural to check whether the underlying condition zT0 z0 ≤ 1 is fulfilled,
in finite-samples, for the initial vector z0 in (2.6). There, we consider the same source vector a as
in Step 1 of Section 2.2.1, the same distribution G as in (3.6), sample size n ¼ 100 and dimen-
sion p ¼ n� γ with 1 < γ ≤ 20. From Figure 5, the case of γ > μ2ðGÞþ1 gives zT0 z0 ≤ 1, co-
inciding with the feasibility of the distributionG declared in Theorem 2ðiÞ. In contrast, the case

of γ < f ffiffiffiffiffiffiffiffiffiffiffiffi
μ2ðGÞ

p � 1g2 reflects zT0 z0 > 1, in accordance with the infeasibility of the distri-
bution G claimed in Theorem 2ðiiÞ.

FIGURE 5. Illustrate the length of z0 in Theorem 2ðiÞ and ðiiÞ summarized in Table 1 for (Bickel et al., 2018). Plots of

ðzT0 z0Þ1=2 ð solid line �Þ as the ratio γ ¼ p=n increases. The case of γ < f ffiffiffiffiffiffiffiffiffiffiffiffi
μ2ðGÞ

p � 1g2 ð dashed line ��Þ corresponds
to Theorem 2ðiiÞ; the case of γ > μ2ðGÞþ1 ð dashed dotted line� · Þ corresponds to Theorem 2ðiÞ. The online version of this
figure is in colour

FIGURE 6. Illustrate Corollary 1 summarized in Table 1 for Bickel et al. (2018) with p > n: feasible distribution Gu0 ; σ0
for

G in (3.6). The caption is similar to that of Figure 2. The online version of this figure is in colour
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3.1.5 Illustrate Corollary 1 in Bickel et al. (2018) with p > n: feasible Gu0 ; σ0

In this case, we consider the same distribution G as in (3.6), together with sample size n ¼
100 and data dimension p ¼ 200. The ‘Type-G ’ distribution function (defined in Appendix

A), Gu0 ; σ0
ðsÞ ¼ Gðs � u0

σ0

Þ, is chosen according to the location and scale constants,

σ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ � 1Þ=μ2ðGÞ

p
=2; u0 ¼ fmaxðu1; 0Þþu2g=2;

with u1 < u2 corresponding to two roots of the equation u2 þ 2fσ0 μ1ðGÞgu �
fðγ � 1Þ � σ2

0
μ2ðGÞg ¼ 0; the lengthy derivations of σ0 and u0 are omitted.

Unlike Figure 4, where the distributionG itself is infeasible, that is, not extractable byPPonto
any projection vectors, the boxplots of ‖Ĝz � Gu0 ; σ0

‖∞ in the right panel of Figure 6 clearly
support the claim that the ‘Type-G’distribution Gu0 ; σ0

can be well approximated by projection
onto the suitable data-based vector ‘z1 (exist)’, that is, z1ðX; Gu0 ; σ0

Þ in (3.1). In contrast, vectors
z2; z3 and zcrt as used in Figure 2 could not act as the proper projection directions. An empirical
evidence is similarly found from the proposed Epdf in the left panel of Figure 6.

3.1.6 Illustrate Theorem 3 in Bickel et al. (2018) with p < n: feasible G∗

To illustrate Theorem 3 in Bickel et al. (2018), we simulate datasets of sample size n ¼ 626,
dimension p ¼ 500, with γ ¼ p=n ¼ 0:7987, and adopt the distribution,

G ¼ 1

2
 �1;

1

22

� �
þ 1

2
 1;

1

22

� �
; withμ2ðGÞ ¼ 1:25; (3:7)

which satisfies the condition μ2ðGÞ < L � 1 with L ¼ 2:5 in Theorem 3.
In Figure 7, the left panel compares the true density function of the target distribution,

G∗ ¼ ðγ=LÞG þ ð1 � γ=LÞΦ; (3:8)

using the developedEpdfs in (2.12) along vectors: z1 ¼ zðX; GÞ described in (3.1), z2 in (3.2), z3
in (3.3) with entries of d i:i:d: from the Uniformð0; 1Þ distribution, and zcrt in (3.4), based on one
simulated data matrix X. The multi-modal feature in (3.8) is better extracted from projection
onto the data-dependent feasible projection vector ‘z1 (exist)’ than zcrt, but was obscured from
the other vectors. The boxplots of ‖Ĝz � G∗‖∞ in the right panel reveal the superiority of
employing the vector ‘z1 (exist)’ over others in recovering the true feature in distribution (3.8).

FIGURE 7. Illustrate Theorem 3 summarized in Table 1 for Bickel et al. (2018) with p < n: feasible distributionG∗ in (3.8).
The caption is similar to that of Figure 2. The online version of this figure is in colour
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Also, due to the nature of the specific direction z3 , we infer directly that

fzT3X · ; 1; …; zT3X · ; ng ∼i:i:d: ð0; 1Þ, and thus ‖Ĝz3 � G∗‖∞ is lower than ‖Ĝz2 � G∗‖∞ and
‖Ĝzcrt � G∗‖∞.

3.1.7 Illustrate Theorem 4 in Bickel et al. (2018) with p < n: infeasible G

Recall that Theorem 4 in Bickel et al. (2018) conveys an infeasibility result: in the
low-dimensional case, a target distribution which is far from the standard Gaussian distribution
could not be extracted by PP onto any directions. To illustrate such impossibility result, we sim-
ulate n ¼ 626 data vectors of dimension p ¼ 500 , with γ ¼ p=n ¼ 0:7987 , and adopt the
non-Gaussian distribution G as in (3.5). Five types of directions are inspected: z1 is as

in (3.2); z2 ¼ X · ; 10=ðXT
· ; 10X · ; 10Þ1=2 ; z3 and z4 are as in (3.3), where all entries in d are

i:i:d: following the  ð0; 1Þ distribution in z3 and the Uniformð0; 100Þ distribution in z4; zcrt
in (3.4). As noticed from Figure 8, the aberration of ‖Ĝz � G‖∞ from zero provides evidence
to support Theorem 4.

FIGURE 8. Illustrate Theorem 4 summarized in Table 1 for Bickel et al. (2018) with p < n: infeasible distribution G
in (3.5). Compare boxplots of ‖Ĝ z � G‖∞ using different projection vectors. The online version of this figure is in colour

FIGURE 9. Illustrate Theorem 5 summarized in Table 1 for (Bickel et al., 2018) with p < < n: uniquely feasible distribu-
tionΦ. Left: compare the E:D:F:s Ĝ z using different projection vectors with the standard Gaussian C:D:F:Φ. Right: compare
boxplots of ‖Ĝz � Φ‖∞ using different projection vectors. The online version of this figure is in colour
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3.1.8 Illustrate Theorem 5 in Bickel et al. (2018) with p << n: uniquely feasible Φ

For the illustration of Theorem 5, we generate n ¼ 1000 data vectors of dimension p ¼ 5, that
is, γ ¼ 0:005, and consider the same types of projection vectors as used in Figure 8.
For all these vectors z1; z2; z3; z4 and zcrt, the left panel in Figure 9 plots the corresponding

empirical distributions Ĝz, in striking consistency with the Gaussian distribution functionΦ. The
boxplots in the right panel confirm that the KS distances ‖Ĝz � Φ‖∞ closely approach zero, no
matter whether projection directions are dependent on, weakly dependent on, or independent of
data.

3.1.9 Illustrate Theorem 6 in Bickel et al. (2018) with sparse projections ‖z‖0<<n: uniquely
feasible Φ

To demonstrate Theorem 6 which states that sparse projection vectors can only recover the
Gaussian distributionΦ, we take the sample size n ¼ 1000, dimension p ∈ f1200; 120g and s ¼
5 in the vector z, covering both the high- and low-dimensional cases with sparse projection
vectors. The following types of sparse vectors z are considered: z1; z2; z3; z4 and zcrt similar
to those used in Figure 9, except that the first s coordinates are non-zero and the rest ðp � sÞ
entries are zero.
In Figure 10, the boxplots indicate that for both the high-dimensional (corresponding to p >

n in the left panel) and low-dimensional (corresponding to p < n in the right panel) data, the
KS distances ‖Ĝz � Φ‖∞ using all these sparse vectors, are in a small neighbourhood of zero,
agreeing with Theorem 6 where Φ is uniquely feasible.

3.2 Two-dimensional PP

In practice, projection strategies are frequently used for projecting multivariate data down to
one-, two-, or even three-dimensional space. An approach for three-dimensional PPwas given in
Nason (1995); see Klinke (1995) and Jee (2009) for further discussions on the dimension of the
projection space. This subsection focuses on the two-dimensional PP for high-dimensional
datasets to ease numerical work and graphical presentation.

FIGURE 10. Illustrate Theorem 6 summarized in Table 1 for Bickel et al. (2018) with ‖z‖0 < < n: uniquely feasible dis-
tributionΦ. The caption is similar to that of Figure 8. Left: dimensionp ¼ 1200. Right: dimensionp ¼ 120. The online version
of this figure is in colour
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3.2.1 Illustrate Remark 2 in Bickel et al. (2018) for two-dimensional PP and p > n: feasible
G

To illustrate Remark 2 in Bickel et al. (2018) for the two-dimensional PP and to compare with
ICA and PCA using two components, we consider the bivariate Gaussian mixture distribution
plotted in Figure 11A1, with the joint distribution function,

G ¼ 1

2
 2

�2

2

� �
;

1=22 0

0 1=22

 ! !
þ 1

2
 2

2

�2

� �
;

1=22 0

0 1=22

 ! !
; (3:9)

together with its mean vector and covariance matrix equal to

μG ¼ 0

0

� �
and ΣG ¼ 4:25 �4:00

�4:00 4:25

� �
: (3:10)

The simulated data sets include 400 data points in the 5000 dimensional space.
Figure 11 reflects the advantages of PP onto its feasible direction in uncovering the bimodal

feature of the distribution G.

(i) Along the feasible bivariate projection direction ðz1; z2Þ (abbreviated ‘PP (exist)’), which is
a bivariate extension of (3.1), the bivariate E:D:F: defined in (2.10) of
fðzT1X · ; i; zT2X · ; iÞgni¼1, plotted in Figure 11A2, restores features underlying the target dis-
tributionG. Here, constructions of the data-dependent orthonormal directions ðz1; z2Þ (in ‘
PP (exist)’) are similar to those used in the proof of our extended Lemma E.1 in Appendix
A.1, where source vectors a1 ¼ ða1;1; …; a1; nÞT and a2 ¼ ða2;1; …; a2; nÞT are chosen
such that the bivariate random vectors fða1; i; a2; iÞgni¼1 are i:i:d: following the bivariate dis-
tribution G. See the scatterplot of a1; i versus a2; i in Figure 11C1. Moreover, Figure 11C2
easily identifies that the projected data fðzT1X · ; i; zT2X · ; iÞgni¼1 onto the feasible bivariate
PP direction fall into two separated clusters, which go undetected by other three methods
(PP onto a candidate direction, ICA and PCA) in Figure 11C3–C5, respectively.

(ii) For a candidate bivariate direction ðz1; z2Þ in PP, where z1 is in (3.2) and z2 is in (3.3) with
entries in d i:i:d: from the  ð0; 1Þ distribution, the E:D:F: in Figure 11A3 is unable to find
the bimodal distribution G.

(iii) The E:D:F:s (Figure 11A4 and 11A5) of both the statistically independent components
using the (standard linear) ICA method (via the FastICA algorithm (Hyvärinen &
Oja, 2000), with the ‘pow3’ nonlinearity, ‘symm’ orthogonalization, and retaining 2 largest
eigenvalues) and the principal components using PCA (via the singular value decomposi-
tion) bear little resemblance to the target distribution G.

Further comparisons are made in the boxplots in Figure 11B: values of the KS distances
‖Ĝz1; z2 � G‖∞ are surrounded by 0.0 using the ‘PP (exist)’direction, close to 0.5 using the can-
didate direction in PP, rising to 0.7 using ICA, and dropping to 0.4 using PCA, respectively. This
is due to the fact:

(a) In view of PCA (Jolliffe & Cadima, 2016), it requires the principal components to be un-
correlated, while preserving as much ‘variation’ in a dataset as possible. As remarked in
Guo et al. (2001), Bouveyron & Brunet-Saumard (2014), and Lever et al. (2017), PCA
may not always find interesting data features, like clusters.
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(b) The ICAmethod, as a useful extension of PCA, extracts hidden components as independent
and non-Gaussian as possible, whereas the target distribution in (3.9) echoes the joint dis-
tribution of two dependent random variables with the covariance matrix in (3.10).

Apart from the bivariate Gaussian mixture distribution, Appendix B.1 presents additional
simulation studies where the nonnormal features of a bivariate asymmetric distribution can fea-
sibly be revealed by the PP method as opposed to other projection methods.

3.2.2 Illustrate extended results in Appendix A.1 for two-dimensional PP

To illustrate the feasibility result in our extended Result E.1 in Appendix A.1, we consider
two distribution functions,

G1 ¼ 1

2
 �1; 12
� � þ 1

2
 1; 12
� �

; G2 ¼ 1

2
 �3;

1

22

� �
þ 1

2
 3;

1

22

� �
:

The boxplots of ‖Ĝzk ; k � Gk; u
0; k

; σ
0; k
‖∞; k ¼ 1; 2, in Figure 12 with sample size n ¼ 100 and

data dimension p ¼ 400 indicate that the pair of feasible projection directions, containing ‘z1;1
(exist)’ and ‘z2;1 (exist)’, that ‘exist’ in Result E.1, can be obtained using our algorithm, through
source vectorsa1;1 ¼ a1;1ðG1Þ anda2;1 ¼ a2;1ðG2Þ as in (3.1), and work better than other pairs of
directions ðz1;2; z2;2Þ and ðz1;3; z2;3Þ in recovering features of the distributions G1; u0;1 ; σ0;1

ðsÞ ¼

G1ð
s � u0;1

σ0;1

Þ and G2; u0;2 ; σ0;2
ðsÞ ¼ G2ð

s � u0;2

σ0;2

Þ, where constants u0;1 ; σ0;1 ; u0;1 ; σ0;1 are deter-

mined in a way similar to that in Section 3.1.5.
Other results extended in Appendix A.1 can be illustrated via similar computational and

graphical schemes, and we omit the details.

4 Discussion

Finding a suitable representation of multivariate data has wide applications in pattern recog-
nition, blind source separation (Comon & Jutten, 2010), causal discovery, data summary, and
many other scientific disciplines (Daszykowski, 2007). For computational simplicity, com-
monly used multivariate statistical methods, such as PP; PCA and ICA , often seek this

FIGURE 12. Illustrate the extended Result E.1 in Appendix A.1 with two directions. Compare boxplots of ‖Ĝ zk ; k �
Gk; u

0; k
; σ

0; k
‖∞ using 3 types of directions zk, ‘zk; 1 (exist)’, zk; 2; zk; 3. Left: k ¼ 1. Right: k ¼ 2. The online version of this figure

is in colour
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representation through a linear transformation in search of interesting structures of data. For
large p small n data, (Lee & Cook, 2010) focuses on the projection pursuit index for classifica-
tion; the recent work developed in Bickel et al., (2018) offers new theoretical perspectives on
the feasibility (in an asymptotic sense) ofPPfor high-dimensional data when both the dimension
and sample size diverge.
For the exploratory data analysis, the computational and visualization tool we developed in

the paper enables the asymptotic feasibility results of PP in high dimensions to be accessible
to practitioners in a simplified way. On the practical side, the devised Epdf gains advantage over
the traditional KDE in tracking multi-modal and/or non-Gaussian features from the sampling
distribution of the projected data, which are correlated.
Although much effort in the literature on PP has been put into theoretical aspects and com-

putational approaches for low-dimensional data, various open problems and challenging issues
remain in high dimensions. These include (a) conjectures in Bickel et al., (2018) and cases not
yet covered for asymptotic studies, especially, observed data of correlated and/or non-Gaussian
variablesX 1; …; Xp, with applications to financial time series satisfying stylized facts (De Luca
& Loperfido, 2004; De Luca et al., 2006); (b) handling practical data of discrete variables in dis-
crete exploratory PP (Klinke, 1995), and analysis of discrete data arising from syllable patterns
(Diaconis & Salzman, 2008), symbolic data or data with special structure in numerous disci-
plines; (c) nonlinear projections (Blanchard et al., 2006; Guo et al., 2020). There is more to
be explored along the lines, driven by the need of new adaptations and methodological results,
as well as real applications. Again, the numerical scheme and computational strategies will play
an indispensable role and be beneficial to further expedite the exploration in the light of modern
data.
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Supplementary Appendix

A Notations and symbols, and extended results

Notations and symbols. Let X = (X1, . . . , Xp)
T be a random vector, and X =

(Xj,i)j=1,...,p; i=1,...,n = (X �,1, . . . ,X �,n) ∈ R
p×n be the data matrix, where {X �,1, . . . ,X �,n} i.i.d.∼

X. For a vector z, ‖z‖2 =
√
zTz denotes the Euclidean norm, and ‖z‖0 denotes the number

of nonzeros in z. Let Sp−1 = {z = (z1, . . . , zp)
T ∈ R

p : zTz = 1} denote the unit sphere in

R
p, 1p = (1, . . . , 1)T denote a p-variate vector of ones, and Ip denote a p×p identity matrix.

For a function F (x) : Rk �→ R, we define the sup-norm of F by ‖F‖∞ = maxx∈Rk |F (x)|.
Use N(μ,Σ) for the multivariate Gaussian distribution with the mean vector μ and co-

variance matrix Σ. Denote by φ(·) and Φ(·) the density function and distribution function

of a standard Gaussian distribution N(0, 1). For a C.D.F. G, denote its kth-moment by

μk(G) =
∫
xk dG(x) for integers k = 0, 1, 2, . . .; the family of “Type-G” C.D.F.s is defined

as

{
Gu,σ(s) = G

(s− u

σ

)
: 0 ≤ u <∞, σ ∈ (0,∞)

}
. (A.1)

For random quantities V1 and V2, V1 ‚ V2 denotes that V1 and V2 are independent. Let [x]

denote the largest integer less than or equal to x.

A.1 Extended results for multi-dimensional PP

To justify some results used in Sections 2.2.1 and 3.2.1 but not explicitly addressed in

[2], we extend the asymptotic feasibility results of one-dimensional PP to K-dimensional

orthonormal projections z1, . . . , zK , with the numberK ≥ 2 being a finite integer. From the

computational viewpoint, the orthogonal directions in the projection space are also used in

PCA and ICA, which are graphically compared with PP in Section 3.2.1 and Appendix B.1.

Further discussions on the orthogonal directions are given in [4, 6, 7, 5, 9, 8]. Developing

non-orthogonal projections will be an interesting topic for future research.

Our extended results assume p/n→ γ as n→∞, and are discussed separately according

to scenarios γ ∈ (K,∞) and γ ∈ (0, K). Regarding the case of γ ∈ (K,∞), we present two

kinds of extensions, in Lemma E.1 and Result E.1 below, respectively.

Lemma E.1 (K ≥ 2, γ ∈ (K,∞), μ2(Gk) < γ/K − 1) Assume (1.1), where X ∼ N(0, Ip),

n → ∞, and p → ∞. Assume that K ≥ 2 is an integer. Suppose p/n → γ ∈ (K,∞).

Let Gk be the C.D.F.s, associated with the p.d.f.s gk, and the second-moments μ2(Gk) =

1



∫
s2gk(s) ds, k = 1, . . . , K. If μ2(Gk) < γ/K − 1, k = 1, . . . , K, then there exist sequences

of K orthonormal directions zk = zk(X, Gk) ∈ S
p−1, k = 1, . . . , K, such that the E.D.F.s

Ĝzk;k of projected data points, {zT
kX �,i}ni=1, converge to the C.D.F. Gk, k = 1, . . . , K.

As a comparison, Lemma E.1 extends Theorem 2(i) in [2] from K = 1 to K ≥ 2. On

the other hand, both results require knowing the upper bound γ/K − 1 for the second-

moment of the distribution Gk. Such bound may not be available in advance or known in

practice. To relax this constraint, Result E.1 below simply requires the finiteness of the

second-moment of Gk. Interestingly, Result E.1 also extends Corollary 1 in [2] from K = 1

to K ≥ 2.

Result E.1 (K ≥ 2, γ ∈ (K,∞), μ2(Gk) <∞) Assume (1.1), where X ∼ N(0, Ip), n →
∞, and p → ∞. Assume that K ≥ 2 is an integer. Suppose p/n → γ ∈ (K,∞). Let

Gk be the C.D.F.s, associated with p.d.f.s, and the second-moments μ2(Gk), k = 1, . . . , K.

If μ2(Gk) < ∞, k = 1, . . . , K, then there exist some “Type-Gk” C.D.F. Gk;u
0,k

,σ
0,k
, for

which there exist sequences of K orthonormal directions zk = zk(X, Gk) ∈ S
p−1, such that

the E.D.F.s Ĝzk;k of projected data points, {zT
kX �,i}ni=1, converge to the C.D.F. Gk;u

0,k
,σ

0,k
,

k = 1, . . . , K.

For the case of γ ∈ (0, K), the special case of K = 1 is given in Lemma E.2 below,

which is further extended to K ≥ 2 in Result E.2. Lemma E.2 shares a similar spirit

with Theorem 3 in [2], in the sense that the target distributions in both results are a finite

mixture distribution, though they differ in both the mixing weights and the upper bound

for the second moment of the distribution G. Thus, Lemma E.2 and Result E.2 extend the

scope of PP in applications.

Lemma E.2 (K = 1, γ ∈ (0, 1), μ2(G) < (1− γ)/γ) Assume (1.1), where X ∼ N(0, Ip),

n→∞, and p→∞. Suppose p/n→ γ ∈ (0, 1). Let G be a C.D.F. with the second-moment

μ2(G). If μ2(G) < (1−γ)/γ, then there exists a sequence of directions z = z(X, G) ∈ S
p−1

that rely on X and G, such that the E.D.F.s Ĝz of projected data points, {zTX �,i}ni=1,

converge to the C.D.F. of the mixture distribution,

G∗ = γ2 G+ (1− γ2) Φ. (A.2)

Result E.2 (K ≥ 2, γ ∈ (0, K), μ2(Gk) < (K − γ)/γ) Assume (1.1), where X ∼ N(0, Ip),

n→∞, and p→∞. Assume that K ≥ 2 is an integer. Suppose p/n→ γ ∈ (0, K). Let Gk

be the C.D.F.s, associated with p.d.f.s, and the second-moments μ2(Gk), k = 1, . . . , K. If

μ2(Gk) < (K − γ)/γ, k = 1, . . . , K, then there exist sequences of K orthonormal directions

2



zk = zk(X, Gk) ∈ S
p−1, such that the E.D.F.s Ĝzk;k of projected data points, {zT

kX �,i}ni=1,

converge to the C.D.F. of the mixture distribution,

G∗k = (γ/K)2 Gk + {1− (γ/K)2}Φ, k = 1, . . . , K. (A.3)

A.2 Proofs of extended results in Appendix A.1

Proof of Lemma E.1. For the dimension p of X, coordinates {1, . . . , p} can be parti-

tioned into K + 1 disjoint index subsets J1, . . . , JK , JK+1, of lengths

p1 = · · · = p
K
= [p/K], and p

K+1
= p−

K∑
k=1

p
k
. (A.4)

Accordingly, the random vector X and the data matrix X = (X �,1, . . . ,X �,n) can be par-

titioned,

X =

⎛
⎜⎜⎜⎜⎜⎝

XJ1 ∈ R
p1

...

XJK ∈ R
p
K

XJK+1
∈ R

p
K+1

⎞
⎟⎟⎟⎟⎟⎠

, X =

⎛
⎜⎜⎜⎜⎜⎝

X(J1, :) ∈ R
p1×n

...

X(JK , :) ∈ R
p
K
×n

X(JK+1, :) ∈ R
p
K+1

×n

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

XJ1,1 · · · XJ1,n

... · · · ...

XJK ,1 · · · XJK ,n

XJK+1,1 · · · XJK+1,n

⎞
⎟⎟⎟⎟⎟⎠

,(A.5)

where the sub-vector XJk ∈ R
p
k and the data sub-matrix X(Jk, :) ∈ R

p
k
×n are formed by

rows of X and X, respectively, in Jk, k = 1, . . . , K,K + 1. The assumption X ∼ N(0, Ip)

together with (1.1) implies that

all entries in X are i.i.d. N(0, 1). (A.6)

For the sake of notations in the rest of derivations, define r = γ/K.

For the data sub-matrix X(J1, :) ∈ R
p1×n, the condition p/n → γ ∈ (K,∞) and

(A.4) guarantee that p1/n = [p/K]/n = (p/n)/K + o(1) → γ/K = r ∈ (1,∞). For

μ2(G1) < r − 1, following the proof in [2] for Theorem 2(i) indicates that there exists a

sequence of directions z
J1

= z
J1
(X(J1, :),a1(G1)) ∈ S

p1−1 that rely on X(J1, :) and a1(G1),

where a1(G1) = (a1,1, . . . , a1,n)
T is a vector whose distribution relies on the C.D.F. G1, e.g.,

{a1,1, . . . , a1,n} i.i.d.∼ G1, and a1(G1) ‚ X(J1, :), such that the E.D.F.s Ĝz1;1 of projected

data points in

zT
J1
X(J1, :) = (zT

J1
XJ1,1, . . . , z

T
J1
XJ1,n) = a1(G1)

T (A.7)

converge to the C.D.F. G1, i.e., ‖Ĝz1;1 −G1‖∞ P→ 0.

3



Similarly, for the data sub-matrix X(Jk, :) ∈ R
p
k
×n, k = 2, . . . , K, note that p

k
/n =

[p/K]/n = (p/n)/K + o(1) → γ/K = r ∈ (1,∞). For μ2(Gk) < r − 1, the proof in [2] for

Theorem 2(i) indicates that there exists a sequence of directions,

z
Jk

= z
Jk
(X(Jk, :),ak(Gk)) ∈ S

p
k
−1, (A.8)

that rely on X(Jk, :) and ak(Gk), where ak(Gk) = (ak,1, . . . , ak,n)
T is a vector relying on

the C.D.F. Gk, e.g.,

{ak,1, . . . , ak,n} i.i.d.∼ Gk, ak(Gk) ‚ X(Jk, :), ak(Gk) ‚ {X(J1, :), . . . ,X(Jk−1, :)}, (A.9)

such that the E.D.F.s Ĝzk;k of projected data points in

zT
Jk
X(Jk, :) = (zT

Jk
XJk,1, . . . , z

T
Jk
XJk,n) = ak(Gk)

T (A.10)

converge to the C.D.F. Gk, i.e., ‖Ĝzk;k −Gk‖∞ P→ 0.

Now, take K directions in R
p,

z1 =

⎛
⎜⎜⎝

z
J1
∈ R

p1

0 ∈ R
p2

0 ∈ R
p−p1−p2

⎞
⎟⎟⎠ , zk =

⎛
⎜⎜⎝
0 ∈ R

p1+···+p
k−1

z
Jk
∈ R

p
k

0 ∈ R
p−p1−···−pk

⎞
⎟⎟⎠ , . . . , zK =

⎛
⎜⎜⎝
0 ∈ R

p1+···+p
K−1

z
JK
∈ R

p
K

0 ∈ R
p−p1−···−pK

⎞
⎟⎟⎠ .(A.11)

Moreover, choose a1(G1), . . . ,aK(GK) to be mutually independent. This, together with

(A.8) and (A.6), implies that z1, . . . , zK are mutually independent. Also, from (A.11), we

see that zk ∈ S
p−1 due to ‖zk‖2 = ‖z

Jk
‖2 = 1, k = 1, . . . , K, and that zT

k1
zk2 = 0 for

1 ≤ k1 �= k2 ≤ K. Combining (A.7), (A.10) and (A.11) gives

(zT
1X �,1, . . . , z

T
1X �,n) = zT

1X = zT
J1
X(J1, :) = a1(G1)

T ,

· · · = · · ·
(zT

KX �,1, . . . , z
T
KX �,n) = zT

KX = zT
JK

X(JK , :) = aK(GK)
T ,

(A.12)

and thus zT
1X, . . ., zT

KX are mutually independent. This completes the proof. �

Proof of Result E.1. Similar to the proof of Lemma E.1, for the dimension p, indices

{1, . . . , p} can be partitioned into K +1 disjoint index subsets J1, . . . , JK , JK+1, of lengths

p1 , . . . , pK
, p

K+1
as in (A.4), and the random vector X and the data matrix X can be

partitioned as in (A.5).

For the data sub-matrix X(J1, :) ∈ R
p1×n, the condition p/n → γ ∈ (K,∞) implies

that p1/n = [p/K]/n = (p/n)/K + o(1) → γ/K = r ∈ (1,∞). For μ2(G1) < ∞, applying

Corollary 1 in [2] gives the existence of some “Type-G1” C.D.F. G1;u0,1 ,σ0,1
, for which there

4



exists a sequence of directions z
J1

= z
J1
(X(J1, :),a1(G1)) ∈ S

p1−1 that rely on X(J1, :) and

a1(G1), such that the E.D.F.s Ĝz1;1 of projected data points as defined in (A.7) converge

to the C.D.F. G1;u0,1 ,σ0,1
, i.e., ‖Ĝz1;1 −G1;u0,1 ,σ0,1

‖∞ P→ 0.

Similarly, for the data sub-matrix X(Jk, :) ∈ R
p
k
×n, k = 2, . . . , K, note that p

k
/n =

[p/K]/n = (p/n)/K + o(1) → γ/K = r ∈ (1,∞). For μ2(Gk) < ∞, Corollary 1 in

[2] indicates the existence of some “Type-Gk” C.D.F. Gk;u
0,k

,σ
0,k
, for which there exists a

sequence of directions z
Jk

= z
Jk
(X(Jk, :),ak(Gk)) ∈ S

p
k
−1 that rely onX(Jk, :) and ak(Gk),

where the vector ak(Gk) = (ak,1, . . . , ak,n)
T relying on the C.D.F. Gk satisfies (A.9), such

that the E.D.F.s Ĝzk;k of projected data points as defined in (A.10) converge to the C.D.F.

Gk;u
0,k

,σ
0,k
, i.e., ‖Ĝzk;k −Gk;u

0,k
,σ

0,k
‖∞ P→ 0.

Now define K directions, z1, . . . , zK in R
p, according to (A.11). Similar to (A.12) in

the proof of Lemma E.1,

(zT
kX �,1, . . . , z

T
kX �,n) = zT

kX = zT
Jk
X(Jk, :) = ak(Gk)

T , k = 1, . . . , K,

where z1, . . . , zK are orthonormal, and zT
1X, . . ., zT

KX are mutually independent. This

completes the proof. �

Proof of Lemma E.2. The data matrix X, partitioned according to columns, can be

rewritten as

X = (X �,1, . . . ,X �,n1 , X �,n1+1, . . . ,X �,n) ≡ (X(:, I1), X(:, I2)),

with two sub-matricesX(:, I1) = (X �,1, . . . ,X �,n1) ∈ R
p×n1 andX(:, I2) = (X �,n1+1, . . . ,X �,n) ∈

R
p×(n−n1).

Let n1 = [p γ]. From the condition p/n → γ ∈ (0, 1), we observe that n1 < p < n

as n → ∞. Moreover, p → ∞ implies n1 = [p γ] → ∞. Clearly, for the data sub-matrix

X(:, I1) ∈ R
p×n1 , the ratio of the number p of rows to the number n1 of columns of X(:, I1)

belongs to the setting of Theorem 2 in [2], i.e.,

n1 →∞, p→∞, p/n1 → γ1 = 1/γ ∈ (1,∞).

If μ2(G) < γ1−1 = (1− γ)/γ, then the result of Theorem 2(i) in [2] indicates the existence

of a sequence of directions z = z(X(:, I1),a1(G)) ∈ S
p−1 that rely on X(:, I1) and a1(G),

where a1(G) = (a1, . . . , an1)
T is a vector relying on the C.D.F. G, e.g., {a1, . . . , an1} i.i.d.∼ G,

a1(G) ‚ X(:, I1) (and the proof in [2] also allows a1(G) ‚ X(:, I2)), such that the E.D.F.s

of n1 data points in zTX(:, I1) = (zTX �,1, . . . , z
TX �,n1) converge to the C.D.F. G, i.e.,

max
s∈R

∣∣∣ 1
n1

n1∑
i=1

I(zTX �,i ≤ s)−G(s)
∣∣∣ P→ 0. (A.13)

5



For the data sub-matrix X(:, I2) ∈ R
p×(n−n1), since the vector z only depends on {X(:

, I1),a1(G)}, where a1(G) ‚ X, we conclude z ‚ X(:, I2). Moreover, utilizing (A.6) and

properties of the multivariate Gaussian distribution, we deduce that all n − n1 entries

zTX �,n1+1, . . . , z
TX �,n of the vector zTX(:, I2) are i.i.d. N(0, 1) variables, indicating that

the E.D.F.s of n− n1 data points in zTX(:, I2) = (zTX �,n1+1, . . . , z
TX �,n) converge to the

C.D.F. Φ, i.e.,

max
s∈R

∣∣∣ 1

n− n1

n∑
i=n1+1

I(zTX �,i ≤ s)− Φ(s)
∣∣∣ P→ 0. (A.14)

Also, n1/n = [p γ]/n→ γ2 ∈ (0, 1). This, combined with (A.13) and (A.14), proves (A.2).

�

Proof of Result E.2. Recall that for the dimension p, indices {1, . . . , p} can be par-

titioned into K + 1 parts in index sets J1, . . . , JK , JK+1, of lengths p1 , . . . , pK
, p

K+1
as in

(A.4), and the random vector X and the data matrix X can be partitioned as in (A.5).

For the data sub-matrix X(J1, :) ∈ R
p1×n, the condition p/n → γ ∈ (0, K) gives

that p1/n = [p/K]/n = (p/n)/K + o(1) → γ/K = r ∈ (0, 1). If μ2(G1) < (1 −
γ/K)/(γ/K) = (K − γ)/γ, then Lemma E.2 implies that there exists a sequence of

directions z
J1

= z
J1
(X(J1, I1;1),a1(G1)) ∈ S

p1−1 that rely on X(J1, I1;1) and a1(G1),

where I1;1 = {1, . . . , n1;1} with n1;1 = [p1 γ/K], a1(G1) = (a1,1, . . . , a1,n1;1)
T relies on G1

and a1(G1) ‚ X(J1, I1;1), such that the E.D.F.s of n projected data in zT
J1
X(J1, :) =

(zT
J1
XJ1,1, . . . , z

T
J1
XJ1,n) converge to the C.D.F.,

G∗1 = (γ/K)2 G1 + {1− (γ/K)2}Φ,

in which n1;1/n→ (γ/K)2 ∈ (0, 1).

Similarly, for the data sub-matrix X(Jk, :) ∈ R
p
k
×n, k = 2, . . . , K, note that p

k
/n =

[p/K]/n = (p/n)/K + o(1) → γ/K = r ∈ (0, 1). If μ2(Gk) < (1 − γ/K)/(γ/K) =

(K − γ)/γ, then Lemma E.2 implies that there exists a sequence of directions z
Jk

=

z
Jk
(X(Jk, I1;k),ak(Gk)) ∈ S

p
k
−1 that rely onX(Jk, I1;k) and ak(Gk), where I1;k = {1, . . . , n1;k}

with n1;k = [p
k
γ/K], ak(Gk) = (ak,1, . . . , ak,n1;k

)T relies on Gk, ak(Gk) ‚ X(Jk, I1;k) and

ak(Gk) ‚ {X(J1, I1;k), . . . ,X(Jk−1, I1;k)}, such that the E.D.F.s of projected data points

in zT
Jk
X(Jk, :) = (zT

Jk
XJk,1, . . . , z

T
Jk
XJk,n) converge to the C.D.F.,

G∗k = (γ/K)2 Gk + {1− (γ/K)2}Φ,

in which n1;k/n→ (γ/K)2 ∈ (0, 1).
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Now, takeK directions, z1, . . . , zK in R
p, as in (A.11). Then choices a1(G1), . . . ,aK(GK)

are mutually independent, and thus z1, . . . , zK are mutually independent and orthonormal,

Also, we see from (A.12) that zT
1X, . . ., zT

KX are mutually independent. This proves (A.3).

�

B Additional illustrations

B.1 Illustrate Remark 2 in [2] for 2-dimensional PP and p > n:

another example of feasible G

In addition to specifying the bivariate mixture Gaussian distribution (3.9) in Section 3.2.1

for the bivariate target distribution G, we consider a bivariate asymmetric distribution ([1],

p. 260) with the density function

g(s1, s2;α) = 2φ(s1)φ(s2)Φ(α s1s2), (B.1)

for −∞ < s1, s2 < +∞, and a shape parameter α = −10. It is interesting to note

that the univariate margins of the distribution are standard Gaussian, while conditional

distributions are univariate skew-Normal.

The simulation study uses the setting similar to that of Figure 11 in Section 3.2.1, and

displays the results in Figure 13. The projected data onto the feasible bivariate direction

(z1, z2) (in panel C2) clearly identify the twist, which is nonetheless not discoverable using

either an alternative projection direction in panel C3 or other projection methods ICA and

PCA in panels C4–C5. These new graphical results are similar in spirit to those of the

bivariate mixture Gaussian distribution in Figure 11, lending further support to feasible

distributions G in Remark 2 of [2].

B.2 An exploratory study of multivariate t data with p = 1000

and n = 100, p > n

For an exploratory study, we randomly simulate n = 100 multivariate t data vectors

X �,1, . . . ,X �,n, each of dimension p = 1000, coming from the joint distribution of a random

vector X. The construction of X follows from [3]:

X =
( v

v − 2
R
)−1/2 √

Wv AZ, (B.2)

where the variableWv has the distribution of v/χ2
v with a chi-squared variable χ2

v on degrees

of freedom v = 5 and is dependent of the standard Gaussian vector Z ∼ Np(0, Ip), together

7
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Figure 13: Illustrate Remark 2 summarized in Table 1 for [2] with 2-dimensional
PP and p > n: feasible distribution G with density function in (B.1). The caption
is similar to that of Figure 11, except using the bivariate asymmetric target distribution
G.

with p×p matrices A and R satisfying AAT = R = ρ1p1
T
p +(1−ρ)Ip, with a p-variate vector

1p of ones and a constant ρ = 0.8. The joint distribution for X in (B.2) has a zero mean

vector and an identity covariance matrix, and could better mimic some tail dependence in

real data. Nonetheless, component variables X1, . . . , Xp of X in (B.2) are dependent, thus

violating the independence condition in either (2.1) or (2.2).

As in Section 3.1.1, we take the bimodal mixture distribution G in (3.5) as the target
distribution. Interestingly, the boxplots of the KS distances in Figure 14 indicate that the
target distribution G continues to be feasible, by means of the projection onto the direction
“z1 (exist)”. In the absence of theoretical guarantee yet, the numerical results do support
that the interesting bimodal structure could be revealed from projecting multivariate t
data. This empirical finding leads us to conjecture that Theorem 1 in [2] may generalize to
the multivariate t data with an identity covariance. A further justification falls beyond the
scope of the present paper and could be an interesting future work.
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