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Table 1. Bias and MSE of Êrr − Err Evaluated at µ̂(M̂) With M̂ Selected
via AIC and the Corresponding Standard Errors (in parentheses)

of the Two Approaches Based on 500 Replications

5k Methods Bias MSE

5 DP −4.065(.956) 472.66(31.00)
PB −21.037(.934) 877.42(52.83)

15 DP −4.467(.911) 434.47(27.39)
PB −17.575(.892) 706.20(40.53)

25 DP −4.389(.959) 477.78(29.57)
PB −14.090(.942) 641.26(38.92)

35 DP −1.644(1.053) 556.51(35.73)
PB −7.104(1.054) 604.90(38.70)

45 DP −1.620(1.098) 604.46(37.55)
PB −.349(1.085) 587.19(36.16)

are computed by averaging over 100 replications and are re-
ported in Table 1.

Clearly, the PB method performs well and less well for large
k and small k values, respectively, because of the choice of

the “moderately big” model. Evidently, the estimator µ̂full esti-
mates µ well for small k values but poorly for large k values,
depending on the true model. In terms of the accuracy of predic-
tion, Êrr estimates Err poorly for small k values, yielding bias
against candidate models of small size, and vice verse for large
k values. Generally, it is impossible to eliminate this problem
if any model-dependent µ̂ is used for µs in sampling. By com-
parison, the “model-free” DP method estimates Err consistently
well across all situations.
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Comment
Chunming ZHANG

A fundamental issue in statistics is to quantify the degree
to which a model captures an underlying reality and predicts
future cases. With the growing flood of increasingly complex
data in real-world applications, it has become pressingly impor-
tant for statisticians to develop theory and methods that allow
dual use of data in making effective assessment of model fitting
and critical evaluation of model prediction. The central prob-
lem studied in Professor Efron’s article is that of estimating the
true prediction error. Efron’s article has substantially enhanced
our understanding of this important problem. I appreciate the
opportunity to comment further on this neat and stimulating
article.

Efron revisits a well-known model-free method for esti-
mating the prediction error based on cross-validation (CV).
This procedure, beginning with the delete-one-out fitted value
µ̃i for outcome yi, directly estimates the coordinatewise true
predictive error, Erri, by ÊrrCV

i = Q( yi, µ̃i), with respect to
a Q-error measure, and as such adjusts the apparent error,
erri = Q( yi, µ̂i), for the full data-based fitted value µ̂i, by an
amount Õi = Q( yi, µ̃i)−Q( yi, µ̂i), yielding an equivalent form
of CV,

ÊrrCV
i = erri + Õi, i = 1, . . . ,n. (1)

In many applications, the original cross-validated methods have
known to suffer from large variations.

With the introduction of optimism theorem and
Rao–Blackwell type of results, Efron not only provides valu-
able theoretical tools, but also brings new insights into what
has been learned before about CV and opens up new vistas
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in exploration and learning. Among many other contributions,
Efron

1. Derives an optimism theorem to represent the expected
optimism, �i = E(Erri − erri), as the covariance penalty,
�i = 2 cov(̂λi, yi), with λ̂i some well-defined mapping
of µ̂i. In this spirit, the covariance penalty (CP) method,
ÊrrCP

i , estimates Erri, via estimating the covariance penalty,
covi = cov(̂λi, yi), by some data-driven rule, ĉovi, leading
to an additive form,

ÊrrCP
i = erri + 2 ĉovi, i = 1, . . . ,n. (2)

The covariance penalty theory goes beyond the squared
error to a q class of error measures Q, and thus generalizes
the work of Mallow’s Cp, Akaike’s information criterion,
and Stein’s unbiased risk estimate to a wide range of sta-
tistical models. He also develops model-based bootstrap
methods to estimate the covariance term.

2. Characterizes Rao–Blackwell type of results to demon-
strate that the covariance penalty method enjoys sub-
stantially increased efficiency than the conventional CV
method for estimating prediction error. These theoretical
results offer a very appealing and easily understandable
interpretation of two prediction error estimation schemes,
which, as can be seen from (1) and (2), operate in very
distinct ways.

3. Suggests methods to improve the original CV estimates
and the nonparametric bootstrap estimates for prediction
error.
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1. CONDITIONAL MONOTONICITY: NONNEGATIVITY
OF COVARIANCE PENALTIES

As pointed out by Efron, one problem arising from the use of
the apparent error, erri, is that it tends to be biased downward
for the true predictive error, Erri. Is erri always biased down-
ward? From the viewpoint of optimism theorem, this seems
particularly relevant to the question of whether or not the co-
variance penalty, covi, is nonnegative. For the usual squared
error measure Q, applied to a linear fitting rule µ̂i (such as
smoothing splines, regression splines, wavelet estimators, ker-
nel and local polynomial regression estimators), it is conceiv-
able that the resulting covariance, covi = cov(µ̂i, yi), is indeed
positive. How can one better understand this implicit feature of
the covariance penalty under more general error measures Q in
accordance with possibly nonlinear fitting rules?

In what follows, I try to provide some simple arguments
for the conditional monotonicity of λ̂i to illustrate when the
desired inequality, cov(̂λi, yi) ≥ 0, holds for the generalized
q class of error measures Q and when it does not. Let y(i) =
( y1, . . . , yi−1, yi+1, . . . , yn). Note that µ̂i = µ̂i(y(i), yi) and λ̂i =
λ̂i(y(i), yi) = −q′(µ̂i)/2 (defined in Section 3 of Efron’s arti-
cle). Then cov(̂λi, yi) can be rewritten as

E{̂λi · ( yi − µi)} = E
[
E
{
λ̂i

(
y(i), yi

) · ( yi − µi)
∣
∣y(i)

}]
. (3)

To facilitate discussion, assume that the second derivative of
q(µ) exists. When examining the conditional expectation in (3),
it is seen that, for fixed y(i),

∂λ̂i(y(i), yi)

∂yi
= ∂λ̂i(y(i), yi)

∂µ̂i(y(i), yi)

∂µ̂i(y(i), yi)

∂yi

= −1

2
q′′(µ̂i

(
y(i), yi

))∂µ̂i(y(i), yi)

∂yi
. (4)

On the right side of (4), the choice of a concave function q, as
introduced in Efron’s article to define Q (and ensure Q ≥ 0),
entails −q′′(µ̂i(y(i), yi)) ≥ 0. Meanwhile, the other term in (4),
∂µ̂i(y(i), yi)/∂yi, measures the sensitivity of a fitted value to
perturbation in the corresponding observed value (Ye 1998).
These two considerations lead to the following conclusions:

1. If ∂µ̂i(y(i), yi)/∂yi ≥ 0, (4) indicates that ∂λ̂i(y(i), yi)/

∂yi ≥ 0. The implication is that, given y(i), λ̂i(y(i), yi) is
a nondecreasing function of yi and that λ̂i(y(i), yi) and
yi − µi are monotone in the same directions. An appeal-
ing to some expanded version of Chebyshev’s inequal-
ity (see, e.g., Gurland 1967, p. 25) yields E{̂λi(y(i), yi) ·
( yi − µi)|y(i)} ≥ 0, which, applied to (3), in turn induces
cov(̂λi, yi) ≥ 0.

2. On the contrary, if ∂µ̂i(y(i), yi)/∂yi ≤ 0, then cov(̂λi,

yi) ≤ 0, revealing that erri tends to be an upward biased
estimator of Erri.

2. RAO–BLACKWELL THEOREM: VARIANCE
REDUCTION OF COVARIANCE PENALTY METHOD

A key quantity of interest in the conclusion of Theorem 1
is the Rao–Blackwell type of relation established between
the covariance penalty method and the CV counterpart. Some
remarkable aspect of the proof rests on a careful construc-
tion of the bootstrap data (y(i), y∗

i ), in which y(i) is kept

fixed and, given y(i), the probability mechanism of y∗
i dic-

tates its conditional distribution f̃i, with the conditional mean
Ẽfi{y∗

i |y(i)} = µ̃i. Based on the same data (y(i), y∗
i ), the asso-

ciated CV estimate, Õ∗
i = Q( y∗

i , µ̃i) − Q( y∗
i , µ̂i(y(i), y∗

i )), is
compared with the conditional version of the covariance penalty
estimate, 2 ĉov(i) = 2 cov f̃i{(̂λi(y(i), y∗

i ), y∗
i )|y(i)}. Efron shows

that Ẽfi{Õ∗
i |y(i)} .= 2 ĉov(i).

I find this result attractive because it integrates the classical
theory of point estimation with the prediction error estimation
techniques, and therefore enables one to further comprehend
the stochastic way that distinguishes the covariance penalty
method from the CV method. Meanwhile, I discuss some addi-
tional questions regarding how to compare these two methods.

1. From the preceding data construction, the reader can
clearly observe that Õ∗

i is introduced to mimic (or predict)
an observable random variable, namely, the term Õi in (1),
whereas 2 ĉov(i), similar to the term 2 ĉovi in (2), aims
to estimate an unknown deterministic quantity, 2 covi.
Henceforth, it may not strike the reader as particularly
surprising that the variance of Õ∗

i exceeds that of 2 ĉov(i).
2. To better appreciate the value of the covariance penalty

method, it would be natural to quantify how much vari-
ance reduction is achieved by 2 ĉov(i) relative to Õ∗

i . In
addition to carrying out the simulation studies, some the-
oretical calculations in certain concrete examples will be
particularly interesting and enlightening.

3. A homoscedastic model, assumed for data points dis-
played in figure 1, facilitates the parametric bootstrap
computations. Had this type of deviation from model
assumptions existed, would the model-based covariance
penalty estimates have been affected?

4. More precisely speaking, the Rao–Blackwell type of re-
sult compares the relative performance of the CV and
covariance penalty methods in estimating the expected
optimism; this thoughtful result, when placed back into
(1)–(2), gives an indirect way of comparing the predic-
tion error estimation. In practical settings, a direct way of
assessing the two methods is to compare var(ÊrrCV

i ) ver-
sus var(Êrr

CP
i ). Generally, the original CV estimate, Êrr

CV
i ,

becomes less noisy as the sample size increases.

3. DEGREES OF FREEDOM: DIRECT ESTIMATION
OF COVARIANCE PENALTIES

Ideally, the covariance penalty would be known, or could eas-
ily be estimated by a data-oriented procedure. The parametric
bootstrap method suggested in Efron’s article provides a use-
ful device in general situations. This approach consists of
generating bootstrap resamples y∗b, b = 1, . . . ,B, at the ith
individual data point, from a “bootstrap model” assumed
to be “believable,” and obtaining the replicated estimates
µ̂∗b

i and λ̂∗b
i . While producing the bootstrapped estimates of

covariance at the entire collection of sample points is suitable
for samples of small or medium size, it can potentially be-
come a problem for large and huge sample sizes that one may
face nowadays in data-mining tasks. Typical examples include
processing functional data (Ramsay and Silverman 1997) and
longitudinal data (Diggle, Heagerty, Liang, and Zeger 2002), in
which each data element is associated with a high-dimensional
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curve, other than a univariate number. The computational bur-
den of the bootstrap procedure will continue to grow as de-
mand increases for a more complicated model-fitting technique.
Moreover, there is no unique way of building a “bootstrap
model.” On the other hand, care needs to be taken to reduce bi-
ases caused by an inadequate choice of the “bootstrap model.”
This is particularly important when the data structure is com-
plex; see further examples in Section 4.1.

For practical purposes, some alternative methods for esti-
mating covariance penalty within the different contexts of its
use deserve further exploration. Below I will focus on the sit-
uations in which some nonparametric modeling techniques are
employed. In these cases, the covariance penalty either is fully
known or can be approximated by its asymptotic expression in
large samples.

Case I. Consider y ∼ (µ, σ 2In). Recall that for a squared
error measure combined with any linear fitting rule, covi =
σ 2M(i, i) and

∑n
i=1 covi = σ 2 tr(M). Under a nonparametric

regression model, if the mean response is fitted by a linear non-
parametric smoother, such as the local polynomial regression
estimator (see, e.g., Fan and Gijbels 1996), then Mh(i, i) has a
closed-form expression and thus the exact values of the total
degrees of freedom, tr(Mh) and tr(MT

h Mh), can be directly
computed, in which Mh is used to denote its dependence on
a bandwidth parameter h. The unknown parameter σ 2 can
be estimated by a nonparametric variance estimator, σ̂ 2 =
∑n

i=1( yi − µ̂i)
2/{n − tr(2Mh − MT

h Mh)} (Buckley, Eagleson,
and Silverman 1988; Cleveland and Devlin 1988). Hence, the
total covariance penalties can be directly estimated whenever
the sample size keeps the computational cost affordable. Fur-
thermore, Zhang (2003a) showed that tr(Mh)

.= d{(p + 1 −
a) + Cn/(n − 1)K(0)|�|/h} and tr(MT

h Mh)
.= d{(p + 1 − a) +

Cn/(n − 1)K ∗K(0)|�|/h} inform the asymptotic total degrees
of freedom in a univariate nonparametric regression model and
a varying-coefficient regression model, where all of the con-
stants involved in the expressions are known. These empirical
formulas suggest a second way of directly estimating the total
covariance penalties, by

n∑

i=1

ĉovi = σ̂ 2d
{
(p + 1 − a) + Cn/(n − 1)K(0)|�|/h

}
. (5)

Case II. Consider response observations from the exponen-
tial family with a density (or probability) function, exp[{yiθi −
b(θi)}/a(ψ) + c( yi,ψ)]. For likelihood-based models, the
local-likelihood regression estimation, introduced by Tibshirani
and Hastie (1987), is a nonparametric analogue of the para-
metric generalized linear model regression estimation. For this
nonlinear fitting rule, numerically obtained via the Newton–
Raphson iterative algorithm, the covariance penalty does not
necessarily have an explicit form of expression. Nonetheless, θ̂i,
the local polynomial likelihood estimate of the canonical para-
meter, satisfies θ̂i

.= ∑n
j=1 Mh(i, j){g(µ̂j)+( yj−µ̂j)g′(µ̂j)}, for

a link function g and a smoother matrix Mh. As I learned from
Efron’s article, the choice q(µ) = 2{b(θ) − µθ} gives λ̂i = θ̂i.
With this convenient result, it is readily seen that

covi = cov(θ̂i, yi)
.=Mh(i, i)var( yi)g

′(µ̂i)

= Mh(i, i)a(ψ)b′′(θ̂i)g
′(µ̂i).

For the commonly used canonical link function g,
∑n

i=1 covi
.=

a(ψ) tr(Mh). Again, Zhang (2003b) showed that tr(Mh)
.=

d{(p + 1 − a)+Cn/(n−1)K(0)|�|/h} in a generalized smooth
model and a generalized varying-coefficient model, implying
the direct estimation method for the total covariance penalties
by

n∑

i=1

ĉovi = a(ψ̂)
{
(p + 1 − a) + Cn/(n − 1)K(0)|�|/h

}
. (6)

For a Gaussian family, the empirical formula (6) reduces to (5).
Among non-Gaussian outcomes, the Bernoulli-distributed bi-
nary responses and the Poisson-distributed count responses no
longer carry in (6) the estimate, a(ψ̂), for the nuisance parame-
ter. This makes the direct estimation further simplified.

4. NONPARAMETRIC MODEL SELECTION:
APPLICATION OF COVARIANCE PENALTY METHOD

An important research problem in applications of non-
parametric modeling techniques is the automatic selection of
smoothing parameters. Essentially, this issue can be formu-
lated as a nonparametric model selection problem: Choose the
amount of smoothing that produces a nonparametric model with
the minimum prediction error. Indeed, the arrival of Efron’s ar-
ticle provides the theoretical basis for evaluating a wide variety
of existing selection methods in the literature and broadens the
scope of the covariance penalty method to more application
fields in which nonparametric techniques have been under de-
veloped.

For illustration, I consider the bandwidth parameter h in the
context of local polynomial model-fitting method. Hereafter,
µ̂h,i and λ̂h,i are used for µ̂i and λ̂i, respectively. According
to (2), the optimal data-driven bandwidth selector ĥCP, based on
the covariance penalty method, minimizes with respect to h > 0
the total prediction error estimates,

ÊrrCP
(h) =

n∑

i=1

Q( yi, µ̂h,i) + 2
n∑

i=1

ĉov(̂λh,i, yi). (7)

1. For Gaussian responses, with the squared loss function,
the bandwidth selector studied in Hurvich, Simonoff, and
Tsai (1998) is asymptotically equivalent to the above ĥCP.

2. Currently, most of the existing methods for the optimal
smoothing deal with metrical responses and there is a
clear lack of methodology and scheme for smoothing
non-Gaussian responses. With the flexible choice of er-
ror measures Q, Efron’s article makes the optimal band-
width selector, ĥCP, continue to be applicable to responses
in the exponential families. For Q chosen to be deviance
of the local polynomial likelihood estimates, it can also
be shown that the EGCV-minimizing bandwidth selector
(Zhang 2003b) is asymptotically equivalent to ĥCP. Fur-
ther research along the line of (7) will be fruitful.

3. The covariance penalty method has an added advantage:
A locally optimal bandwidth selector can easily be ob-
tained via minimizing the sum of neighboring coordinate-
wise prediction error estimates. The resulting selector is
spatially adaptive and outperforms the globally optimal
bandwidth selector, ĥCP, at locations of fitting points re-
quiring varying amount of smoothing.
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4.1 Correlated Data

Technological invention and information advancement have
revolutionized scientific research and technological develop-
ment. Many sophisticated datasets have recently been collected.
Data types range from the brain functional magnetic resonance
imaging data in biomedical study and neuroscience, traffic time
series data in transportation management, to financial time se-
ries data in econometrics and finance. All these data share a
common characteristic: The measurements are highly corre-
lated time series data. Compared with the traditional parametric
modeling techniques, statistical nonparametric modeling tech-
niques for complex observational data will lead to considerable
reduction of modeling bias and false positive rates.

However, compared with uncorrelated data, the likely pres-
ence of correlation effects poses more challenges to estimating
the covariance penalties, in addition to developing nonparamet-
ric model-fitting techniques. The bootstrap estimation method
needs to be used with care; similarly, the validity of the di-
rect estimation method based on the total degrees of freedom
may also call for reexamination. Regarding the nonparametric
model selection problem, most smoothing parameter selection
methods do not perform well to be adaptive to correlated errors
(see Hart 1994; Opsomer, Wang, and Yang 2001). For the pre-
ceding bandwidth selector ĥCP, based on the covariance penalty
method, the criterion function (7) may need to be modified to
take into full account data dependencies.
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Rejoinder
Bradley EFRON

Classical statistics as developed in the first half of the
20th century has two obvious deficiencies from the point of
view of practical applications: an overreliance on the normal
distribution and failure to account for model selection. The first
of these was dealt with in the century’s second half by non-
parametrics, generalized linear models, and computer-intensive
techniques such as the jackknife and bootstrap.

Model selection, the data-based choice among structural
models of different dimensions, remains mostly terra incognita
as far as statistical inference is concerned. This article aims at a
small corner of the model selection problem, the assessment of
predictive accuracy. Its main result is a Rao–Blackwell type of
relationship between cross-validation and what I called “covari-
ance penalties.” The latter are shown to have better estimation
properties at the expense of increased assumptions.

The assessment of predictive accuracy is a form of bias es-
timation: “err,” the apparent error (1.1), is downward biased
for the true predictive error. As usual the bias is of order only
O(1/n) compared to err. This makes for difficult and often un-
realistic asymptotics, the O(1/n) term disappearing too quickly
for easy extrapolation from large-sample behavior. The Rao–
Blackwell result (4.6) relies on just a simple algebraic iden-
tity, providing at least heuristic grounds for believing its small-
sample applicability.

The discussants’ comments brought home some defects in
the article’s presentation. My numerical examples, with the ex-

ception of remark B, failed to include model selection. Reason-
ably enough, Burman and also Denby, Landwehr, and Mallows
question the efficacy of parametric bootstrap covariance esti-
mates in a model selection situation. Numerical experimenta-
tion, admittedly of limited scope, is reassuring on this point.

Figure 12 concerns a cholesterol-lowering experiment de-
scribed in figure 4 of Efron and Tibshirani (1998): 201 men
in the experiment’s control arm have been measured for drug-
taking compliance and cholesterol decrease. Even though the
“drug” is placebo, there is evidence of a positive regression, per-
haps because the better compliers were also better dieters or ex-
ercisers. Polynomial predictors, of degrees 0 through 7, were fit
to the data by ordinary least squares, with the quadratic regres-
sion, the solid curve in the left panel, being the clear Cp min-
imizer. The dashed curve is the ordinary least squares (OLS)
seventh-degree polynomial fit.

The right panel displays coordinatewise degree-of-freedom
estimates d̂fi = ĉovi/σ̂

2 for the rule µ̂ = m(y) that selects
among polynomial fits of degree 0 through 7 according to mini-
mum Cp value. Parametric bootstrapping from f̂ ∼ N(µ̂, σ̂ 2I)
was used as in (2.14)–(2.15), with σ̂ 2 obtained from the
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