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We propose a Bayesian procedure to sample from the distribution of the multi-dimensional effective
dose. This effective dose is the set of dose levels of multiple predictive factors that produce a binary
response with a fixed probability. We apply our algorithms to parametric and semiparametric logistics
regression models, respectively. The graphical display of random samples obtained through Markov
chain Monte Carlo can provide some insight into the predictive distribution.

Keywords: Posterior distribution; Multi-dimensional effective dose; Multivariate joint distribution;
Simulating conditional distribution

1. Introduction

The methodology using the Bayesian paradigm has advanced tremendously in modern
statistical analysis. Successful application of Bayesian data analysis have appeared in many
scientific fields, including business, epidemiology, genetics, geography, sociology, psycho-
metrics and economics [1]. Development of computational methods such as Markov chain
Monte Carlo (MCMC) makes it feasible to evaluate complicated posterior distribution for
model parameters in a relatively short time. We employ such an idea in this article to solve an
underappreciated statistical problem.

Suppose in a dose response experiment we have multiple predictors, say X, ..., Xz, and
observe the binary response Y of subjects under different combinations of values of these
predictors. We are interested in finding the possible values of X, ..., X; such that they
generate the outcome Y at a given probability p. We call the set of all joint values of X1, ..., X
a multi-dimensional effective dose since such a parameter has been conventionally called
effective dose 100p (ED100p) in a bioassay problem when £ = 1 [2]. Whereas researchers
have worked out useful solutions for the one-dimensional effective dose problem, few of
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them have provided adequate operational details for conducting statistical inference about the
multi-dimensional effective dose (k > 1).

Frequentist solutions of the estimation and confidence regions of multi-dimensional effec-
tive dose have recently been proposed by Li er al. [3] under a logistic regression model,
motivated by analyzing the risk of decompression sickness (DCS) among deep sea divers. In
this article, we treat the same problem from a Bayesian perspective and contribute an alterna-
tive approach to determine multi-dimensional effective dose. Without deriving any asymptotic
approximation formula, we obtain numerical solutions straightforwardly from computation
and simulation.

As is well known to statisticians, in a Bayesian statistics framework, model parameters are
treated as random variables, living in suitably defined probability spaces. Therefore, we treat
the multi-dimensional effective dose as a random vector with a probability distribution. We
thus aim at finding its posterior distribution given the observed sample and prior information.
Such a probability distribution is called a prediction distribution in Bayesian analysis and
provides the basis for making inferences. We propose algorithms to simulate the conditional
distribution of each univariate component as well as the joint distribution of the multivariate
under the logistic regression model.

Early work on estimation of effective dose using a Bayesian approach includes Freeman [4]
and Racine et al. [5]. Freeman [4] introduced Bayesian decision theory in the sequential design
of experiments for estimating median lethal dose (ED50). The instructive account of Racine
et al. [5] exemplified how to make inference about the ED50 from its posterior distribution
and compared the Bayesian solution with the frequentist solution. Nonetheless, both articles
only considered limited computation methods which might not be fully representative of
current Bayesian techniques available for all kinds of scientific problems. Moreover, most
of the previous work concentrated on one-dimensional effective dose and were not directly
generalizable to multi-dimensional effective dose. Our article thus has a two-fold advantage:
first, to update the knowledge of Bayesian treatment on one type of problems in bioassay
experiments, and second, to extend the posterior analysis to multi-dimensional effective dose.

We make one further attempt to study a semiparametric model with Bayesian methods in
this article as we believe that sometimes the biological mechanism between dose and response
might be too complicated to follow a simple parameterized linear form. The theoretical prop-
erties of such a model have been discussed in other articles [6, 7]. We propose a method to
simulate the conditional posterior distribution for multi-dimensional effective dose by using
a pseudo posterior approach.

In section 2, we describe the general methods and algorithms for simulating the prediction
distribution of multi-dimensional effective dose under parametric and semiparametric regres-
sion models, respectively. In section 3, we adapt our computing procedure to a real world
example about the risk analysis of DCS. We conclude in section 4 with discussions of merits
and limitations of our methods and indicate some future research direction.

2. Methods and algorithms

2.1 Case I: Parametric logistic regression model

2.1.1 Posterior distribution. A binary logistic regression model for independent obser-
vations {(Y;, X1, ..., Xp) 1 i =1,...,n}1is

=X7p*, i=1,...,n, ey
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where p; = E(Y; X)), XF = (1, XD =1, Xu. Xoiy ..., X)) and B* = (Bo, 1T =
Bo, Bi1s - - -, ,Bk)T. The multi-dimensional effective dose ©,, is the set of values of X which
satisfies the following condition

®p:{X€Rk:,30+XT,3:10g1 P , foragivenp}. 2)

It is well known that fitting model (1) through maximum likelihood estimation results in an
asymptotically consistent and efficient estimator A* under regularity conditions. A frequentist
solution is then to substitute B * into (2) and obtain the estimator ® » [31.

From a Bayesian perspective, the regression parameter 5* is stochastic. Therefore the set
(2), which depends on g%, is also a random set with a probability law.

Suppose the prior distribution of 8* is 7w ("), which can be obtained from past experience,
historical data or subject matter experts’ opinion. The posterior distribution of g* given the
data is then

f(B*|data) oc f(data] ) (8"

=[]rmixu. ... X, 7 (B

i=1

_ (3 XA
[T (1 + exp{X;7 *})

We note that the distribution of the observed data is the distribution of the observed response
Y given the fixed covariates X.

When the dimension of 8* is small (e.g. £ < 3), we can discretize the above distribution
on a grid of points over the range of 8* and evaluate the density values for these grid points.
Then we can draw random samples from this discrete distribution easily with a simple random
variable generation routine [1, Chapter 10]. In the examples we consider in this article, the
dimension of covariates is relatively small. Therefore this direct sampling method appears
sufficient for our purposes.

However, the above discretizing-and-sampling method becomes expensive to implement
when the dimension & is large (e.g. >3). In general we can choose the ‘rejection sampling’
approach which has been introduced in a generalized linear mixed-effects model framework by
Zeger and Karim [8]. Basically we can generate acandidate 8* from aknown distribution g (8*)
such as the multivariate normal distribution and accept 8* if f(8*|data)/(c - g(8*)) is less than
arandom number uniformly distributed on [0, 1], where c is such that ¢ - g(8*) > f(8*|data)
over the range of 8*. When the sample size is large, f(8*|data) approximates the multivariate
normal density with mean equal to the maximum likelihood estimator B* and dispersion matrix
equal to the inverse of the Fisher information Ig« [9]. Consequently such an approach will not
make too many rejections and is computationally economic. Details about this algorithm can
be found in books on Bayesian statistical computing like ref. [1] and ref. [10].

The sampling technique for generating 8* is the basic construct for simulating the various
distributions in this article. In the following presentation we use the discretizing-and-sampling
method without re-stating the full details.

7(B"). (3)

2.1.2 Algorithm for simulating the conditional distribution. Without loss of generality,
we consider the (x3, ..., x;)—conditioning effective dose ®;, which is the value of X; to
yield the binary outcome with a success probability p when (X, ..., X;) are given to be

X3, ..., x0).
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We can generate a large number, say M, of 8* independently from the posterior density
f(B*|data) and then evaluate the (x3, ..., x;)—conditioning effective dose by calculating

log(p/(1 = p)) — fo — 35, Bjx;
By

for each simulated g*. We then obtain M independent realizations of x;(p)* from its
conditional distribution.

We note that a Bayesian 100(1 — «)% credible interval for x; (p)* can be constructed by
picking the lower and upper «/2 quantiles of the generated samples of conditional effective
doses.

The Bayesian inference on the conditional distribution of X; given (X», ..., X;) for a
specific p gives a solution similar to that of the frequentist inference on the point and
interval estimations of the (x5, ..., x}), conditioning effective dose x;(p)*. As we will see
in the example, the Bayesian credible interval for x;(p)* obtained by assuming a non-
informative prior is numerically identical to the asymptotic pointwise confidence interval

of x1(p)*.

x1(p)* = “)

2.1.3 Algorithm for simulating the joint distribution. Itis not easy to deal with the joint
multivariate distribution of ® , directly. By the generalized Hammersley—Clifford theorem [11]
it suffices to use the conditional distribution to describe the joint distribution. The theorem,
however, requires the following important assumption: for arandom vector X = (Xy, ..., X,),
if P(X; =x%;) > 0 for each i, then P(X; =Xy, ..., X, = X,) > 0. This so-called positivity
condition is assumed throughout this article.

We consider the distribution of X; conditional on X_; = (Xy, ..., X;—1, Xit1, ..+, Xi)
for a specific p. We note that when X_; is given, the random behavior of X; is completely
correlated with the random variation of *. Hence we have

Fp(XilX) = [ (X, BIX) = fp(Xil B X f(B7IX ) &)

Since the posterior distribution of g%, f(B*|data) is fixed once we observe the data,
f»(B*IX_;) = f(B*|data) does not depend on p or X_,;. We also note that f,(X;[8*,X_;)
is simply a point mass at ((log(p/(1 — p)) — By — Zj#l. B;X;)/Bi). We construct a Gibbs
sampler by using the full conditionals f,(X;|X_;) [10] such that all of the simulations may
be univariate even for a multivariate distribution.

Each Markov chain is formed in the following way. At the current iteration, suppose we
have X® = (XY), cee, X,Et)). Given (X(t), cee, X,it)), we generate a 8* from f(8*|data) and

then calculate XYH) by using this g*; next, conditional on (XYH), Xy), e X,it)), we gen-
erate another * from f(B*|data) and calculate X gﬂ); ...; we repeat the above procedure

until X ,Et) is updated to X ,i”l). We then move to the next iteration and carry out the same
updating procedure. This chain is ended at a large number, 7', after convergence to a sta-
ble distribution and the last value of X7 is outputted as a sample from the multivariate
distribution of ®,,.

At every iteration, the updating of the k-dimension {X*} is carried out by updating k
univariate elements. Such an advantage is widely enjoyed by many types of Gibbs sampler
algorithms. Not only is the sequence {X¥'} a Markov chain, but also each subsequence {X l.(t)}
(i=1,...,k)is a Markov chain.

We replicate a large number, N, of such Markov chains (each being of length 7") and
obtain a random sample of size N from the joint distribution of k-dimensional effective dose
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®,. From this simulated sample, we can then construct the 100(1 — a)% highest posterior
density (HPD) credible region for ®,,. The region has probability equal to the desired confi-
dence level and has higher density for every value inside the region than every value outside
of it [1].

The Bayesian inference on the joint multivariate distribution of ®, is closely related to the
frequentist simultaneous inference about ®,,. Usually the HPD credible region is of a different
form from the simultaneous confidence region. In the example presented in this article, the
HPD credible region is a bounded solution and thus more desirable compared to the unbounded
band by the frequentist approach.

2.2 Case II: Semiparametric regression model

2.2.1 Pseudo posterior probability. Sometimes a parametric model may not be a good
model to describe the biological mechanism between the predictor variables and the response
variable. Such concern requests us to consider more complicated models such as the following
semiparametric model

Pi
log T— =B Xy + B Xy + oo+ B Xy + ¥y (Xieq1,)

— Vi

=X/ B+ y(Xii1.0)- (6)

where the logit transformation of mean response is considered to be linearly dependent on
the X; = (Xy;, ..., Xi)T and is dependent on X ; through a smooth function y(-). Both
B= (B, ..., B)T and y(-) are unknown.

This model can be fitted by using a local maximum likelihood estimation method [6],
where y (-) is locally approximated by a polynomial function. In Li’s PhD dissertation [7], the
author adopted this semiparametric model and subsequently estimated the multi-dimensional
effective dose which is defined in this case as

0,= {(X, Xey1) € RFHL XT,B + y(xr1+1) = log 1L, for a given p}. (7
=D

Given the non-parametric estimator y(-), the likelihood of g is called a pseudo likeli-
hood [12]. We then consider the following pseudo posterior probability

f(Bldata) oc f(data|B)m ()

=[]r@ixa, ... Xu. B, 9)7(B)
i=1
exp>; {X] B+ 7 (Xip1.)}Yi]

B 8
H?zl[l + exp{XiTlg + ?(XkJrl,i)}]ﬂ(IB) (8)

In the following, we discuss algorithms to simulate the conditional distribution of X; given
(X_;, X;11) based on the pseudo posterior probability (8).

2.2.2 Algorithm for simulating the conditional distribution. Similar to the algorithm
for simulating the conditional distribution under the parametric logistic model, we could
consider the (x3,...,x;, x;,,), conditioning effective dose x;(p)*, which is the value of
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X, to yield outcome with a success probability p when (X,, ..., X;, X;.) are given to be
(35 ey X, X0 )

We generate a large number, say M, of B from its posterior density f(B|data) and then
evaluate the (x5, ..., x;, x; ;) —conditioning effective dose by calculating

_ log(p/(L— p)) = 355 B — 7 ()

x1(p) B,

&)

for each simulated 8. We then obtain M realizations of xy (p)* from the conditional distribution.

We note that a 100(1 — «)% credible interval for x;(p)* can be constructed by pick-
ing the lower and upper «/2 quantiles of the simulated values of conditional effective
doses.

3. Applications

University of Wisconsin Sea Grant-supported researchers have conducted extensive investiga-
tions to improve our knowledge of the body’s susceptibility to DCS while diving. In a recent
study, these researchers have conducted studies to assess the impact of two key risk factors:
the pressure that a diver undergoes, usually measured by how deep he or she descends under
the water, and the total exposure duration.

In this section we re-visit the data in ref. [3] to illustrate the benefits of a Bayesian
analysis in finding the predictive distribution for multi-dimensional effective dose. In the
Sea Grant study, sheep used as an animal model for humans, were experimental sub-
jects to determine the effect on DCS of dive depth and duration. Each sheep underwent
simulated dives (in a pressure chamber) with a designed pressure and duration and its
outcomes for central nervous system DCS (CNS-DCS), limb bends (I.B), respiratory
DCS (RDCS) and mortality were determined thereafter. The pressure was measured in
absolute atmospheres and duration at depth was measured in minutes. In the following
analysis, we take log base 10 transformations for both predictor variables. All observed
outcomes are coded as dichotomous variables. Qur data consist of a sample of size
n = 1108.

One of the key research questions was how to determine the values of pressure and dura-
tion that can yield the outcome(s) with a specific probability p. A frequentist analysis for
multi-dimensional effective dose has been presented by Li ef al. [3]. Parametric estimation
and its associated confidence regions were given. In this article, we study the multivari-
ate predictive distribution of this multi-dimensional effective dose by using a Bayesian
approach.

As discussed in ref. [3], logistic regression model is adequate to model the dependence of
mortality or RDCS outcome on covariates, but a semiparametric model is needed to fit LB or
CNS-DCS appropriately. Herein, we include the results for mortality using logistic regression
and the results for LB using semiparametric logistic regression.

3.1 Case I: logistic regression model

We analyze the mortality outcome by using the logistic regression model. The two predictors
are X1, log base 10 pressure and X», log base 10 duration.
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We consider three types of prior distributions which correspond to none, moderate and
strong prior information about the parameters.

Prior A: w(87) o 1,
7 (B*) o exp{Bo — exp(fo)/n}
, )
exp{a’ g*}
T, (1 +exp{X; 7 g+ p*

Prior B:

Prior C: w(8*) «

Prior A is independent and locally uniform in the £ + 1 bounded parameter space. We might
use a uniform prior if we have no prior knowledge about the parameters, or we want to present
a simple analysis of this experiment alone. Prior B assumes an exponential prior on log o
and flat priors on other regression coefficients. The parameter n is chosen to be exp(,éo +y)
as suggested in ref. [10], where y = 0.577216 is the Euler’s constant. Such a choice makes
the prior mean of B, is equal to the maximum likelihood estimator f,. Prior C is conjugate
with respect to the likelihood function. Indeed, if we denote the entire family of prior C as
P(a, 1), the posterior is in the same family of distributions but with different parameters
Pla+ 3" XY, A+ 1). Weseta= (1, Xy, X2)T and & = 0.5. See Bedrick et al. [13] for
more discussions on prior specification for logistic regression and other generalized linear
models.

3.1.1 Conditional distributions. The scatter plot of simulated samples from conditional
distributions of the two components of @ ; is shown in figure 1. At each of fifty equally
spaced points over the experimental range of X; and X,, we draw a sample of 1000 values
of the conditional effective dose from the posterior conditional distribution. All simulated
samples are plotted with light-colored ‘x’ and ‘4’ for conditional distributions of X; and
X, respectively. The dark-colored ‘%’ points are the simulated samples from the distribution
of X, given X, truncated between upper and lower «/2 sample quantiles. The dark-colored
‘4’ points are the simulated samples from the distribution of X, given X, truncated between
upper and lower « /2 sample quantiles. The conditional modes for X; given X, are plotted in
a line of A and those for X, given X, are plotted in a line of V. These two lines are close
to one another but not identical in general. For the purpose of comparison, we also include
the maximum likelihood estimates (solid line) and 95% pointwise confidence regions (solid
curves) for ®y; proposed in Li ef al. [3]. Under priors A and B (upper and middle panel of
figure 1), the lines of conditional modes are fairly close to the line of maximum likelihood
estimates and the boundary of the 95% credible intervals for conditional distributions appear to
be very close to the pointwise confidence regions. When little prior information is available,
the Bayesian estimator confirms the frequentist estimator from straight-forward computer
simulations. On the other hand, if we have strong evidence for the prior distribution, we might
want to adjust the answer by taking into account such information. The Bayesian solution for
Prior C distinguishably differ from the frequentist solution, as is observed in the lower panel
of figure 1.

The conditional densities of X; given X, at four quintiles over the range of X, are estimated
by using a kernel smoother [14] and plotted in rows 1, 3, and 5 in figure 2 for three priors. We
can choose the posterior mode as the designed ‘dose’ value of X; when X» is given so that the
mortality probability is 0.1. The conditional densities of X, given X; at quatitles of X, are
plotted in rows 2, 4 and 6 in figure 2.
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Figure 1. Simulated samples from the conditional distributions of X; given X, (‘x’) and that of X, given X; (‘+°)
under Prior A (upper panel), Prior B (middle panel) and Prior C (lower panel).

Computation of each density is based on the 1000 simulated sample points. The densities at
different quintiles are similar to each other, with centered peaks and roughly symmetric shapes.
The non-informative Prior A (rows 1 and 2) gives more unimodal densities. The exponential
Prior B (rows 3 and 4) gives more local modes and bumps than other two priors.

3.1.2 Joint distributions. We next consider simulating the joint distribution of X; and
X, at p = 0.1 by using the algorithm we described in section 2.1.3. We noticed that for a
chain of length 7" = 10, 000, the simulated values of X; and X, can deviate too far from the
experimental range.We thus restricted our final analysis to generated observations that are
reasonably close to the experimental range. In 1000 simulations for Prior A, 593 observations
of X are within [—10, 10] and 603 observations of X, are within [—40, 40]. The rest of the
simulated observations can go way up to [—10%, 107] for X; and [—10°, 10°] for X,. Those
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Figure 2. The conditional densities of X given X, (rows 1, 3 and 5) and those of X, given X (rows 2, 4 and 6)
for causing mortality with p = 0.1 under Priors A (rows 1 and 2), B (rows 3 and 4) and C (rows 5 and 6).

points can still be regarded as the appropriate samples from the predictive distribution of & ;
if we assume an unnecessarily large parameter space. However, in order to make the results
more interpretable while still maintaining a sufficiently big sample size, we shall restrict our
attentions on those X; € [—10, 10] and X, € [—40, 40]. The kernel density estimators of the
marginal distributions of X; and X, are displayed in figure 3. The peak for the density of X, is
around 0.472 and the peak for the density of X, is around 2.85 for Prior A. Similar selections
are conducted for priors B and C, too.

The points simulated from the posteriors are shown in scatter plots in figure 4. We estimate
the bivariate density by using a 2D kernel smoother and draw contour lines corresponding to
80%, 90% and 95% of the highest probability in this distribution. These contours provide the
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Figure 3. The marginal distribution of X (left) and X, (right) simulated from their joint distribution for causing

mortality with p = 0.1 under Priors A (row 1), B (row 2) and C (row 3).

Bayesian HPD credible regions for ® ;. Such regions can cover a future predicted joint value
of X and X, corresponding to the mortality probability p = 0.1 with a fixed confidence level.
It is noted that some credible regions for priors B and C could be disconnected, reflecting the
multimodality of the posterior distributions. For the purpose of comparison, we also include
the simultaneous confidence bands for ®y; by using Scheffe’s method described in ref. [3].
Under the non-informative Prior A, all simulated points fall inside the simultaneous confidence
band, agreeing with the frequentist region. It is hypothesized that the 95% contour plot for
simulated points from the infinite R? space is the same as the frequentist band. Currently it is
difficult, if not infeasible, to check this since the program can only create contour graphs for
a limited range of values.
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Figure 4. The joint distributions of X and X for causing mortality with p = 0.1 under Priors A (upper), B (middle)
and C (lower). The solid lines are 80%, 90% and 95% HPD credible regions for g 1, respectively. The dashed lines
are the 95% simultaneous confidence bands for ©¢ ;.

3.2 Case II: Semiparametric regression model

We analyze the LB outcome by using the semiparametric regression model. The variable X5,
log base 10 duration, is fitted as a parametric component and X, log base 10 pressure, is
fitted as a non-parametric component. We consider a non-informative prior for 7 (8) in the
computation.

The two-dimensional effective dose for p = 0.3 and the 95% pointwise confidence region
for X, at a given X are displayed as solid lines in both panels of figure 4. The conditional
distribution of X, given X is sampled by using the algorithm described in section 2.2 and
depicted by gray circles in the upper panel of figure 5. At each X, an independent chain of
length 10,000 is generated to compute X,. The densities of X, given X, at four quintiles are
estimated by a kernel smoother from the simulated sample and are displayed in figure 6.
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Figure 5. The distribution (upper panel) and conditional credible region (lower panel) of 2D effective dose at
p = 0.3 in a semiparametric model.

In the upper panel of figure 5, the points with symbol ‘4’ are those that lie between upper
and lower 0.025 quantiles. In the lower panel of figure 5, we show the posterior mode of
two-dimensional effective dose by a dashed line and the 95% credible region by dotted lines.
The broken lines forming a frame in the lower panel indicate the margins of the experimental
range of X; and X».

We notice that the posterior mode for two-dimensional effective dose is the same as the
frequentist maximum likelihood estimation since the dashed line in the lower panel is almost
indistinguishable from the solid line. The Bayesian credible region is again very close to the
frequentist confidence region. There are some noticeable discrepancies at the margins of the
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Figure 6. The conditional distribution of X, given X for causing limb bends with p = 0.3.

experimental range where the non-parametric fits might suffer from the well-known boundary
effects.

4. Discussion

We have proposed methods and algorithms to visualize the distribution of multi-dimensional
effective dose under parametric and semiparametric logistic models. The Bayesian approach
yields comparable results to the frequentist approach. For example, the Bayesian credible
interval for the conditional distribution can match the frequentist pointwise confidence inter-
val under the non-informative prior assumption. It is relatively appealing to use a Bayesian
approach since no analytic derivation is needed. Current computational power facilitates
the fast evaluation of complicated posterior distributions which have been cumbersome
in the past.

For the semiparametric model, we study the pseudo posterior distribution after fixing the
non-parametric components in the likelihood. The subsequent MCMC approach does not take
into account the variability in ¥ (-). Although asymptotically y (-) has little difference to real
¥ (+) (with a bias of order O(A?) for a bandwidth 4), in a finite sample this approach limits the
inference. We hope our tentative solution could attract further research attention on this topic.
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