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a b s t r a c t

Stochastic modeling for large-scale datasets usually involves a varying-dimensional model
space. This paper investigates the asymptotic properties, when the number of parameters
grows with the available sample size, of the minimum-BD estimators and classifiers under
a broad and important class of Bregman divergence (BD), which encompasses nearly all
of the commonly used loss functions in the regression analysis, classification procedures
andmachine learning literature. Unlike the maximum likelihood estimators which require
the joint likelihood of observations, the minimum-BD estimators are useful for a range of
models where the joint likelihood is unavailable or incomplete. Statistical inference tools
developed for the class of large dimensionalminimum-BDestimators and related classifiers
are evaluated via simulation studies, and are illustrated by analysis of a real dataset.
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1. Introduction

In many fields of applications, the dimension (number) p of model space (parameters) depends on the sample size n.
Examples include the X-ray crystallography [1,2] and the autoregressive models in times series. In the literature, Drost [3]
developed the goodness-of-fit tests for location-scale models when the number of classes tends to infinity; Murphy [4]
developed testing for a time dependent coefficient in Cox’s regression model. This paper is motivated from issues in two
important and challenging applications.

1.1. fMRI time series: a diverging number of parameters

Functional magnetic resonance imaging (fMRI) is a recent and exciting method that allows investigators to determine
which areas of the brain are involved in a cognitive task. Following Ward [5] and Worsley et al. [6], a single-voxel fMRI
time-series {s(ti), y(ti)}ni=1, for a given scan and a given subject, can be captured by the convolution model

y(t) = d(t)+ s ∗ h(t)+ ε(t), t = t1, . . . , tn, (1.1)

where ∗ denotes the convolution operator, y(t) is the measured noisy fMRI signal, s(t) is the external input stimulus (which
could be fromadesign either block- or event-related andwhere s(t) = 1or 0 indicates the presence or absence of a stimulus),
h(t) is the hemodynamic response function (HRF) at time t after neural activity, d(t) is a slowly drifting baseline, and the
errors ε(ti) are zero-mean and temporally autocorrelated. Similar models can be found in [7]. Refer to [8] and references
therein for a recent review of statistical issues and methods in fMRI data analysis.

E-mail address: cmzhang@stat.wisc.edu.

0047-259X/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmva.2010.02.009



Author's personal copy

C. Zhang / Journal of Multivariate Analysis 101 (2010) 1574–1593 1575

Fig. 1. An illustrative plot of HRF h(tj)with n = 80.

Of primary interest to neuroscientists is the estimation and hypothesis testing of the underlying HRF. Typically, the peak
value of the HRF h(·) is reached after a short delay of the stimulus and drops quickly to zero. A typical example of h(·), given
in [9], is plotted in Fig. 1. Clearly, the region {t : h(t) 6= 0} is sparse in its temporal domain. Thus, to obtain statistically
more efficient estimates of the HRF associated with event-related fMRI experiments, the sparsity of the HRF needs to be
taken into account. We thus suppose that h(t) = 0 for t > tpn and focus on estimating the first pn values of h(ti), where
pn is less than n, the length of the fMRI time series. In neuroimaging studies, the temporal drift d(·) is a nuisance function
and usually approximated by a (at most third order) polynomial; see for example, the popular imaging analysis tool AFNI at
http://afni.nimh.nih.gov/afni/ [10,6]. As such, (1.1) is re-expressed as

y = T̃̃α+ Sh+ ε, (1.2)

where y = (y(t1), . . . , y(tn))T ,

T̃ =

1 t1 t21 t31
...

...
...

...

1 tn t2n t3n

 , S =



s(0) 0 · · · 0
s(t2 − t1) s(0) · · · 0

...
...

. . .
...

s(tpn − t1) s(tpn − t2) · · · s(0)
...

... · · ·
...

s(tn − t1) s(tn − t2) · · · s(tn − tpn)


is the n × pn Toeplitz matrix, ε = (ε(t1), . . . , ε(tn))T , and α̃ = (α0, α1, α2, α3)

T and h = (h(t1), . . . , h(tpn))
T are both

vectors of unknown parameters.
Clearly, pn here grows with n but is excessively below n. For the regression problem (1.2), the large-dimensional vector

h can be estimated via weighted least-squares using the quadratic loss. In practice, however, pn, termed the ‘‘intrinsic
dimensionality of fMRI data’’ [11], is unknown for real fMRI data. Indeed, as far as we know, all published work for fMRI
assumes that pn = p is a known fixed number, followed by traditional parametric inference based on asymptotic derivations
of fixed-dimensional estimators. To reduce modeling biases due partly to the fixed choice of p, statistical inference based on
asymptotic results which allow the dimension pn to depend on n is desired. This motivates us to consider a more realistic
relation between pn and n,

dimension : pn varies with n or even pn →∞ at a certain rate as n→∞. (1.3)

1.2. Statistical learning: regression and classification under general loss

In statistical learning, the primary goals of regression and classification seem to be kept separate. Regression methods
concern the ‘‘orderable’’ output variable and aim to estimate the regression function at points of the input variable, whereas
the primary interest of classification rules for the ‘‘categorical’’ output variable is to forecast the most likely class label for
the output.
As discussed in [12], both regression and classification can be viewed from the common perspective of real valued

prediction. Namely, the goal of a supervised learning algorithm is to use the training samples to construct a prediction
rule for a future output at the observed value of the input variable. Depending on the nature of the output variable, the
predictive error is quantified by different errormeasures. For example, the quadratic loss function, as utilized in the previous
brain fMRI data, has nice analytical properties and is usually used in regression analysis. However, the quadratic loss is not
always adequate in classification problems where the misclassification loss, deviance loss (or the negative log-likelihood)
and exponential loss are more realistic and commonly used in classification.
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Owing to the nature of output variables in classification, the choice of loss functions plays an important role in defining
and understanding the bias, variance and prediction error for the classification rule [13]. Recent work in the area of research
includes James [14], Efron [15], Bartlett, et al. [16], and many others. This inspires us to consider a more general framework,

loss : the loss function belongs to the class of Brègman divergence (BD), (1.4)

where the notion BD, as exemplified in Section 2.1, unifies nearly all of the commonly used loss functions in the regression
analysis, classification procedures and machine learning literature.
For fixed dimensions, the asymptotic properties (including the consistency and asymptotic distribution) of minimum-

BD estimators can be derived using the existing results for M-estimators. However, for diverging dimensions, asymptotic
properties of the M-estimators based on the empirical process theory may not be fully transparent. This paper aims at
obtaining the asymptotics of minimum-BD estimators with the diverging dimensions, in an accessible way.

1.3. Outline of this paper

In this paper, we aim to investigate the unified statistical properties and develop the powerful inference tools relevant
for the class of large-dimensional minimum-BD estimators under the Brègman divergence framework. By doing this task,
we hope to provide new insights into the statistical behaviors of both regression estimators and classification procedures
for all fields of scientific research that concern large-dimensional problems.
This paper differs from existing work in a number of ways. First, this paper integrates the important loss function in (1.4)

with dimensions in (1.3) simultaneously. Portnoy [17] considered (1.3) for themaximum-likelihood estimator, from an i.i.d.
sample {Xn1, . . . , Xnn}, having a distribution in the exponential family, i.e. the loss function is the negative log-likelihood. Fan
and Peng [18] considered (1.3) for the penalized likelihood estimator, froman i.i.d. sample {(Xn1, Yn1), . . . , (Xnn, Ynn)}, where
the loss function is the negative log-likelihood. Second, as noted, likelihood-based results are not directly applicable in the
context that the standard likelihood is either unavailable or difficult to optimize. Accordingly, the above existing work is not
applicable to statistical inference for large-dimensional maximum ‘‘quasi-likelihood’’ estimation, for example, but our study
can immediately be useful. See Section 2.1. Third, from the classification viewpoint, our study elucidates the applicability
and consistency of many non-likelihood based minimum-BD classifiers, despite the lack of efficiency of the corresponding
minimum-BD regression estimators. Thus, one is able to readily assess the impact of loss functions on the performance
of various classifiers induced by either likelihood or non-likelihood based estimators, when applied to large-dimensional
datasets. In contrast, results confined to likelihood-based estimation cannot achieve this goal. Fourth, the minimum-BD
estimator is allowed to be a local minimizer and its rate of consistency and limit distribution can be obtained, when the
dimension grows to infinity; see Theorem 1. This differs from the well-known result for the M-estimator [19–21], where
the dimension is fixed for the local minimizer, rate of consistency, and asymptotic distribution.
What is special about the minimum-BD estimators as opposed to M-estimators? The BD is partly motivated from the

machine learning literature, where most of the loss functions that people are specifically interested in belong to the family
of BD, and offers many practical advantages. For example, constructing the loss function for multi-class classification is
challenging. On the other hand, if we know the generating q-function for binary-classification, then it can conveniently
be generalized to the counterpart for multi-class classification. Accordingly, the corresponding Q -loss for multi-class
classification can be obtained. That is, the BD focuses on the aspect of constructing loss functions, whereas anM-estimation
procedure is to estimate parameters assuming that the loss is available.
The rest of the paper is arranged as follows. Section 2 introduces the BD and formulates the minimum-BD estimator.

Section 3 investigates the statistical sampling properties of the minimum-BD estimator. Section 4 conducts hypothesis
testing for the model parameters based on the minimum-BD estimator. For binary classification, Section 5 establishes the
consistency of the minimum-BD classifier. Section 6 presents simulation studies, and Section 7 applies results developed in
Sections 3–5 to real data. Section 8 ends the paper with a brief discussion. All technical details are relegated to the Appendix.

2. Minimum-BD estimator

2.1. Brègman divergence

Brègman [22] introduced a device for constructing a bivariate function,

Q (ν, µ) = −q(ν)+ q(µ)+ (ν − µ)q(1)(µ),

for a given concave q-function. Note that the concavity requirement on q ensures the non-negativity of Q . However, since
Q (ν, µ) is not generally symmetric in arguments, Q is not a ‘‘metric’’ or ‘‘distance’’ in the strict sense. Hence, we call Q the
‘‘Brègman divergence’’ (BD) and call q the ‘‘generating function’’ of Q .
It is easy to see that, with the flexible choice of the q-function, the BD is suitable for a broad class of error measures.

Below we present some notable examples of the Q -loss constructed from the q-function. A function q(µ) = aµ − µ2 for
some constant a yields the quadratic loss Q (Y , µ) = (Y − µ)2. For a binary response variable Y , q(µ) = min{µ, (1 − µ)}
gives the misclassification loss Q (Y , µ) = I{Y 6= I[µ > 1/2]}; q(µ) = −{µ log(µ) + (1 − µ) log(1 − µ)} gives the
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Bernoulli deviance loss Q (Y , µ) = −{Y log(µ)+ (1− Y ) log(1− µ)}; q(µ) = 2min{µ, (1− µ)} results in the hinge loss
Q (Y , µ) = max{1−(2Y−1)sign(µ−0.5), 0} of the support vectormachine; q(µ) = 2{µ(1−µ)}1/2 yields the exponential
loss Q (Y , µ) = exp[−(Y − 0.5) log{µ/(1− µ)}] used in [23]. Among many others, the quasi-likelihood function [24], and
the Kullback–Leibler divergence (or the deviance loss) for the exponential family of probability functions fall into the class
of BD.

2.2. Statistical model and the minimum-BD estimator

Let {(Xni, Yni)}ni=1 be a sample of i.i.d. observations from the population (Xn, Yn), where Xni = (Xi1, . . . , Xipn)
T is the pn-

dimensional input vector corresponding to the ith output variable Yni and pn is known. Suppose that the mean regression
function,m(xn) = E(Yn | Xn = xn), is described by the model,

m(xn) = F−1(βn,0;0 + xTnβn;0), (2.1)

where βn,0;0 ∈ R1 and βn;0 = (βn,1;0, . . . , βn,pn;0)
T
∈ Rpn stand for the unknown ‘‘true’’ model parameters, and F(m) is a

known link function, oftentimes bearing a monotonic relation withm.
Our goal is to estimate the true parameters (βn,0;0,βn;0). Under the general loss Q , theminimum-BD estimator (β̂n,0, β̂n)

is defined as the minimizer of the criterion function,

`n(βn,0,βn) =
1
n

n∑
i=1

Q (Yni, F−1(βn,0 + XTniβn)),

where βn = (βn,1, . . . , βn,pn)
T and the loss Q (·, ·) belongs to the class BD. Set β̃n = (βn,0,β

T
n)
T and correspondingly

X̃ni = (1, XTni)
T . Then the criterion function above can be written as

`n(̃βn) =
1
n

n∑
i=1

Q (Yni, F−1(̃XTniβ̃n)). (2.2)

The minimum-BD estimator ̂̃βn = (β̂n,0, β̂n,1, . . . , β̂n,pn)T amounts to ̂̃βn = argminβ̃n
`n(̃βn).

Wewish to emphasize here that the construction of aminimum-BDestimator does not necessarily need the distributional
assumption about (Xn, Yn). Therefore, when the likelihood function is unknown or is unduly complicated to optimize,
acquiring the minimum-BD estimator seems more natural and viable.

3. Properties of the minimum-BD estimator

This section begins by studying the consistency and asymptotic distribution of the minimum-BD estimator. Unless
otherwise stated, ‖ · ‖ denotes the L2-norm.

3.1. Consistency

Define by β̃n;0 = (βn,0;0,β
T
n;0)

T the vector of true regression parameters. Theorem 1 guarantees the existence of a
consistent local minimizer for (2.2).

Theorem 1 (Existence and Consistency). Assume Condition A in the Appendix. If p4n/n→ 0 as n→∞, then there exists a local

minimizer ̂̃βn of `n(̃βn) such that ‖̂̃βn − β̃n;0‖ = OP(
√
pn/n).

Theorem 1 indicates that the local minimizer ̂̃βn is√n/pn-consistent. Assume that
qj(y; θ) = (∂ j/∂θ j)Q (y, F−1(θ)), j = 0, 1, . . . (3.1)

exist finitely up to any order required. Regarding the uniqueness of ̂̃βn, provided that
q2(y; θ) > 0 for all θ ∈ R and all y in the range of the response variable, (3.2)

the criterion function `n(̃βn) is convex in β̃n, and hence the local minimizer
̂̃
βn is also the unique global minimum-BD

estimator.



Author's personal copy

1578 C. Zhang / Journal of Multivariate Analysis 101 (2010) 1574–1593

3.2. Asymptotic normality

Following Theorem 1, the asymptotic normality of the local minimizer is given in Theorem 2 below. Before stating it, we
first introduce some necessary notations. Let X̃n = (1, XTn)

T ,

Ωn = E
[
var(Yn | Xn)

{q(2)(m(Xn))}2

{F (1)(m(Xn))}2
X̃ñXTn

]
, Hn = −E

[
q(2)(m(Xn))
{F (1)(m(Xn))}2

X̃ñXTn

]
.

Theorem 2 (Asymptotic Normality). Assume Condition B in the Appendix. If p5n/n→ 0 as n→∞, then any
√
n/pn-consistent

local minimizer ̂̃βn satisfies: for any fixed integer k ≥ 1 and any k× (pn+ 1)matrix An such that AnATn → G with G being a k× k

nonnegative-definite symmetric matrix,
√
nAnΩ

−1/2
n Hn (̂̃βn − β̃n;0)

L
−→ N(0,G).

Theorem 2 reveals that the asymptotic distribution of the pn-dimensional parametric estimator under BD depends on
the choice of the loss function Q only through the second derivative of its generating q-function.

3.2.1. Lower bound of the asymptotic covariance matrices

According to Theorem 2, the asymptotic covariance matrix of ̂̃βn is Vn = H−1n ΩnH
−1
n . Is there an optimal choice of the

q-function such that Vn achieves its lower bound? Proposition 1 manifests that the optimal q-function satisfies

q(2)(m(·)) = −
c

var(Yn | Xn = ·)
, for a constant c > 0. (3.3)

Proposition 1. If the q-function satisfies (3.3), then Vn achieves the lower bound(
E[1/var(Yn | Xn){F ′(m(Xn))}−2̃XñXTn]

)−1
.

Remark 1. Under a BD Q, condition (3.3) in the case of c = 1 is equivalent to

E
{
∂2Q (Yn,m(·))

∂m(·)2
| Xn = ·

}
= E

[{
∂Q (Yn,m(·))

∂m(·)

}2
| Xn = ·

]
,

which includes the conventional Bartlett identity [25] as a special case, when Q is the negative log-likelihood. Thus, we
call (3.3) the ‘‘generalized Bartlett identity’’. It is also seen that the quadratic loss satisfies (3.3) for homoscedastic regression
models even without knowing the error distribution.

3.2.2. Consistent asymptotic covariance matrix estimation
In many real applications, Vn is unknown. To conduct statistical inference for the true parameters β̃n;0, Vn needs to be

estimated. See the next section for the use of an estimated Vn in the proposed generalizedWald type test statistic. Typically,
the sandwich formula can be exploited to form an estimator of Vn by

V̂n = Ĥ−1n Ω̂nĤ
−1
n ,

where

Ω̂n =
1
n

n∑
i=1

q21(Yni; X̃
T
ni
̂̃
βn)̃XnĩX

T
ni, Ĥn =

1
n

n∑
i=1

q2(Yni; X̃Tni
̂̃
βn)̃XnĩX

T
ni.

Remark 2. In the particular case of homoscedastic regression models, applying the quadratic loss and the identity link is
natural, and hence, the direct use of 4σ̂ 2(n−1

∑n
i=1 X̃nĩX

T
ni), where σ̂

2
=
∑n
i=1(Yni− X̃Tni

̂̃
βn)

2/{n− (pn+ 1)}, is more efficient
than the above Ω̂n.

Proposition 2 below demonstrates that for any
√
n/pn-consistent estimator

̂̃
βn of β̃n;0, V̂n is a consistent estimator for Vn,

in the sense that An(V̂n − Vn)ATn
P
−→ 0 for any k× (pn + 1)matrix An satisfying AnATn → G (where k is any fixed integer). In

the special case that the dimension pn does not depend on n, the consistency of V̂n to Vn corresponds to V̂n − Vn
P
−→ 0, the

conventional notion of consistency.

Proposition 2 (Covariance Matrix Estimation). Assume Condition B in the Appendix. If p4n/n → 0 as n → ∞, then for any
√
n/pn-consistent estimator

̂̃
βn of β̃n;0, we have An(V̂n − Vn)A

T
n

P
−→ 0 for any k × (pn + 1) matrix An satisfying AnATn → G,

where G is a k× kmatrix and k is any fixed integer.
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4. Hypothesis testing via the minimum-BD estimator

This section conducts the hypothesis testing of the true parameters β̃n;0, and derives the asymptotic distributions of the
proposed test statistic.

4.1. Under the null hypothesis

We consider the hypothesis testing about β̃n;0 formulated as

H0 : Anβ̃n;0 = 0 versus H1 : Anβ̃n;0 6= 0, (4.1)

where An is a given k× (pn+ 1)matrix such that AnATn = Gwith G being a k× k positive-definite matrix. This form of linear
hypotheses allows one to simultaneously test whether a few variables are statistically significant by taking some specific
form of the matrix An, for example

An = [Ik, 0k,pn+1−k] (4.2)

yields AnATn = Ik.
We propose a generalized Wald type test statistic,

Wn = n(An
̂̃
βn)

T (AnV̂nATn)
−1(An

̂̃
βn),

where V̂n is defined in the previous subsection. Theorem 3 justifies that under the null,Wn would for large n be distributed
as χ2k .

Theorem 3 (Wald Type Test Under H0). Assume Condition C in the Appendix. If p5n/n→ 0 as n→ ∞, then under H0 in (4.1),

we have that Wn
L
−→ χ2k for any

√
n/pn-consistent estimator

̂̃
βn of β̃n;0.

It is noted that the test statistic of the form,

Λn = 2n

{
min

β̃n∈Rpn+1:Anβ̃n=0
`n(̃βn)− min

β̃n∈Rpn+1
`n(̃βn)

}
,

reduces to the classical likelihood-ratio test statistic, when the Q -loss in (2.2) is set to be the negative log-likelihood and
the dimension pn is fixed. In that case, it is well-known thatΛn, in general, follows an asymptotic χ2 distribution under the
null. Theorem 4 below explores the extent to which this Wilks type of result can feasibly be extended to Λn constructed
from the broad q-class of loss functions in the presence of a diverging number pn of parameters.

Theorem 4 (Likelihood-ratio Type Test Under H0). Assume (3.2) and Condition D in the Appendix. If p5n/n→ 0 as n→∞ and

the q-function satisfies (3.3), then under H0 in (4.1), we have that Λn/c
L
−→ χ2k for any

√
n/pn-consistent estimator

̂̃
βn of β̃n;0.

Curiously, the result in Theorem 4 indicates that the restrictive assumption (3.3) on the q-function limits the application
domain of the test statistic Λn. For instance, in the particular case of binary responses, it is clearly seen that the Bernoulli
deviance loss satisfies (3.3), but the quadratic loss and exponential loss violate (3.3). This limitation indeed reflects that under
the general framework of BD, the likelihood-ratio type test statisticΛnmay not be straightforwardly valid. Computationally,
Wn is also easier to use thanΛn. Thus, Section 4.2 below focuses onWn.

4.2. Under the alternative hypothesis

To appreciate the discriminating power ofWn in assessing the significance, the asymptotic power is analyzed. Theorem 5
demonstrates thatWn is consistent against all fixed deviations from the null model.

Theorem 5 (Wald Type Test Under H1). Assume Condition C in the Appendix and AnVnATn
P
−→ M where M is a k × k positive

definite matrix. If p5n/n → 0 as n → ∞, then under the fixed alternative H1 in (4.1) where ‖Anβ̃n;0‖ is independent of n, we
have that

n−1Wn ≥ λ−1max(M)‖Anβ̃n;0‖
2
+ oP(1)

for any
√
n/pn-consistent estimator

̂̃
βn of β̃n;0.
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The result in Theorem 5 manifests that under the fixed alternative H1,Wn
P
−→ +∞ at the rate n. HenceWn has the power

function tending to one against fixed alternatives.
Consider a sequence of contiguous alternatives, given by

H1n : Anβ̃n;0 = δnc{1+ o(1)}, (4.3)

where δn = n−1/2 and c = (c1, . . . , ck)T 6= 0 is fixed, namely,
√
nAnβ̃n;0 → c 6= 0 as n → ∞. Theorem 6 explores the

asymptotic distribution ofWn under the contiguous alternatives H1n.

Theorem 6 (Wald Type Test Under H1n). Assume Condition C in the Appendix and AnVnATn
P
−→ M where M is a k × k positive

definite matrix. If p5n/n → 0 as n → ∞, then under the contiguous alternative H1n in (4.3), we have that Wn
L
−→ χ2k (τ

2) for

any
√
n/pn-consistent estimator

̂̃
βn of β̃n;0, with the noncentrality parameter τ

2
= cTM−1c .

The result in Theorem 6 suggests thatWn has a non-trivial local power detecting contiguous alternatives approaching the
null at the rate n−1/2.

5. Consistency of the minimum-BD classifier

This section deals with the binary response variable Yn which only takes values either 0 or 1. In this case, the mean
regression function m(xn) in (2.1) becomes the class probability, P(Yn = 1 | Xn = xn). From the minimum-BD estimator
(β̂n,0, β̂

T
n)
T proposed in Section 2, we can construct the following minimum-BD classifier,

φ̂n(xn) = I{m̂(xn) > 1/2},

for a future input xn, where I(·) is an indicator function and m̂(xn) = F−1(β̂n,0 + xTn β̂n). Details on binary classification can
be found in [26].

5.1. Consistency

To emphasize the dependence of the dimension pn on n in our current setting, the optimal Bayes rule is denoted by
φn,B(xn) = I{m(xn) > 1/2}. For a test sample (Xon, Y

o
n ), which is an i.i.d. copy of samples in the training set Tn =

{(Xni, Yni), i = 1, . . . , n}, the optimal Bayes risk is then R(φn,B) = P{φn,B(Xon) 6= Y
o
n }. Meanwhile, the conditional risk of

the minimum-BD classification rule φ̂n is R(̂φn) = P {̂φn(Xon) 6= Y
o
n | Tn}. For φ̂n induced by the minimum-BD regression

estimation using a range of loss functions, Theorem 7 verifies the classification consistency preserved by φ̂n.

Theorem 7 (Consistency of the Minimum-BD Classifier). Assume Conditions A1 and A4 in the Appendix. Suppose that ‖̂̃βn −
β̃n;0‖ = OP(rn). If rn

√
pn = o(1), then the classification rule φ̂n constructed from

̂̃
βn is consistent in the sense that

E{R(̂φn)} − R(φn,B)→ 0 as n→∞.

Zhang [27] derived some non-asymptotic classification error bound, and obtained classification consistency under kernel
formulations. There, both cases require the use of convex loss functions, though a parametric form of P(Yn = 1 | Xn = xn)
is not assumed. As a comparison, Theorem 7 does not require convexity of the loss; the parametric structure is used for
illustration purposes only and can be relaxed.

6. Simulation studies

6.1. Inference of the HRF in fMRI over a single voxel

Typically, the analysis of the entire brain fMRI data is conducted by a two-step procedure: voxelwise statistical analysis
in the first step, followed bymultiple comparison in the second step. Since this paper aims at developing statistical inference
tools in the first step, illustration of single-voxel analysis is focused on.
We simulate an fMRI experiment with a single run and a single type of stimulus. In the simulation, n = 400, ti = i/n,

i = 1, . . . , n, and 1000 realizations are conducted. There are many different choices for pn to be made in different contexts.
For illustrative purpose only, we set pn = [9(n1/5.5 − 1)] + 1 which, on one hand, captures the recommended choice well
for analyzing the real brain data in [8], and on the other hand, fulfills the conditions for the asymptotic results. (I) The
time-varying stimuli are generated from independent Bernoulli trials such that P{s(ti) = 1} = 0.5. (II) Following [9], the
HRF is h(tj) = g1(1.5(j − 1))/a1 − g2(1.5(j − 1))/a2, j = 1, . . . , pn, where g1(t) = (t − 5.5)5 exp{−(t − 5.5)/0.9}
and g2(t) = 0.4(t − 5.5)12 exp{−(t − 5.5)/0.7}, a1 = max{g1(t)} and a2 = max{g2(t)}. (III) The drift function is
d(ti) = α0 + α1ti + α2t2i , i = 1, . . . , n, where (α0, α1, α2) = (−7.8737, 47.5836,−32.6734). (IV) The noise process
ε is the sum of independent noise processes ε1 and ε2 (see [28]); {ε1(ti)} are i.i.d. normal with mean zero and variance
0.52162, 0.36892, 0.26082 and 0.18442 respectively; ε2 is AR(1), i.e., ε2(ti) = ρε2(ti−1) + z(ti) with ρ = 0.638 and z(ti)
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Fig. 2. (Simulated fMRI series in one voxel.) Top panel: boxplots of ĥ(tj), j = 1, . . . , pn , where the solid line denotes the true h(·). Bottom panel: boxplots
of α̂k − αk , k = 0, 1, 2.

Fig. 3. (Simulated fMRI series in one voxel.) Empirical quantiles (on the y-axis) of test statisticsWn versus quantiles (on the x-axis) of the χ21 distribution.
Solid line: the 45° reference line. The null hypothesis is H0 : h(t9) = 0.

follows the normal distribution with mean zero and variance 0.52162, 0.36892, 0.26082 and 0.18442 respectively. These
choices give the noise lag-one auto-correlation equal to 0.4 and the signal-to-noise-ratio (SNR) about 1, 2, 4 and 8, where
SNR = variance(Sh)/variance(ε). Denote by cov(ε, ε) = σ 2Rn the error covariancematrix. Following (1.2), the transformed
model

R−1/2n y = R−1/2n T̃̃α+ R−1/2n Sh+ R−1/2n ε (6.1)

is used for estimating h, where the transformed errors are homoscedastic and un-correlated. First, we examine the
minimum-BD estimates of the HRF. Fig. 2 displays the boxplots of the HRF estimates ĥ(tj) along with boxplots of α̂k− αk, in
which the true Rn is used. Second, we perform the hypothesis testing for H0 : h(t9) = 0. The fMRI data are simulated in the
same way as above except that h = 0 in (1.2). Fig. 3 depicts the QQ plots of the (1st to 99th) percentiles ofWn versus those
of χ21 . Additionally, Fig. 4 gives the QQ plots for testing H0 : h(tj) = 0, j = 1, . . . , 18. Here 18 corresponds to k = 18 in (4.2).
It is observed that the Monte Carlo null distribution ofWn could be approximated well by the χ2 distribution, and that the
test under composite null models can be made as precise as the test for the simple null.
In practice, the true error covariance matrix is unknown and needs to be estimated. For computational expedience, we

adopt the first-order difference-basedmethod [29] for estimatingRn. The results using the estimatedRn are given in Figs. 5–7,
which compare well with counterparts using the true Rn in Figs. 2–4.



Author's personal copy

1582 C. Zhang / Journal of Multivariate Analysis 101 (2010) 1574–1593

Fig. 4. (Simulated fMRI series in one voxel.) Empirical quantiles (on the y-axis) of test statisticsWn versus quantiles (on the x-axis) of the χ218 distribution.
Solid line: the 45° reference line. The null hypothesis is H0 : h(tj) = 0, j = 1, . . . , 18.

Fig. 5. The captions are similar to those in Fig. 2, except that the estimated Rn is used in (6.1).

Fig. 6. The captions are similar to those in Fig. 3, except that the estimated Rn is used in (6.1).

6.2. Impact of BD on parametric regression and classification

To evaluate the impact of loss functions on parametric regression and classification, we conduct a simulation study. We
generate data with two-classes from the model,

Xn = (X1, . . . , Xpn)
T , {Xj}

pn
j=1

i.i.d.
∼ U(0, 1), Yn | Xn = xn ∼ Bernoulli {m(xn)},
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Fig. 7. The captions are similar to those in Fig. 4, except that the estimated Rn is used in (6.1).

Fig. 8. (Simulated Bernoulli responses.) Boxplots of β̂n,j−βn,j;0 , j = 0, 1, . . . , pn (from left to right in each panel). Panel (a): using the deviance loss; panel
(b): using the exponential loss.

where pn = [6(n1/5.5 − 1)] + 1,

F(m(xn)) = log
{
m(xn)
1−m(xn)

}
= x̃Tn β̃n;0, (6.2)

with true values of the parameters β̃n;0 = (−7.5, 4.5, 4.0, 3.5, 3.0, 0, . . . , 0)T . First, we generate 1000 sets of random

samples {(Xni, Yni)}ni=1 of size n = 1000 from the distribution of (Xn, Yn). The minimum-BD estimates
̂̃
βn are numerically

obtained. Fig. 8 compares the boxplots of β̂n,j − βn,j;0, j = 0, 1, . . . , pn, using the deviance loss and the exponential loss. It
is observed that the regression estimates under the deviance loss are slightly more centered around the true values with
smaller variabilities than those under the exponential loss. This lends support to Proposition 1, since the deviance loss
satisfies (3.3) whereas the exponential loss does not. From the regression point of view, the deviance loss does exhibit
superiority over the exponential loss in the finite-sample cases. Second, we check the agreement between the asymptotic
χ2 distribution and the finite sampling distribution ofWn under null hypotheses. For simplicity, consider

H0 : βn,6;0 = 0. (6.3)

For each set of the 1000 samplings above,Wn is calculated. The QQ plots of the (1st to 99th) percentiles ofWn against those
of the χ21 distribution are displayed in Fig. 9. We observe that the finite sampling null distribution ofWn agrees reasonably
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Fig. 9. (Simulated Bernoulli responses.) Empirical quantiles (on the y-axis) of test statisticsWn versus quantiles (on the x-axis) of the χ21 distribution. Solid
line: the 45° reference line. The null hypothesis (6.3) is considered.

Fig. 10. (Simulated Bernoulli responses.) Empirical quantiles (on the y-axis) of test statistics Wn versus quantiles (on the x-axis) of the χ27 distribution.
Solid line: the 45° reference line. The null hypothesis (6.4) is considered.

Table 1
Test misclassification rates using the deviance and exponential losses.

Loss Test misclassification rates

Deviance 0.244 0.203 0.204 0.208 0.193 0.185 0.214 0.202 0.226 0.206
Exponential 0.243 0.205 0.206 0.207 0.195 0.186 0.210 0.200 0.219 0.202

well with the χ2 distribution. This lends support to Theorem 3. Fig. 10 gives analogous results for testing

H0 : βn,j;0 = 0, j = 9, . . . , 15. (6.4)

Third, we examine the behaviors of classification procedures constructed under different loss functions in the two-class
classification. One single training set of size 1000 is used for estimating parameters βn,j;0, j = 0, 1, . . . , pn. Test samples are
randomly generated frommodel (6.2) of size 1000. A comparison of the test misclassification rates in 10 sets of test samples
is listed in Table 1. The results indicate that the difference from the deviance and exponential loss functions in regression
estimates has a negligible impact on the classification performance. This reinforces the consistency result of Theorem 7.

6.3. Minimum BD estimator for overdispersed count data

In this section, we assess the performance of the minimum-BD estimator when the likelihood of observations is not fully
specified. We consider the quasi-likelihood function Q , which relaxes the distributional assumption on a random variable
Y via the specification,

∂Q (Y , µ)/∂µ = (Y − µ)/V (µ),

in which it is assumed that var(Y | X = x) = σ 2V {E(Y | X = x)} for a nuisance parameter σ 2 > 0 and a known continuous
function V (·) > 0. It can be verified that the quasi-likelihood function belongs to BD with the generating q-function as
follows,

q(µ) =
∫ µ

−∞

s− µ
V (s)

ds.

We generate overdispersed Poisson counts Yni satisfying var(Yni | Xni = xni) = 2m(xni), i.e., V (x) = x and the
dispersion parameter equal to 2, via a Gamma–Poisson mixture. In the predictor Xni = (Xi1, Xi2, . . . , Xipn)

T , n = 1000,
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Fig. 11. (Simulated overdispersed Poisson responses.) Boxplots of β̂n,j − βn,j;0 , j = 0, 1, . . . , pn (from left to right).

Fig. 12. (Simulated overdispersed Poisson responses.) Empirical quantiles (on the y-axis) of test statistics Wn versus quantiles (on the x-axis) of the χ2
distribution. Solid line: the 45° reference line. Left panel: for the simple null hypothesis (6.3); right panel: for the composite null hypothesis (6.4).

pn = [10(n1/5.5−1)]+1, Xi1 = i/n, (Xi2, . . . , Xipn) are i.i.d. Unif [0, 1]. The link function is F(m(xn)) = log{m(xn)} = x̃Tn β̃n;0,
where β̃n;0 = (3, 4, 2, 0, . . . , 0)

T .
Fig. 11 gives the boxplots of β̂n,j − βn,j;0, j = 0, 1, . . . , pn, whereas Fig. 12 gives the QQ-plots of the test statisticsWn for

the simple and composite null hypotheses. The conclusions are similar to those in Figs. 8–10.

7. Applications to classification

For binary responses, to evaluate the predictive performance of the minimum-BD classifiers, we randomly split the data
into halves, one part for the training set and the other part for the testing set, and calculate the misclassification rate. We
replicate this randomsplitting 200 times and calculate the average ofmisclassification rates from these 200 runs. Throughout
the numerical work in this section, F is set to be the logit link unless otherwise stated.

7.1. Boston housing data

The dataset contains the response MEDV, the median value of owner-occupied homes (in $ 1000’s) in 506 US census
tracts of the Boston metropolitan area in 1970, along with several explanatory variables which might affect the housing
values (see [30]). The covariates CRIM (per capita crime rate by town), ZN (proportion of residential land zoned for lots
over 25,000 sq.ft.), INDUS (proportion of non-retail business acres per town), CHAS (Charles River dummy variable (=1 if
the tract bounds the river; 0 otherwise)), NOX (nitric oxide concentration (parts per 10 million)), RM (average number
of rooms per dwelling), AGE (proportion of owner-occupied units built prior to 1940), DIS (weighted distances to five
Boston employment centres),RAD (index of accessibility to radial highways), TAX (full-value property-tax rate per $10,000),
PTRATIO (pupil–teacher ratio by town), B (1000 (Bk − 0.63)2 where Bk is the proportion of blacks by town) and LSTAT (%
lower status of the population) are denoted by X1, . . . , X13 respectively.
To predict whether the median value of owner-occupied homes, denoted by Y , can be categorized as either ‘‘high’’ or

‘‘low’’ (compared with the average ofMEDV), the logistic regression model

logit{P(Y ∗ = 1 | X1 = x1, . . . , X13 = x13)} = β0 +
13∑
j=1

βjxj
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Table 2
Classification of Boston housing data.

Loss Average misclassification rate
Using all variables Using significant variables

Deviance 0.1346 0.1270
Exponential 0.1422 0.1339

is fitted to the data set, where Y ∗ equals 1 if Y exceeds the average of MEDV and 0 otherwise. Table 2 indicates that
the Average Misclassification Rate is similar under the deviance loss and the exponential loss. Interestingly, applying
the generalized Wald type test (at level 0.05) proposed in Section 4, variables DIS, RAD, TAX, PTRATIO, LSTAT each are
significant using the deviance loss, whereas variables RM, AGE, DIS, RAD, TAX, PTRATIO, LSTAT each are significant using
the exponential loss. Identifying a smaller subset of significant input variables appears to be more effective in reducing the
misclassification error.

8. Discussion

Stochastic modeling of large-scale datasets usually involves a varying-dimensional model space. This paper concerns
statistical regression estimation and inference when the dimension pn diverges with n, and the loss function Q belongs
to a wide class of BD, particularly useful and flexible in situations where the full likelihood is unknown or incompletely
specified. Our study reveals that undermild regularity conditions on pn and Q , the asymptotic distribution of theminimum-
BD estimator relies on the loss function only through the second derivative of its generating q-function. If q satisfies
the ‘‘generalized Bartlett identity’’, then the asymptotic covariance matrix of the estimator achieves the lower bound. The
inference procedure for the minimum-BD estimator is also carefully developed. Moreover, we show that though the choice
of loss function affects the regression estimation procedure, it has an asymptotically relatively negligible impact on the
classification’s performance.
A few issues need to be discussed. First, if the loss is quadratic and the link is the identity link, then the rate of pn can be

relaxed from p4n/n = o(1) or p
5
n/n = o(1) to p

3
n/n = o(1)without violating the asymptotic results in the paper. Second, for

many high-dimensional models, the number of relevant variables is far fewer than the sample size, i.e. the signal is ‘‘sparse’’.
In this case, it is more efficient to carry out variable selection and dimension reduction techniques, followed by statistical
inference developed in this paper for models with the subset of pn contributive variables. Third, the penalized minimum-
BD estimators and classifiers for models with dimension pn of the order n or larger are potentially effective for selecting
important variables, and we plan to report the details in future work.
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Appendix. Proofs of main results

For a matrix M , its eigenvalues, minimum eigenvalue, maximum eigenvalue and trace are labeled by λj(M), λmin(M),
λmax(M) and tr(M) respectively. Let ‖M‖ = sup{‖Mx‖ : ‖x‖ = 1} = {λmax(MTM)}1/2 be the matrix L2 norm, which for
symmetric matrices reduces to ‖M‖ = maxj{|λj(M)|}. The Frobenius norm of a matrixM is ‖M‖F = {tr(MTM)}1/2. See [31]
for details. Throughout the proof, C is used as a generic finite constant.
We first impose some technical conditions, which are not the weakest possible but facilitate the technical derivations.

Condition A:

A1. supn≥1 ‖β̃n;0‖1 <∞ and supn≥1 ‖Xn‖∞ <∞.
A2. E (̃XñXTn) exists and is nonsingular.
A3. supn≥1 E(Y 2n ) <∞.
A4. There is a large enough open subset of Rpn+1 which contains the true parameter point β̃n;0, such that F−1(̃XTn β̃n) is
bounded for all β̃n in the subset.

A5. The eigenvalues of Hn = −E[q(2)(m(Xn))/{F (1)(m(Xn))}2̃XñXTn] are uniformly bounded away from 0.
A6. q(4)(·) is continuous, and q(2)(·) < 0.
A7. F(·) is a bijection, F (3)(·) is continuous, and F (1)(·) 6= 0.

Condition B: is identical to Condition A except that A3 and A5 are replaced by B3 and B5 below respectively.

B3. There exists some δ ≥ 1/2 such that supn≥1 E(|Yn|2+δ) <∞.
B5. The eigenvalues ofΩn and Hn are uniformly bounded away from 0. Also, ‖H−1n Ωn‖ is bounded away from∞.



Author's personal copy

C. Zhang / Journal of Multivariate Analysis 101 (2010) 1574–1593 1587

Condition C: is identical to Condition B except that B4 is replaced by C4 below.

C4. There is a large enough open subset of Rpn+1 which contains the true parameter point β̃n;0, such that Anβ̃n;0 = 0, and
F−1(̃XTn β̃n) is bounded for all β̃n in the subset.

Condition D: is identical to Condition C except that C5 is replaced by D5 below.

D5. The eigenvalues of Hn are uniformly bounded away from 0. Also, ‖H
−1/2
n Ω

1/2
n ‖ is bounded away from∞.

Proof of Theorem 1

Let rn = o(1) (whose exact order will be chosen later) and ũn = (u0, u1, . . . , upn)T ∈ Rpn+1. Following the idea of the
proof in [18], it suffices to show that for any given ε > 0, there is a sufficiently large constant Cε such that, for large n we
have

P
{
inf

‖̃un‖=Cε
`n(̃βn;0 + rnũn) > `n(̃βn;0)

}
≥ 1− ε. (A.1)

This implies thatwith probability at least 1−ε, there exists a localminimizer̂̃βn of `n(̃βn) in the ball {̃βn;0+rnũn : ‖̃un‖ ≤ Cε}
such that ‖̂̃βn − β̃n;0‖ = OP(rn). To show (A.1), consider

`n(̃βn;0 + rnũn)− `n(̃βn;0) =
1
n

n∑
i=1

{Q (Yni, F−1(̃XTni(̃βn;0 + rnũn)))− Q (Yni, F
−1(̃XTniβ̃n;0))} ≡ I1, (A.2)

where ‖̃un‖ = Cε .
Then from (3.1), for µ = F−1(θ),

q1(y; θ) = (y− µ)q(2)(µ)/F (1)(µ),

q2(y; θ) = −q(2)(µ)/{F (1)(µ)}2 + (y− µ)A1(µ), (A.3)
q3(y; θ) ≡ A2(µ)+ (y− µ)A3(µ),

where A1(µ) = {q(3)F (1) − q(2)F (2)}/{F (1)}3(µ), A2(µ) = {−2q(3)F (1) + 3q(2)F (2)}/{F (1)}4(µ) and A3(µ) = [q(4){F (1)}2 −
3q(3)F (1)F (2) − q(2)F (1)F (3) + 3q(2){F (2)}2]/{F (1)}5(µ). By Taylor’s expansion,

I1 = I1,1 + I1,2 + I1,3, (A.4)

where

I1,1 =
rn
n

n∑
i=1

q1(Yni; X̃Tniβ̃n;0)̃X
T
nĩun,

I1,2 =
r2n
2n

n∑
i=1

q2(Yni; X̃Tniβ̃n;0)(̃X
T
nĩun)

2,

I1,3 =
r3n
6n

n∑
i=1

q3(Yni; X̃Tniβ̃
∗

n)(̃X
T
nĩun)

3

for β̃
∗

n located between β̃n;0 and β̃n;0 + rnũn. Hence

|I1,1| ≤ rn

∥∥∥∥∥1n
n∑
i=1

q1(Yni; X̃Tniβ̃n;0)̃Xni

∥∥∥∥∥ ‖̃un‖ = OP(rn√pn/n)‖̃un‖. (A.5)

For I1,2 in (A.4), Eq. (A.3) gives that

I1,2 = −
r2n
2n

n∑
i=1

q(2)(m(Xni))
{F (1)(m(Xni))}2

(̃XTnĩun)
2
+
r2n
2n

n∑
i=1

{Yni −m(Xni)}A1(m(Xni))(̃XTnĩun)
2

≡ I1,2,1 + I1,2,2.

Note that∥∥∥∥∥1n
n∑
i=1

q(2)(m(Xni))
{F (1)(m(Xni))}2

X̃nĩXTni − E
[
q(2)(m(Xn))
{F (1)(m(Xn))}2

X̃ñXTn

]∥∥∥∥∥
F

= OP(pn/
√
n).
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Thus

I1,2,1 = −
r2n
2
ũTnE

[
q(2)(m(Xn))
{F (1)(m(Xn))}2

X̃ñXTn

]
ũn + r2nOP(pn/

√
n)‖̃un‖2.

Meanwhile, we have

|I1,2,2| ≤ r2n

∥∥∥∥∥1n
n∑
i=1

{Yni −m(Xni)}A1(m(Xni))̃XnĩXTni

∥∥∥∥∥
F

‖̃un‖2 = r2nOP(pn/
√
n)‖̃un‖2.

Thus,

I1,2 = −
r2n
2
ũTnE

[
q(2)(m(Xn))
{F (1)(m(Xn))}2

X̃ñXTn

]
ũn + OP(r2npn/

√
n)‖̃un‖2.

For I1,3 in (A.4), we observe that

|I1,3| ≤ r3n
1
n

n∑
i=1

|q3(Yni; X̃Tniβ̃
∗

n)||̃X
T
nĩun|

3
= OP(r3np

3/2
n )‖̃un‖3,

which follows from Conditions A1 and A4.
By setting rn =

√
pn/n, using (A.5) and p4n/n → 0, we can choose Cε large enough such that both I1,1 and I1,3 are

dominated by the first term of I1,2, which is positive by Condition A5. This in turn implies (A.1). �

Proof of Theorem 2

Notice the estimating equations ∂`n (̃βn)
∂β̃n
|̃
βn=

̂̃
βn
= 0, since ̂̃βn is a local minimizer of `n(̃βn). Taylor’s expansion applied to

the left side of the estimating equations yields

0 =

{
1
n

n∑
i=1

q1(Yni; X̃Tniβ̃n;0)̃Xni

}
+

{
1
n

n∑
i=1

q2(Yni; X̃Tniβ̃n;0)̃XnĩX
T
ni

}
(̂̃βn − β̃n;0)

+
1
2n

n∑
i=1

q3(Yni; X̃Tniβ̃
∗

n){̃X
T
ni (̂̃βn − β̃n;0)}

2̃Xni

≡

{
1
n

n∑
i=1

q1(Yni; X̃Tniβ̃n;0)̃Xni

}
+ K2 (̂̃βn − β̃n;0)+ K3, (A.6)

where β̃
∗

n lies between β̃n;0 and
̂̃
βn. Below, we will show

‖K2 − Hn‖ = OP(pn/
√
n), (A.7)

‖K3‖ = OP(p5/2n /n). (A.8)

First, to show (A.7), note that K2 − Hn ≡ L1, where

L1 = −

(
1
n

n∑
i=1

q(2)(m(Xni))
{F (1)(m(Xni))}2

X̃TnĩX
T
ni − E

[
q(2)(m(Xn))
{F (1)(m(Xn))}2

X̃ñXTn

])
+
1
n

n∑
i=1

{Yni −m(Xni)}A1(m(Xni))̃XnĩXTni

≡ L1,1 + L1,2.

Similar arguments for the proof of Theorem 1 give ‖L1,1‖ = OP(pn/
√
n) and ‖L1,2‖ = OP(pn/

√
n). Thus ‖L1‖ = OP(pn/

√
n).

Second, ‖K3‖ ≤ OP(p
3/2
n )OP(pn/n) completes (A.8).

Third, by (A.6)–(A.8) and ‖̂̃βn − β̃n;0‖ = OP(
√
pn/n), we see that

Hn (̂̃βn − β̃n;0) = −
1
n

n∑
i=1

q1(Yni; X̃Tniβ̃n;0)̃Xni + un, (A.9)

where ‖un‖ = OP(p
5/2
n /n). Note that by Condition B5,

‖
√
nAnΩ−1/2n un‖ ≤

√
n‖An‖Fλmax(Ω−1/2n )‖un‖ = OP(p5/2n /

√
n) = oP(1).

Thus
√
nAnΩ−1/2n Hn (̂̃βn − β̃n;0) = −

1
√
n
AnΩ−1/2n

n∑
i=1

q1(Yni; X̃Tniβ̃n;0)̃Xni + oP(1).
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To complete proving Theorem 2, we apply the Lindeberg–Feller central limit theorem [21] to
∑n
i=1 Zni, where Zni =

−n−1/2AnΩ
−1/2
n q1(Yni; X̃Tniβ̃n;0)̃Xni. It suffices to check (I)

∑n
i=1 cov(Zni) → G and (II)

∑n
i=1 E(‖Zni‖

2+δ) = o(1) for some
δ > 0. Condition (I) follows from var{q1(Yn; X̃Tn β̃n;0)̃Xn} = Ωn. To verify condition (II), notice that

E(‖Zn‖2+δ) ≤ n−(2+δ)/2E

{
‖An‖2+δF

[
‖Ω−1/2n X̃n‖

∣∣∣∣ q(2)(m(Xn))F (1)(m(Xn))
{Yn −m(Xn)}

∣∣∣∣]2+δ
}

≤ Cn−(2+δ)/2E[{λ−1/2min (Ωn)‖̃Xn‖}
2+δ
|Yn −m(Xn)|2+δ]

≤ Cp(2+δ)/2n n−(2+δ)/2E{|Yn −m(Xn)|2+δ}

≤ 2Cp(2+δ)/2n n−(2+δ)/2[E(|Yn|2+δ)+ E{|m(Xn)|2+δ}]

= O{(pn/n)(2+δ)/2}.

Thus, we get
∑n
i=1 E(‖Zni‖

2+δ) ≤ O{n(pn/n)(2+δ)/2} = O{p(2+δ)/2n /nδ/2}, which is o(1) by Condition B3. This verifies
Condition (II). �

Proof of Proposition 1

The proof follows from the result: ‘‘For appropriately dimensioned randommatrices A and B, if E(BBT ) is positive definite,
then E(AAT ) ≥ E(ABT ){E(BBT )}−1E(BAT ). Moreover, if B = cA for a constant c 6= 0, then the inequality becomes an
equality’’. �

Proof of Proposition 2

Note ‖An(V̂n − Vn)ATn‖ ≤ ‖V̂n − Vn‖ ‖An‖
2
F . Since ‖An‖

2
F → tr(G), it suffices to prove that ‖V̂n − Vn‖ = oP(1).

First, we prove ‖Ĥn − Hn‖ = oP(1). Note that

Ĥn − Hn =
1
n

n∑
i=1

{q2(Yni; X̃Tni
̂̃
βn)− q2(Yni; X̃

T
niβ̃n;0)}̃XnĩX

T
ni +

{
1
n

n∑
i=1

q2(Yni; X̃Tniβ̃n;0)̃XnĩX
T
ni − Hn

}
≡ I1 + I2.

From the proof of (A.7) in Theorem 2, we know that ‖I2‖ = OP(pn/
√
n) = oP(1). We only need to consider the term I1,

I1 = −
1
n

n∑
i=1

[
q(2)(m̂(Xni))
{F (1)(m̂(Xni))}2

−
q(2)(m(Xni))
{F (1)(m(Xni))}2

]
X̃nĩXTni

+
1
n

n∑
i=1

[{Yni − m̂(Xni)}A1(m̂(Xni))− {Yni −m(Xni)}A1(m(Xni))]̃XnĩXTni

≡ I1,1 + I1,2.

Let g(·) = q(2)(·)/{F (1)(·)}2. By the assumptions, g(·) is differentiable. Thus

1
n

n∑
i=1

|g(m̂(Xni))− g(m(Xni))| =
1
n

n∑
i=1

|(g ◦ F−1)′(̃XTniβ̃
∗

n)X
T
ni (̂̃βn − β̃n;0)|

= OP(1)OP(
√
pn)OP(

√
pn/n) = OP(pn/

√
n),

where β̃
∗

n is between
̂̃
βn and β̃n;0. Thus

‖I1,1‖ ≤

∥∥∥∥∥1n
n∑
i=1

|g(m̂(Xni))− g(m(Xni))|̃XnĩXTni

∥∥∥∥∥
F

= OP(pn/
√
n)OP(pn) = OP(p2n/

√
n).

Similar arguments give ‖I1,2‖ = OP(p2n/
√
n). Thus ‖I1‖ = OP(p2n/

√
n) = oP(1).

Second, we show ‖Ω̂n −Ωn‖ = oP(1). It is easy to see that

Ω̂n −Ωn =
1
n

n∑
i=1

{q21(Yni; X̃
T
ni
̂̃
βn)− q

2
1(Yni; X̃

T
niβ̃n;0)}̃XnĩX

T
ni +

{
1
n

n∑
i=1

q21(Yni; X̃
T
niβ̃n;0)̃XnĩX

T
ni −Ωn

}
= ∆1,1 +∆1,2,

where ‖∆1,1‖ = OP(p2n/
√
n) and ‖∆1,2‖ = OP(pn/

√
n). We observe that ‖Ω̂n −Ωn‖ = OP(p2n/

√
n) = oP(1).
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Third, we show ‖V̂n − Vn‖ = oP(1). Note V̂n − Vn = L1 + L2 + L3, where L1 = Ĥ−1n (Ω̂n − Ωn)Ĥ
−1
n , L2 = Ĥ−1n (Hn −

Ĥn)H−1n ΩnĤ
−1
n and L3 = H−1n ΩnĤ

−1
n (Hn − Ĥn)H−1n . By Assumption B5, it is straightforward to verify that ‖H

−1
n ‖ ≤ O(1),

‖Ĥ−1n ‖ ≤ OP(1) and ‖H
−1
n Ωn‖ ≤ O(1). Since ‖L1‖ ≤ ‖Ĥ

−1
n ‖ ‖Ω̂n − Ωn‖ ‖Ĥ

−1
n ‖, we conclude ‖L1‖ = oP(1), and similarly

‖L2‖ = oP(1) and ‖L3‖ = oP(1). Hence V̂n − Vn = oP(1). �

Proof of Theorem 3

Before showing Theorem 3, Lemma 1 is needed.

Lemma 1. Assume the conditions of Theorem 3. Then

̂̃
βn − β̃n;0 = −

1
n
H−1n

n∑
i=1

q1(Yni; X̃Tniβ̃n;0)̃Xni + oP(n
−1/2),

√
n(AnĤ−1n Ω̂nĤ

−1
n A

T
n)
−1/2An (̂̃βn − β̃n;0)

L
−→ N(0, Ik).

Proof. Following (A.9) in the proof of Theorem 2, we observe that ‖un‖ = OP(p
5/2
n /n) = oP(n−1/2). Condition B5 completes

the proof for the first part.
To show the second part, denote Un = AnH−1n ΩnH

−1
n A

T
n = AnVnA

T
n and Ûn = AnĤ

−1
n Ω̂nĤ

−1
n A

T
n = AnV̂nA

T
n . Notice that the

eigenvalues of Vn are uniformly bounded away from 0. So are the eigenvalues of Un. From the first part, we see that

An (̂̃βn − β̃n;0) = −
1
n
AnH−1n

n∑
i=1

q1(Yni; X̃Tniβ̃n;0)̃Xni + oP(n
−1/2).

It follows that
√
nU−1/2n An (̂̃βn − β̃n;0) =

∑n
i=1 Zni + oP(1), where Zni = −n

−1/2U−1/2n AnH−1n q1(Yni; X̃
T
niβ̃n;0)̃Xni. To show∑n

i=1 Zni
L
−→ N(0, Ik), similar to the proof for Theorem 2, we check (III)

∑n
i=1 cov(Zni)→ Ik and (IV)

∑n
i=1 E(‖Zni‖

2+δ) =

o(1) for some δ > 0. Condition (III) is straightforward since
∑n
i=1 cov(Zni) = U

−1/2
n UnU

−1/2
n = Ik. To check condition (IV),

we see that E(‖Zn‖2+δ) = O{(pn/n)(2+δ)/2}. This and Condition B3 yield
∑n
i=1 E(‖Zni‖

2+δ) ≤ O{p(2+δ)/2n /nδ/2} = o(1). Hence

√
nU−1/2n An (̂̃βn − β̃n;0)

L
−→ N(0, Ik). (A.10)

From the proof of Proposition 2, it can be concluded that ‖Ûn − Un‖ = oP(1) and that the eigenvalues of Ûn are uniformly
bounded away from 0 and∞with a probability tending to one. Consequently,

‖Û−1/2n U1/2n − Ik‖ = oP(1). (A.11)

Combining (A.10) and (A.11) and Slutsky’s Theorem completes the proof that
√
nÛ−1/2n An (̂̃βn − β̃n;0)

L
−→ N(0, Ik). �

We now show Theorem 3, which follows directly from H0 in (4.1) and the second part of Lemma 1. �

Proof of Theorem 4

For the matrix An in (4.1), there exists a (pn + 1 − k) × (pn + 1) matrix Bn satisfying BnBTn = Ipn+1−k and AnBTn = 0.
Therefore, Anβ̃n = 0 is equivalent to β̃n = B

T
nγn, where γn is a (pn + 1 − k) × 1 vector. Thus under H0 in (4.1), we have

β̃n;0 = B
T
nγn;0. Thenminimizing `n(̃βn) subject to Anβ̃n = 0 is equivalent tominimizing `n(BTnγn)with respect to γn, and we

denote by γ̂n theminimizer. Note that under (3.2),
̂̃
βn is the uniqueminimizer of `n(̃βn). HenceΛn = 2n{`n(B

T
n γ̂n)−`n (̂̃βn)}.

Before showing Theorem 4, we need Lemma 2.

Lemma 2. Assume conditions of Theorem 4. Then under H0 in (4.1), we have that BTn (̂γn−γn;0) = −n
−1BTn(BnHnB

T
n)
−1Bn

∑n
i=1

q1(Yni; X̃Tniβ̃n;0)̃Xni + oP(n
−1/2), and 2n{`n(BTn γ̂n)− `n (̂̃βn)} = n(B

T
n γ̂n −

̂̃
βn)

THn(BTn γ̂n −
̂̃
βn)+ oP(1).

Proof. To obtain the first part, following the proof of (A.9) in Theorem 2, we have a similar expression for γ̂n,

BnHnBTn (̂γn − γn;0) = −
1
n
Bn

n∑
i=1

q1(Yni; X̃Tniβ̃n;0)̃Xni +wn,

with ‖wn‖ = oP(n−1/2). As a result,

BTn (̂γn − γn;0) = −
1
n
BTn(BnHnB

T
n)
−1Bn

n∑
i=1

q1(Yni; X̃Tniβ̃n;0)̃Xni + B
T
n(BnHnB

T
n)
−1wn.
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We notice that

‖BTn(BnHnB
T
n)
−1wn‖ ≤ ‖(BnHnBTn)

−1
‖ ‖wn‖ ≤ ‖wn‖/λmin(Hn) = oP(n−1/2),

in which the fact λmin(BnHnBTn) ≥ λmin(Hn) is used.
The proof of the second part proceed in three steps. In Step 1,we use the following Taylor expansion for `n(BTn γ̂n)−`n (̂̃βn),

`n(BTn γ̂n)− `n (̂̃βn) =
1
2n

n∑
i=1

q2(Yni; X̃Tni
̂̃
βn){̃X

T
ni(B

T
n γ̂n −

̂̃
βn)}

2
+
1
6n

n∑
i=1

q3(Yni; X̃Tniβ̃
∗

n){̃X
T
ni(B

T
n γ̂n −

̂̃
βn)}

3

≡ I1 + I2,

where β̃
∗

n lies between
̂̃
βn and B

T
n γ̂n.

In Step 2, we analyze the stochastic order of BTn γ̂n −
̂̃
βn. For a matrix X whose column vectors are linearly independent,

set PX = X(XTX)−1XT . Define Hn = Ipn+1− PH1/2n BTn
. ThenH−1n −B

T
n(BnHnB

T
n)
−1Bn = H−1/2n HnH

−1/2
n . By Lemma 1 and the first

part of Lemma 2, we see immediately that

BTn γ̂n −
̂̃
βn = H−1/2n HnH−1/2n

(
1
n

n∑
i=1

q1,ĩXni

)
+ oP(n−1/2), (A.12)

where q1,i = q1(Yni; X̃Tniβ̃n;0). Note that ‖H
−1/2
n HnH

−1/2
n (n−1

∑n
i=1 q1,ĩXni)‖ = OP(1/

√
n). This gives

‖BTn γ̂n −
̂̃
βn‖ = OP(1/

√
n). (A.13)

In Step 3, we conclude from (A.13) that I2 = OP{(pn/n)3/2} = oP(1/n). Then 2n{`n(BTn γ̂n) − `n(̂βn, 0)} = 2nI1 + oP(1).
Similar to the proof of Proposition 2, it is straightforward to see that

2nI1 = n(BTn γ̂n −
̂̃
βn)

T

{
1
n

n∑
i=1

q2(Yni; X̃Tni
̂̃
βn)̃XnĩX

T
ni

}
(BTn γ̂n −

̂̃
βn)

= n(BTn γ̂n −
̂̃
βn)

T

{
1
n

n∑
i=1

q2(Yni; X̃Tniβ̃n;0)̃XnĩX
T
ni

}
(BTn γ̂n −

̂̃
βn)+ oP(1)

= n(BTn γ̂n −
̂̃
βn)

TE{q2(Yn; X̃Tn β̃n;0)̃XñX
T
n}(B

T
n γ̂n −

̂̃
βn)+ oP(1)

= n(BTn γ̂n −
̂̃
βn)

THn(BTn γ̂n −
̂̃
βn)+ oP(1).

Then the second part of Lemma 2 is proved. �

We now show Theorem 4. A direct use of Lemma 2 and (A.12) leads to

2n{`n(BTn γ̂n)− `n (̂̃βn)} =

(
1
√
n
H−1/2n

n∑
i=1

q1,ĩXni

)T
Hn

(
1
√
n
H−1/2n

n∑
i=1

q1,ĩXni

)
+ oP(1).

Since Hn is idempotent of rank k, it can be written as Hn = CTn Cn, where Cn is a k× (pn+1)matrix satisfying CnC
T
n = Ik. Then

2n{`n(BTn γ̂n)− `n (̂̃βn)} =

(
1
√
n
CnH−1/2n

n∑
i=1

q1,ĩXni

)T (
1
√
n
CnH−1/2n

n∑
i=1

q1,ĩXni

)
+ oP(1).

When the q-function satisfies (3.3), Hn = Ωn/c. In this case, similar arguments for Theorem 2 yield

1
√
n
CnH−1/2n

n∑
i=1

q1(Yni; X̃Tniβ̃n;0)̃Xni
L
−→ N(0, cIk),

which completes the proof. �

Proof of Theorem 5

Note thatWn can be decomposed into 3 additive terms,

I1 = n
{
An (̂̃βn − β̃n;0)

}T
(AnV̂nATn)

−1
{
An (̂̃βn − β̃n;0)

}
,

I2 = 2n(Anβ̃n;0)
T (AnV̂nATn)

−1
{
An (̂̃βn − β̃n;0)

}
,

I3 = n(Anβ̃n;0)
T (AnV̂nATn)

−1(Anβ̃n;0).
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We observe that I1
L
−→ χ2k following the second part of Lemma 1; I3 = n(Anβ̃n;0)

TM−1(Anβ̃n;0){1+oP(1)} by Proposition 2;
I2 = OP(

√
n) by Cauchy–Schwartz inequality. Thus

n−1I3 ≥ λmin(M−1)‖Anβ̃n;0‖
2
{1+ oP(1)} = λ−1max(M)‖Anβ̃n;0‖

2
+ oP(1).

These complete the proof forWn. �

Proof of Theorem 6

Following the second part of Lemma 1, we observe that
√
n(AnV̂nATn)

−1/2(An
̂̃
βn)

L
−→ N(M−1/2c, Ik), which completes the

proof. �

Proof of Theorem 7

We first need to show Lemma 3.

Lemma 3. Suppose that (Xon, Y
o
n ) follows the distribution of (Xn, Yn) and is independent of the training set Tn. If Q is a BD, then

E{Q(Y on , m̂(X
o
n))} = E{Q(Y

o
n ,m(X

o
n))} + E{Q(m(X

o
n), m̂(X

o
n))}.

Proof. Let q be the generating function of Q. Then

Q(Y on , m̂(X
o
n)) = [q(m(X

o
n))− E{q(Y

o
n ) | Tn, X

o
n}] + [E{q(Y

o
n ) | Tn, X

o
n}

− q(Y on )] − q(m(Xon))+ q(m̂(Xon))+ {Y
o
n − m̂(X

o
n)}q

′(m̂(Xon)). (A.14)

Since (Xon, Y
o
n ) is independent of Tn, we deduce from [32, Corollary 3, p. 223] that

E{q(Y on ) | Tn, X
o
n} = E{q(Y

o
n ) | X

o
n}. (A.15)

Similarly,

E{Y onq
′(m̂(Xon)) | Tn, X

o
n} = E(Y

o
n | X

o
n)q
′(m̂(Xon)) = m(X

o
n)q
′(m̂(Xon)). (A.16)

Applying (A.15) and (A.16) to (A.14) results in

E{Q(Y on , m̂(X
o
n)) | Tn, X

o
n} = E{Q(Y

o
n ,m(X

o
n)) | X

o
n} + Q(m(Xon), m̂(X

o
n))

and thus the conclusion. �

Now show Theorem 7. Setting Q in Lemma 3 to be the misclassification loss gives

1/2[E{R(̂φn)} − R(φn,B)] ≤ E[|m(Xon)− 0.5|I{m(X
o
n) ≤ 0.5, m̂(X

o
n) > 0.5}]

+ E[|m(Xon)− 0.5|I{m(X
o
n) > 0.5, m̂(X

o
n) ≤ 0.5}]

= I1 + I2.

For any ε > 0, it follows that

I1 = E[|m(Xon)− 0.5|I{m(X
o
n) < 0.5− ε, m̂(X

o
n) > 0.5}]

+ E[|m(Xon)− 0.5|I{0.5− ε ≤ m(X
o
n) ≤ 0.5, m̂(X

o
n) > 0.5}]

≤ P{|m̂(Xon)−m(X
o
n)| > ε} + ε

and similarly, I2 ≤ ε + P{|m̂(Xon)−m(X
o
n)| ≥ ε}. Recall that

|m̂(Xon)−m(X
o
n)| = |F

−1(X̃on
T̂̃
βn)− F

−1(X̃on
T
β̃n;0)| ≤ |(F

−1)′(X̃on
T
β̃
∗

n)|‖X
o
n‖ ‖

̂̃
βn − β̃n;0‖,

for some β̃
∗

n between β̃n;0 and
̂̃
βn, where X̃on = (1, X

o
n
T )T . By Condition A4, we conclude that (F−1)′(X̃on

T
β̃
∗

n) = OP(1). This

along with ‖̂̃βn − β̃n;0‖ = OP(1) and ‖̃X
o
n‖ = OP(

√
pn) implies that |m̂(Xon) − m(X

o
n)| = OP(rn

√
pn) = oP(1). Therefore

I1 → 0 and I2 → 0, which completes the proof. �
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