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Abstract

It is widely known that, in a certain sense, a smoothing spline estimate of the regression
function is asymptotically equivalent to a kernel regression estimate. However, little information
has been available about the equivalence between nonparametric regression tests, based on the
smoothing spline and local polynomial regression methods. To assess their relative behaviors
and to facilitate illustration, we consider in this paper the “generalized likelihood ratio” (GLR)
test statistic, constructed from each type of smoother. For the resulting test statistics, we :rst
establish their equivalent forms of the asymptotic distributions, under the null hypothesis. After
that, we derive their equivalent optimal rates of smoothing parameters for nonparametric testing.
Furthermore, we evaluate their relative asymptotic e;ciency and characterize its relation to the
magnitude of the smoothing parameters. Finally, we illustrate the large-sample behaviors of the
cubic smoothing spline and local linear regression methods, in the GLR tests, with results from
small-scale simulations.
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1. Introduction

Model assessment forms a crucial component of statistical analysis. Driven by the
rapid advances in computing technology, nonparametric regression techniques have
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emerged as powerful tools for assessing model agreement. In this article we consider
an important special case of the general problem–testing the mean function in a non-
parametric regression model.

Among the existing methods for mean estimation, smoothing splines have received
considerable research eGorts in the literature on nonparametric speci:cation tests. The
work includes Yanagimoto and Yanagimoto (1987), Cox et al. (1988), Cox and Koh
(1989), Eubank and Spiegelman (1990), Eubank and LaRiccia (1993), Jayasuriya
(1996), Ramil-Novo and GonzKalez-Manteiga (2000), and many others. Meanwhile,
the local polynomial regression, as an alternative method of curve :tting, has also
been under impressive development in those tests of Azzalini et al. (1989), Hart and
Wehrly (1992), Azzalini and Bowman (1993), HMardle and Mammen (1993), Young and
Bowman (1995), and Bowman and Young (1996), among others. These work together
provides users with Nexible choices of nonparametric diagnostic tools. However, a re-
search issue regarding the eGect of the curve :tting methods on the testing procedures
has not yet been addressed in the literature.

In particular, a number of relevant questions have frequently arisen including the
following. (i) Whether the associated nonparametric regression tests, based on the
smoothing spline and local polynomial estimation techniques, have equivalent forms of
the asymptotic null distributions? (ii) Since the performance of each type of smooth-
ing method relies on a speci:c choice of smoothing parameter, how to determine the
optimal selection of smoothing parameters for the resulting tests? (iii) Whether the as-
sociated nonparametric tests perform in similar manners against alternatives? or which
:tting method will lead to a more eGective test to detect departures from the null hy-
pothesis? (iv) How to determine the optimal kernel function for local polynomial-based
nonparametric regression tests? Given the wide application domain of the smoothing
spline and local polynomial :tting methods in many scienti:c disciplines nowadays,
these kinds of issues are not only important for correctly understanding their relative
performances in nonparametric inference, but also helpful in oGering valuable guidance
on practical implementation of these techniques.

Addressing the questions raised above is a nontrivial task, however. From some
previous results of equivalence, established in the setting of nonparametric function
estimation, it may be deduced only that, in a certain sense, a smoothing spline esti-
mate corresponds approximately to a kernel regression estimate (Cox, 1983; Silverman,
1984a), and that conversely, the kernel regression and local linear regression estimators
can be interpreted as equivalent roughness-penalty estimators (Huang, 2001); none of
these study results has immediate implications for the foregoing issues. In this paper,
to facilitate illustration, we will consider the generalized likelihood ratio (abbreviated
as GLR) testing procedure, introduced in Fan et al. (2001), although the basic ideas of
the theoretical work, developed in later sections, apply to other kinds of nonparametric
regression tests. For expositional convenience, we call Gn;L the GLR test based on the
local polynomial regression estimator, and Gn;S the GLR test based on the smoothing
spline estimator. Curiously, the simulation study in Section 5, which is designed to
compare the power of the Gn;S test based on the cubic smoothing spline method and
that of the Gn;L test based on the local linear regression method, tends to suggest the
superiority of the cubic smoothing spline over the local linear method, despite of the
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fact that choices of smoothing parameters are taken to be equivalent for estimating
the mean function. Actually, conclusions based on this suggestion is incomplete and
would be misleading. Nevertheless, little published information exists to explain this
empirical comparison, and hence a more careful study is needed.

In this paper, three major parts of equivalence results will be investigated. In re-
sponse to the :rst question above, we will establish explicitly the equivalence between
the asymptotic null distributions of Gn;S and Gn;L. To address the second issue, we
will derive the optimal rate of the smoothing parameter for the Gn;S test. The “opti-
mal” here is de:ned in the sense, such that the contiguous alternatives with the fastest
rate of convergence to the null can be detected consistently. As we shall demonstrate
in Section 3.2, this optimal rate is asymptotically equivalent to the optimal rate of
bandwidth, obtained in Fan et al. (2001) from the Gn;L test. To our knowledge, the-
oretical investigations of the optimal rate of smoothing parameter, in the context of
spline-based tests, have been largely overlooked in the literature. This paper :lls that
gap in the literature. Moreover, we put forward an empirical method for obtaining the
optimum smoothing parameter. Regarding the third question, our derivations indicate
that the Gn;S and Gn;L tests, have the asymptotic normal distributions under the null
and local alternatives. In this case, the Pitman-type asymptotic relative e;ciency of
the two tests can be evaluated. This result, based on comparing the magnitude of the
smoothing parameters, will be particularly helpful for us to know, for e.g., when the
Gn;S test is asymptotically more powerful than the Gn;L test and when it is not.

The establishment of equivalence results has several useful consequences. For in-
stance, translating the power expression of the Gn;S test into that of the Gn;L test
indicates that the optimal choice of kernel function solves a constrained variational
problem. Formulating this variational criterion, within the context of the Gn;L test it-
self, will be unnecessarily complicated without applications of the equivalence result.

Nonparametric regression model serves as a building block for various complicated
statistical models. It is thus anticipated that the basic conclusions of this article can be
extended to more general settings, such as the varying coe;cient model (Hastie and
Tibshirani, 1993).

This paper is organized as follows. Section 2 brieNy reviews relevant aspects of the
Gn;L statistic. Section 3 presents the main results on the asymptotic distribution, power,
and the optimal rate of smoothing parameter of the Gn;S test. The relative power of the
two tests is examined in Section 4, followed by the optimal choice of kernel function.
Section 5 reports simulation studies. Section 6 summarizes the paper and outlines some
possible extensions. Proofs are collected in the Appendix.

2. Background

2.1. The GLR test

To begin with, we :rst brieNy outline the GLR test proposed in Fan et al. (2001).
Suppose that we are given independent observations, {(X1; Y1); : : : ; (Xn; Yn)}, from a
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nonparametric regression model

Y = m(X ) + 	 (2.1)

in which the error 	, conditional on the design variable X , has a normal distribution with
mean zero and unknown variance 
2. The mean regression function, m(x)=E(Y |X =x),
is assumed to belong to a smooth class of functions M; a parametric form is not
assumed. For a :xed integer p¿ 1, let �p−1 = {�0 + �1x + · · · + �p−1xp−1: � =
(�0; �1; : : : ; �p−1)T ∈Rp} denote the set of polynomial regression functions of degree
p− 1, where the superscript T stands for the transpose of a vector or matrix. Suppose
we are interested in testing

H0 :m(x) ∈�p−1 versus H1 :m(x) ∈M \ �p−1: (2.2)

To derive the GLR statistic, consider from (2.1) the conditional log-likelihood function,
expressed as

‘n = −n log(
√

2�
) − 1
2
2

n∑
i=1

{Yi − m(Xi)}2:

Let m�̂(·) stand for the maximum likelihood estimator (MLE) under H0, in which
�̂ denotes MLE of the unknown vector of parameters �. Usually, the MLE of m(·)
may not exist under H1. In such instances, one could carry out the nonparametric :t,
denoted by m̂. Denote by RSS0 the residual sum of squares under H0, and by RSS1

under H1; that is, RSS0 =
∑n

i=1 {Yi −m�̂(Xi)}2, and RSS1 =
∑n

i=1 {Yi − m̂(Xi)}2. Then
the logarithm of the conditional nonparametric likelihood ratio statistic for (2.2), given
by

Gn = ‘n(H1) − ‘n(H0) = (n=2) log{RSS0=RSS1} (2.3)

is called a GLR statistic. It is asymptotically equivalent to the Azzalini and Bowman
(1993) statistic. We make another remark here; that is, even if we drop the normality
assumption in (2.1), Gn itself, as a valid statistic, can still be utilized to assess the
goodness-of-:t of a polynomial regression.

Remark 1. Testing the polynomial regression in the null hypothesis (2.2) is only for
the sake of technical simplicity.

2.2. The GLR test based on local polynomial regression estimation

We now start by describing brieNy the case where m̂ employed in the GLR statistic
is the pointwise local polynomial regression estimate. Assume that we wish to estimate
the regression curve at a :tting point x0. According to the Taylor’s expansion, any
smooth function m(x) with the q + 1th derivative, around a neighborhood of x0, can
be locally approximated by a qth degree polynomial

m(x) ≈ m(x0) + (x − x0)m(1)(x0) + · · · + (x − x0)qm(q)(x0)=q!:

Denote �j =m(j)(x0)=j!; j= 0; : : : ; q, where the dependence of �j’s on x0 is suppressed.
Then the local polynomial regression estimates �̂j, of degree q, are de:ned to be the
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minimizers of the weighted residual sum of squares,

n∑
i=1

{Yi − �0 − (Xi − x0)�1 − · · · − (Xi − x0)q�q}2Kh(Xi − x0) (2.4)

with respect to values of �j. Here the weight function Kh(·)=K(·=h)=h is re-scaled from
a kernel function K(·), and the smoothing parameter, h¿ 0, is called the bandwidth
which governs the local amount of data smoothing. The resulting �̂0 gives the qth de-
gree local polynomial regression estimate m̂h(x0). In particular, the conventional kernel
regression and local linear regression estimates correspond to locally :tting a constant
function (with degree q = 0) and a straight line (with degree q = 1), respectively.

Fan et al. (2001) showed the Wilks-type asymptotic null distribution of the Gn;L(h)
statistic, in which the local polynomial estimator m̂h is used. Their results are applicable
to both random- and :xed-design variables, as well as non-Gaussian random errors.
Namely, assume that E(	|X )=0 and E(	2|X )=
2 in (2.1), and suppose that Condition
(A) in the Appendix holds. De:ne by |�| the length of the support of the design

variable X , and let L→ indicate converges in distribution. Then under the null hypothesis
in (2.2), as q¿p − 1, n → ∞, and h → 0 such that nh3=2 → ∞, it follows that

rKGn;L(h) − rKcK|�|h−1

{2rKcK|�|h−1}1=2
L−→ N(0; 1); (2.5)

where through the convolution operator ∗, the quantities rK and cK are represented
by

rK =
K(0) − 2−1K ∗ K(0)∫
(K − 2−1K ∗ K)2(t) dt

and cK = K(0) − 2−1K ∗ K(0): (2.6)

The function K(t) = K(t; q) above is de:ned as the equivalent kernel function (Fan
and Gijbels, 1996, p. 64), induced from the qth degree local polynomial smoother with
the basic kernel K(t) in (2.4).

Moreover, it was shown in Fan et al. (2001) that applying the (p−1)th degree local
polynomial smoother with a bandwidth of rate,

hopt = n−2=(4p+1); (2.7)

the resulting GLR statistic is capable of detecting alternatives converging to the null
at a nonparametric rate, �n = n−2p=(4p+1), which is the optimal rate of convergence
of nonparametric testing (Ingster, 1982; Lepski and Spokoiny, 1999). For practical
implementation, an empirical choice of the optimal bandwidth for Gn;L was suggested
and tested in Zhang (2003): :rst re-scale the range of the observed Xi to the interval
[0; 1], denoted by X ∗

i , then for {(X ∗
i ; Yi)

n
i=1} take

hopt;e =  × std{X ∗
1 ; : : : ; X

∗
n } × n−2=(4p+1) (2.8)

with a constant  = 1:5. This empirical rule will be revisited later in Section 3.2.
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Under the conditions speci:ed before (2.5), conclusion (2.5) holds for a class of
kernel functions that satisfy Condition (A3). This raises a question about how to assess
the inNuence of a kernel function on the performance of the GLR test; refer to Section
4 for further discussion.

Recall that the GLR test statistics introduced in Section 2.1 could be carried out via
any other type of nonparametric regression method. In next section we shall explore
one such possibility, based on the smoothing splines.

3. The GLR test based on spline-smoothing

To ease technical manipulation, the :xed-design points, Xi = xi, are considered in
this paper for the smoothing spline estimator, denoted by m̂!, which minimizes the
penalized sum of squared errors

n−1
n∑

i=1

{Yi − m(xi)}2 + !
∫ 1

0
{m(p)(x)}2 dx; !¿ 0 (3.1)

over all functions m∈Wp
2 [0; 1], where Wp

2 [0; 1], termed the pth order Sobolev space,
is de:ned as

Wp
2 [0; 1] =

{
m :m(j) is absolutely continuous for j = 0; 1; : : : ; p − 1;

∫ 1

0
{m(p)(x)}2 dx¡∞

}

for some :xed integer p¿ 1. The commonly-used cubic smoothing spline corresponds
to p=2. The support of design points xi, taken to be �=[0; 1], is merely for simplicity.
The smoothing parameter or the penalty factor !, upon which the smoothing spline
estimator depends, regulates the “rate of exchange” between :delity to the data and
smoothness of the :tted curve. See Eubank (1988) and Wahba (1990) for the detailed
descriptions of smoothing splines.

Both the local polynomial and smoothing spline smoothers are linear estimators of
the regression curve. According to (2.4), this feature is evident for the local polyno-
mial regression estimators. For spline smoothing, we now verify this “linear smoother”
property. For convenience, we assume that the points xi are distinct and have been
ordered, so that x1 ¡ · · ·¡xn. It is well known (see, e.g., Reinsch, 1967) that m̂!

belongs to S
p
n , the n-dimensional space of natural splines:

Sp
n = {m :m∈C2p−2[0; 1]; m is a polynomial of degree 2p − 1 on

[xi; xi+1]; i = 1; : : : ; n − 1; and of degree p − 1 on [0; x1] and [xn; 1]};
in which C2p−2[0; 1] denotes the space of all functions on [0; 1] that have 2p − 2
continuous derivatives. An explicit expression for m̂!(x) can be obtained via the basis
functions {%jn; j=1; : : : ; n} of Sp

n introduced by Demmler and Reinsch (1975). These
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functions satisfy the conditions

1
n

n∑
i=1

%jn(xi)%kn(xi) = 'jk ;

∫ 1

0
%(p)
jn (x)%(p)

kn (x) dx = (kn'jk

for j; k=1; : : : ; n, with 0=(1n = · · ·=(pn ¡((p+1)n6 · · ·6 (nn, and 'jk the Kronecker’s
delta. Denote by �jn = (%jn(x1); : : : ; %jn(xn))T; j = 1; : : : ; n, the basis vectors evaluated
at the design observations, and by y = (Y1; : : : ; Yn)T the vector of responses. Then the
solution of (3.1) can be expressed as

m̂!(x) =
p∑

j=1

�̂j−1xj−1 +
n∑

j=p+1

n−1�T
jny

1 + !(jn
%jn(x);

where {�̂j}p−1
j=0 stand for the ordinary least-squares estimates of parameters under H0 in

(2.2). The smoother matrix H!, associated with m̂!, such that (m̂!(x1); : : : ; m̂!(xn))T =
H!y, can be written in the form

H! = X diag{(1 + !(jn)−1}nj=1X
T (3.2)

in which the square matrix X = n−1=2(�1n; : : : ;�nn) is orthonormal. Now de:ne by
T = (xj−1

i )j=1; :::;p
i=1; :::; n the design matrix, and by P the projection matrix generated by T .

Set X1 = n−1=2(�1n; : : : ;�pn) and X2 = n−1=2(�(p+1)n; : : : ;�nn). Then it follows that

P = X1XT
1 and H! = P + X2 diag{(1 + !(jn)−1}nj=p+1X

T
2 : (3.3)

There is an extensive literature on the use of smoothing splines to nonparametric
tests of the regression function. We now brieNy review those results that have particular
relevance here. Often, they are based upon comparing the residual sum of squares of a
nonparametric regression :t, H!y, versus that of a parametric :t, Py, via the quadratic
form

RSS(H!; P) = yT(H! − P)T(H! − P)y (3.4)

or equivalently, versus that of a smoothed parametric :t, H!Py, via RSS(H!; H!P) =
yT(H! − H!P)T(H! − H!P)y. A +2-test, based on (3.4), was developed in Jayasuriya
(1996), which involves calculation of the trace of Hk

! , tr(Hk
! ), for k = 2; 4, and an

estimate of the noise variance 
2. This approach is a generalization of the Eubank and
Spiegelman (1990) test for linearity under Gaussian models, to non-Gaussian models
and to testing for the adequacy of a (p − 1)th degree polynomial regression. An
alternative proposal of the +2-test, based on the roughness-penalty of the :tted spline
function,∫ 1

0
{m̂(p)

! (x)}2 dx = (n!)−1yT(H! − H 2
! )y (3.5)
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was developed in Chen (1994). Recently, two F-tests, one based on (3.4) and the
other based on (3.5), are constructed in Ramil-Novo and GonzKalez-Manteiga (2000).
As have been shown in these articles, the +2- and F-tests, based on (3.4), can detect
local alternatives converging at a rate, 'n;1 = {n!1=(4p)}−1=2, or slower to the null
model (Jayasuriya, 1996, p. 1628; Ramil-Novo and GonzKalez-Manteiga, 2000, p. 824),
whereas the +2-test, based on (3.5), is only able to distinguish local alternatives that
are of order, 'n;2 ={n!(4p+1)=(4p)}−1=2, or slower from the null hypothesis (Chen, 1994,
p. 68). While these “local asymptotic” results are useful for explaining the slower
nonparametric rate of convergence compared with the parametric n−1=2-rate, they cannot
be applied directly to obtain the optimum amount of smoothing parameter !. This issue
will be addressed in our study of Section 3.2.

3.1. Asymptotic null distribution

Hereafter, we denote by Gn;S(!) the GLR statistic, based on the smoothing spline
estimator m̂!. We :rst establish in Theorem 1 the asymptotic normal distribution of
Gn;S(!), under the null hypothesis; an application of this result will be utilized in
Section 3.2, where the asymptotic power of Gn;S(!) is studied.

Before displaying Theorem 1, its technical assumptions on !, in non-Gaussian mod-
els (called (Case 1)-models) and Gaussian models (called (Case 2)-models), deserve
some explanations. Basically, these two sets of assumptions are similar to those of
Ramil-Novo and GonzKalez-Manteiga (2000, pp. 823–824), in which the asymptotic
distributions of their F-tests in both (Case 1)- and (Case II)-models are derived under
the null and local alternatives converging to the null at the rate 'n;1 speci:ed above.
Thus, in (Case 2)-models, we will simply use the same set of assumptions as they have
imposed for Gaussian models. In (Case 1)-models, however, one condition among the
set of assumptions they put for non-Gaussian models, n!(4p+1)=(4p) → ∞ is not required
for deriving the limiting distributions of their F-tests under the null hypothesis alone;
we notice that a weaker condition, n! → ∞, will su;ce. Therefore in our Theorem 1
below, which only deals with the asymptotic null distribution of the Gn;S(!) statistic,
we will put the weaker condition n! → ∞ to (Case 1)-models.

Moreover, the eigenvalues of the matrix H!, as given in (3.2), are of great importance
in studying the asymptotic properties of smoothing splines and the behaviors of the
associated tests. Applying Speckman (1981)’s result and assuming suitable conditions,
we could show in Lemma 2 that

!1=(2p) tr(Hr
! ) = c(f)(2�)−1

∫ +∞

−∞
(1 + t2p)−r dt + o(1) (3.6)

for each integer r¿ 2, where c(f)=
∫ 1

0 f(t)1=(2p) dt and f represents the design density
that ful:lls Condition (B3) in the Appendix. A similar type of approximation, when
r = 1, can be found in Eubank (1988, p. 327). In general, the approximation error
term, as denoted by o(1) in (3.6), without further speci:cation of its magnitude, will
su;ce for most of the asymptotic investigations in which tr(Hr

! ) is incorporated. To
facilitate technical manipulation of our Theorem 1, we shall put in (3.6) an additional
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assumption, o(1)=o{!1=(4p)}, when r=1; 2. To see the validity of this assumption, let us
consider two typical instances. In one situation, arising from periodic smoothing splines
with uniform designs, the error term is shown (Wahba, 1975, p. 388) to be O{!1=(2p)}+
O{(n!1=(2p))−(2p−1)} when r= 1, and analogously, to be O{!1=(2p)}+ O{(n!1=(2p))−2p}
when r = 2. In another situation arising from cubic smoothing splines (p = 2) and
uniform designs, Kou (2000) obtained explicit bounds on the eigenvalues of H!; these
bounds could (by a typical graphical argument) lead to the same approximation error
term, o{!1=(4p)}, for r = 1 and 2. Therefore our condition, imposed on the term o(1),
does not appear to be particularly restrictive.

Theorem 1. Let K (x) = (2�)−1
∫ +∞

−∞ (1 + t2p)−1 exp(−itx) dt, and set c(f) =
∫ 1

0

f(t)1=(2p) dt. Suppose !1=(2p) tr(Hr
! ) = c(f)(2�)−1

∫ +∞
−∞ (1 + t2p)−r dt + o{!1=(4p)}, for

r = 1; 2. Assume that either
Case 1: Condition (B) in the Appendix holds, and p¿ 2; n → ∞; ! → 0 such

that n! → ∞ and n!(3+4.)=(2p) → ∞;
or
Case 2: Condition (C) in the Appendix holds, and p¿ 2; n → ∞; ! → 0 such

that n! → ∞.
Then under H0, it holds that

rKGn;S(!) − rKcK!−1=(2p)c(f)
{2rKcK!−1=(2p)c(f)}1=2

L→ N(0; 1) (3.7)

with

rK =
2p + 1
2p − 1

48p2

24p2 + 14p + 1
and cK =

2p + 1
8p2 sin{�=(2p)} : (3.8)

Equivalently, the expressions for the two constants above can be rewritten as

rK =
K (0) − 2−1K ∗ K (0)∫
(K − 2−1K ∗ K)2(t) dt

and cK = K (0) − 2−1K ∗ K (0): (3.9)

The conclusion drawn from Theorem 1 reveals that a parallel version of result (2.5),
based on the local polynomial regression :t, continues to hold for the smoothing spline
method. In contrast to the equivalent kernel function K in (2.6), the function K spec-
i:ed in (3.9) is de:ned by Silverman (1984a) as the Fourier transform of (1 + t2p)−1.
Thus if we interpret this particular K as a kernel function, make the identi:cation
|�| = 1 (see Condition (B3) in the Appendix), and place

h = !1=(2p)=c(f); (3.10)

we observe that Theorem 1 could have been predicted from (2.5) and (2.6), which are
developed from the local polynomial curve-:tting method. In this sense, the asymptotic
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null distributions of the two GLR test statistics, i.e., Gn;S(!) based on smoothing splines
and Gn;L(h) based on local polynomial smoothing, can indeed be regarded as equivalent.
Results of this type complement those obtained, in regression function estimation, by
Silverman (1984a, pp. 901–902), who showed that under appropriate conditions, the
cubic smoothing spline estimator (p = 2), at an interior point x, behaves roughly
as a kernel regression :t to the data {(xi; Yi=f(xi))}ni=1 with kernel K and variable
bandwidth h(x) = {!=f(x)}1=(2p). As we can clearly see, this expression bears a close
resemblance to (3.10), and is exactly identical to (3.10) when uniform designs on [0; 1]
are used. Interestingly, we shall :nd in Section 4.1 that, even if we use the equivalent
choices of ! and h as given in (3.10), the Gn;S(!) and Gn;L(h) tests do not necessarily
have equivalent powers.

Apart from the equivalence of sampling null distributions between Gn;S(!) and its
counterpart Gn;L(h), Theorem 1 indicates that Gn;S(!) enjoys a substantial computa-
tional advantage over other spline-based tests. This viewpoint is clearly demonstrated
in (3.7)–(3.9), where the expressions for rK and cK can be computed explicitly, and
c(f) equals 1 in uniform designs. In contrast, the preceding spline-based test statis-
tics require heavy computation of tr(Hr

! ), which can potentially become a problem
for large and huge sample sizes. The only trivial computational price, paid for us-
ing Gn;S(!), is to approximate the functional c(f) in (3.7), when f is unknown or
non-uniform, through the use of a nonparametric kernel density estimate (Silverman,
1986). Silverman (1984b, p. 586) described and analyzed an e;cient estimation al-
gorithm for the case p = 2; this procedure can be extended straightforwardly to the
general cases of p¿ 2.

3.2. Power study and optimal selection of smoothing parameter

It is well known in the literature on smoothing splines that the optimal choice
of !, for estimating the regression curve, minimizes the mean squared error of the
spline estimator, leading to the optimal rate O(n−2p=(2p+1)); a data-driven method,
based on minimizing the generalized cross-validation (GCV) criterion (Craven and
Wahba, 1979), produces a consistent estimate of such optimal !. However, studies
on the optimal rate of ! in the context of spline-based tests have received much less
attention in the literature (see the aforementioned work on spline-based test statistics).
For this issue, we would like to stress that it is intimately related to examining the
power of a spline-based test, rather than assessing the :t of a spline estimator. As a
consequence, it is not surprising that the optimal rates of smoothing parameters will
diGer between testing and estimation.

The large-sample power of tests is often studied by considering their behavior under
local alternatives to the null hypothesis. In what follows, the departures of alternative
sets from the hypothetical polynomial model, denoted by g, are assumed to be smooth
and lie in a general class of functions, Lf2 [0; 1] \ {1; : : : ; xp−1}, which consists of all
functions g on [0; 1] such that ‖g‖2

f =
∫ 1

0 g2(x)f(x) dx¡∞ and
∫ 1

0 xjg(x)f(x) dx = 0
for all j = 0; : : : ; p − 1. With these assumptions, we shall show in Theorem 2 that
the GLR test based on smoothing splines achieves the optimal rate of convergence
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for nonparametric hypothesis testing, provided that an appropriate choice of smoothing
parameter is taken.

Theorem 2. Suppose !1=(2p) tr(Hr
! ) = c(f)(2�)−1

∫ +∞
−∞ (1 + t2p)−r dt + o{!1=(4p)}, for

r = 1; 2. Assume that either
Case 1: Condition (B) in the Appendix holds, and p¿ 2; n → ∞; ! → 0 such

that n! → ∞ and n!(3+4.)=(2p) → ∞ with 0¡.¡ (4p − 5)=8;
or
Case 2: Condition (C) in the Appendix holds, and p¿ 2; n → ∞; ! → 0 such

that n! → ∞.
Let m(x) =

∑p−1
j=0 �jxj + g(x), with g∈Lf2 [0; 1] \ {1; x; : : : ; xp−1} and g∈Wp

2 [0; 1].
Then Gn;S(!) can detect alternatives of order {n!1=(4p)}−1=2 or slower from the null
model. Set �n = n−2p=(4p+1), and take ! of rate n−4p=(4p+1). Then for any sequence
cn → ∞, the power function of the Gn;S(!) test is asymptotically one, i.e.,

lim
n→∞ inf

g∈Lf2 [0;1]∩Wp
2 [0;1]\{1;x;:::;xp−1}: ‖g‖f¿cn�n

Pg

[
rKGn;S(!) − rKcK!−1=(2p)c(f)

{2rKcK!−1=(2p)c(f)}1=2 ¿ z3

]

=1;

where z3 denotes the 100(1 − 3)th percentile of the standard normal distribution, and
Pg denotes the probability calculated under the alternative with a departure g from
the null.

Theorem 2 has a number of consequences. Firstly, it implies that the Gn;S(!) test,
when ! is of the rate n−4p=(4p+1), is uniformly consistent against a smooth alternative
that deviates from the null with the distance of order �n = n−2p=(4p+1). Secondly,
Theorem 2 indicates that the optimal rate of smoothing parameter of the Gn;S(!) test
is

!opt = n−4p=(4p+1): (3.11)

In this way we formally verify that, in the context of nonparametric testing, the optimal
rate of smoothing parameter !opt in (3.11) is equivalent, via the mapping (3.10), to
hopt in (2.7). Furthermore, we suggest from (3.10) an empirical choice of the optimal
!,

!opt;e = {hopt;ec(f)}2p (3.12)

in which hopt;e is given in (2.8). Thirdly, the theorem reveals that !opt approaches zero
at a rate faster than its counterpart, ! = O{n−2p=(2p+1)}, obtained from minimizing the
conventional generalized cross-validation criterion. Fourthly, from a practical point of
view, the magnitude of the optimal rate n−4p=(4p+1) for testing and the magnitude of the
optimal rate n−2p=(2p+1) for estimation, do not seem to diGer substantially. Therefore,
for a Gn;S(!) test, the GCV criterion may be employed for choosing the degree of
smoothing, although power loss of the resulting test may arise. Finally, the arguments
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used for verifying Theorem 2 can be extended to other types of spline-based test
statistics.

4. Power comparison

Given the two types of estimation methods that we have considered in the likelihood-
ratio based tests, it is of interest to compare them from an e;ciency standpoint. Their
relative powers against local alternatives are presented in Theorem 3.

4.1. Power comparison of GLR tests based on smoothing spline and local
polynomial smoother

Theorem 3. Assume that either Case 1 assumption or Case 2 assumption of Theorem
2 holds.

(1) Let h=C1n−2=(4p+1) and let !=C2p
2 n−4p=(4p+1){c(f)}2p with positive constants

C1 and C2. Then the Pitman asymptotic relative e<ciency of Gn;S(!) to Gn;L(h) is
given by

{(C2=C1)(rK =cK )=(rK=cK)}(4p+1)=(8p): (4.1)

(2) Let h=C1n−1=(2p+1) and let !=C2p
2 n−2p=(2p+1){c(f)}2p with positive constants

C1 and C2. Then the Pitman asymptotic relative e<ciency of Gn;S(!) to Gn;L(h) is
given by

{(C2=C1)(rK =cK )=(rK=cK)}(4p+2)=(8p+2): (4.2)

Theorem 3 compares Gn;S(!) and Gn;L(h), under what can be regarded as “optimal”
rates of ! and h, for testing and for estimation. Clearly, the relative e;ciency, in either
case, depends on the ratio of rK =cK to rK=cK. To calibrate the e;ciency numerically,
we present in Table 1 the values of rK =cK and rK=cK. According to Eq. (3.8), the
ratio rK =cK will quickly approach its limit 4� ≈ 12:57 as p increases, and thus we take
p = 2 up to 6 in Table 1. With respect to Gn;L(h), the commonly used multi-weight

Table 1
Constants rK =cK from the smoothing splines that minimize (3.1) and constants rK=cK from the (p − 1)th
degree local polynomial smoother

p Smoothing spline Epanechnikov kernel Biweight kernel Triweight kernel
rK =cK rK=cK rK=cK rK=cK

2 11.5852 4.7007 3.9733 3.4700
3 12.0093 2.5288 2.2714 2.0545
4 12.1864 2.5288 2.2714 2.0545
5 12.2809 1.7510 1.6217 1.4984
6 12.3388 1.7510 1.6217 1.4984
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kernel functions, of the form

{Beta( 1
2 ; ‘ + 1)}−1(1 − t2)‘I(|t|6 1); ‘ = 1; 2; : : :

are considered, where Beta(·; ·) denotes a Beta function and I(·) is an indicator function.
The Epanechnikov, Biweight and Triweight kernel functions correspond to indexes
‘=1; ‘=2, and ‘=3, respectively. Hence, if we take the equivalent form of parameters
! and h, as given in (3.10), namely, C1 = C2, it appears that, from (4.1) (or (4.2))
and Table 1, the spline approach seems to be more e;cient than the local polynomial
regression method, because (rK =cK )=(rK=cK)¿ 1. For example, with these choices of
! and h, the Gn;S(!) test of linearity based on the cubic smoothing splines will be
asymptotically 1.7 times as e;cient as the Gn;L(h) test of linearity based on the local
linear estimation (combined with the Epanechnikov kernel).

It should be pointed out, however, that the relative e;ciency in Theorem 3 also
depends on the relative magnitude of the constants C1 and C2 in conjunction with the
optimal rates of smoothing parameters. To summarize, the analytical criterion below we
put on the relative magnitude of the smoothing parameters h and ! directly determine
the relative power of the Gn;L(h) and Gn;S(!) tests.
Case I: if C2=C1 ¡ (rK=cK)=(rK =cK ) or !¡ {h c(f)(rK=cK)=(rK =cK )}2p, the

Gn;S(!) test is less powerful than the Gn;L(h) test.
Case II: if C2=C1 = (rK=cK)=(rK =cK ) or ! = {h c(f)(rK=cK)=(rK =cK )}2p, the

Gn;S(!) test is as powerful as the Gn;L(h) test.
Case III: if C2=C1 ¿ (rK=cK)=(rK =cK ) or !¿ {h c(f)(rK=cK)=(rK =cK )}2p, the

Gn;S(!) test is more powerful than the Gn;L(h) test.

Hence neither the Gn;S(!) test nor its competitor Gn;L(h) can consistently outperform
the other in terms of powers. Furthermore, since the equivalent choice of h and !, for
function estimation under the uniform design, is the same as that given in (3.10), Case
III above implies that, for these choices of ! and h, the Gn;S(!) test will be more
powerful than the Gn;L(h) test.

4.2. Optimal choice of kernel function

Unlike nonparametric curve :tting, the literature on nonparametric testing has not
addressed the issue of optimal kernel function. Interestingly, the equivalence results
between the Gn;S(!) and Gn;L(h) tests deliver quantitative information about choices
of kernel function. This is due to the fact that the arguments for Theorem 2 regarding
the Gn;S(!) test will go through, after appropriate modi:cations, to the Gn;L(h) test.
Particularly, examination of the second term on the right hand side of Eq. (6.10) (see
Appendix) suggests that for the Gn;L(h) test, the asymptotic power is determined in
rate by nh1=2, and in proportionality constant by a functional, rK=cK, depending on
the kernel function. It follows naturally that the larger the ratio rK=cK = 1=

∫
(K −

2−1K ∗ K)2(t) dt is, the larger the resulting asymptotic power is. According to this
optimality criterion, Table 1 indicates that the Epanechnikov kernel performs the best,
followed by the Biweight and Triweight kernels. Seeking the closed-form expression
for the optimal kernel function along this line will be an interesting future work.
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5. Simulation

In this section we summarize numerical information about the extent to which
large-sample properties of the previous section are reNected in :nite sample situations.
To make a fair power comparison between the Gn;L(h) and Gn;S(!) tests, :xed-design
points are considered. We simulate responses from the alternative models of two dif-
ferent forms of regression functions. They are

Example 1: Yi = 1 + 2(4xi − 2)

+ �(4xi − 2)2 + 	i; i = 1; : : : ; n; �∈ [0; 0:9]; (5.1)

Example 2: Yi = 1 + 2(4xi − 2)

+ �(4xi − 2) exp(2xi) + 	i; i = 1; : : : ; n; �∈ [0; 0:6]; (5.2)

with xi = (i− 0:5)=n, where the 	i are uncorrelated standard normal random errors. For
simplicity, we choose 20 values of � equally spaced in the intervals above; � = 0
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Fig. 1. Power comparison of Gn;S (!) and Gn;L(h) against alternative models (5.1), where h = C1n−2=(4p+1)

with C1 = 1:5 × 0:29, and ! = C2p
2 n−4p=(4p+1). Solid curve: Gn;S (!) based on cubic smoothing spline;

dashed curve: Gn;L(h) based on local linear estimation with the Epanechnikov kernel. The bottom dot-
ted lines denote the norminal 5% signi:cance level. Case I: C2=C1 = 2−1(rK=cK)=(rK =cK ); Case II:
C2=C1 = (rK=cK)=(rK =cK ); Case III: C2=C1 = 1.
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Fig. 2. Power comparison of Gn;L(h), using diGerent kernel-based smoothers, against alternative models (5.1).
Dashed curve: Epanechnikov kernel; dotted curve: Biweight kernel; dash dotted curve: Triweight kernel. The
bottom dotted lines denote the norminal 5% signi:cance level.

corresponds to the null model, that is, our goal is to test for the validity of a linear
model (with p=2 in (2.2)) under a nonparametric regression model (2.1). The simula-
tion study consists of generating 1000 independent samples from each of the alternative
models. The empirical powers are estimated by the proportion of times the observed
test statistics exceed their upper 5% critical values. The critical values are obtained
from the 95th sample percentiles across 1000 independent samples, generated from the
null model. Cubic smoothing splines, local linear smoothing with the Epanechnikov
kernel are treated, respectively.

The empirical power curves of the Gn;S(!) and Gn;L(h) tests against the alter-
natives in (5.1) are presented in Fig. 1, in which sample sizes 50 and 100 are
considered. There the bandwidth h = C1n−2=(4p+1), with the proportionality constant
C1 = 1:5 × 0:29, is chosen based on the empirical formula given in (2.8); the choice
! = C2p

2 n−4p=(4p+1) follows the :rst part of Theorem 3. (The power curves will be
similar if the rates of h and ! are replaced by n−1=(2p+1) and n−2p=(2p+1) as in the
second part of Theorem 3.) The three cases in Fig. 1 correspond to the ratios C2=C1

equal to 2−1(rK=cK)=(rK =cK ); (rK=cK)=(rK =cK ), and 1, respectively. According to
the summary in the last paragraph of Section 4.1, Gn;S(!) is less powerful in Case I
than Gn;L(h), is as powerful in Case II as Gn;L(h), and is more powerful in Case III
than Gn;L(h). Indeed, these theoretical conclusions are well supported by the simulated
power plots in Fig. 1.

Furthermore, we present in Fig. 2 the power comparison of the Gn;L(h) test, in which
the Epanechnikov, Biweight, and Triweight kernels are used respectively. Clearly, Fig.
2 lends convincing support to an asymptotic result obtained in Section 4.2; that is, the
Epanechinikov kernel outperforms the other multiweight kernels.

Similarly, when the alternative model is (5.2), the power comparison between Gn;L(h)
and Gn;S(!) is presented in Fig. 3, while Fig. 4 displays the power comparison between
diGerent choices of kernel functions.
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Fig. 3. Power comparison of Gn;S (!) and Gn;L(h) against alternative models (5.2), where h = C1n−2=(4p+1)

with C1 = 1:5 × 0:29, and ! = C2p
2 n−4p=(4p+1). Solid curve: Gn;S (!) based on cubic smoothing spline;

dashed curve: Gn;L(h) based on local linear estimation with the Epanechnikov kernel. The bottom dot-
ted lines denote the norminal 5% signi:cance level. Case I: C2=C1 = 2−1(rK=cK)=(rK =cK ); Case II:
C2=C1 = (rK=cK)=(rK =cK ); Case III: C2=C1 = 1.
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Fig. 4. Power comparison of Gn;L(h), using diGerent kernel-based smoothers, against alternative models (5.2).
Dashed curve: Epanechnikov kernel; dotted curve: Biweight kernel; dash dotted curve: Triweight kernel. The
bottom dotted lines denote the norminal 5% signi:cance level.
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6. Summary and extensions

In nonparametric testing, it is of both theoretical and practical interest to compare
tests based on diGerent types of curve estimation methods. In this article, we show that
the relative performances of the GLR tests based on the spline and local polynomial
smoothers depend largely on the smoothing parameters. We provide a simple method,
based on comparing the magnitude of the smoothing parameters, to gauge when the
spline-based test is more powerful than the local polynomial regression-based test and
when it is not. We also suggest in (2.8) and (3.12) the empirical methods for choos-
ing the optimal smoothing parameters. Regarding aspects on model assumptions, local
polynomial-based tests are comparatively design adaptive, and require milder assump-
tions on smoothing parameters and random errors. To solve real problems at hand, it
would be advisable to choose the most convenient smoothing method.

In conclusion, we point out that the results in Sections 3 and 4 can be extended in
several directions. For instance, in generalized linear models, the likelihood function
can be obtained via exponential family distribution of the response variable given the
design variable. The GLR statistic can be formulated analogously. Using local linear
regression technique, inference for the generalized linear model based on the Gn;L(h)
test has been given in Cai et al. (2000). In this case, our Theorems 1 and 2 could be
extended to the version of the Gn;S(!) test based on spline method, without too much
technical di;culty. For multivariate modeling, in which the response variable is related
to the covariates by a varying coe;cient model, one may also be interested in assessing
whether the varying coe;cient functions are really varying with certain covariates. To
this end, the varying-coe;cient functions can be :tted by cubic smoothing splines as
proposed in Hastie and Tibshirani (1993); the test statistic Gn;S(!) can be constructed
analogously. It may be possible to extend the results of Gn;L(h) given by Fan et al.
(2001) to those of Gn;S(!). An alternative approach to accomplish this is by :tting a
cubic smoothing spline to the residuals obtained from parametric :ts. Then the testing
problem reduces to evaluate whether the residuals are signi:cantly diGerent from zero,
namely, testing for no eGect of predictor variables. Future research will focus more on
this aspect of the extension.
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Appendix

We :rst list Conditions (A)–(C), which are used in this paper. Assumptions in
Conditions (A) and (B) are not the weakest possible and may be relaxed.
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Condition (A)

(A1) The marginal density f of design variable is Lipschitz continuous and bounded
away from 0; the design variable has a bounded support �.

(A2) m(x) has the continuous (q + 1)th derivative.
(A3) The kernel function K(t) is a symmetric probability density function with

bounded support, and is Lipschitz continuous.
(A4) 0¡E(	4)¡∞.

Condition (B)

(B1) Let G!(s; t) be the Green’s function for the diGerential operator (−1)p!D2p +
f with domain {g∈C2p[0; 1] : g(v)(0) = g(v)(1), for p6 v6 2p − 1}, where
C2p[0; 1] = {g : g has 2p continuous derivatives}. Let � = !1=(2p). There exist
:nite, positive constants 3; . and k such that for all s; t ∈ [0; 1]; |G!(s; t)|6
(k=�1+.) exp(−3|s− t|=�), and |@G!(s; t)=@s|6 (k=�2+.) exp(−3|s− t|=�). If s �= t,
then |@2G!(s; t)=@s @t|6 (k=�3+.) exp(−3|s − t|=�). Either @2G!(s; t)=@s@t exists
for s = t, in which case the last inequality holds, or for all continuous func-
tion g on [0; 1]; |@[

∫ 1
0 {@G!(s; t)=@t}g(t) dt]=@s|6 (k=�3+.){∫ 1

0 (1=2) exp(−3|s −
t|=�)|g(t)| dt + |g(s)|}.

(B2) 0¡E(	4)¡∞.
(B3) The design points xi; 16 i6 n, are generated from a continuous and strictly

positive density f, on a :nite interval [0; 1] without loss of generality, through
the relation

∫ xi
0 f(x) dx = (i − 0:5)=n.

Remark 2. Condition (B1) follows from Chen (1994, p. 67) and Jayasuriya (1996,
p. 1627), and is used to provide an upper bound on |H!(i; j)|, uniformly in i; j =
1; : : : ; n. Condition (B3) on the design points follows the typical assumptions that
have been frequently used in literature on spline-based tests (Eubank and Spiegelman,
1990, p. 388; Eubank and LaRiccia, 1993, p. 2; Chen, 1994, p. 68; Ramil-Novo and
GonzKalez-Manteiga, 2000, p. 819); Jayasuriya (1996, p. 1628) points out the possibility
of relaxing these design assumptions.

Condition (C). The error 	 has a normal distribution.
Before proving the theorems, we require two lemmas.

Lemma 1. Let K (x) = (2�)−1
∫ +∞

−∞ (1 + t2p)−1 exp(−itx) dt, with p= 1; 2; : : : . Denote
r︷ ︸︸ ︷

K ∗ · · · ∗ K (x) as the r-times convolution product of K (x). Then

1
2�

∫ +∞

−∞
(1 + t2p)−r dt =

r︷ ︸︸ ︷
K ∗ · · · ∗ K (0); r = 1; 2; : : : :

In particular, (2�)−1
∫ +∞

−∞ (1 + t2p)−2s dt =
∫

(

s︷ ︸︸ ︷
K ∗ · · · ∗ K)2(x) dx for s = 1;

2; : : : .
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The proof of Lemma 1 can be found in Ramil-Novo and GonzKalez-Manteiga (2000).
We now use this result to prove the following asymptotic representations of tr(Hr

! ), in
terms of Silverman’s kernel function.

Lemma 2. Let K (x)=(2�)−1
∫ +∞

−∞ (1+ t2p)−1 exp(−itx) dt. Set c(f)=
∫ 1

0 f(t)1=(2p) dt.
Then for p¿ 2, as n → ∞; ! → 0, and n! → ∞, it holds that for P and H! given
in (3.3)

tr{(I − P)2 − (I − H!)2}2

=4!−1=(2p)c(f)
∫

(K − 2−1K ∗ K)2(x) dx{1 + o(1)}: (6.1)

Proof. We :rst observe that from (3.2), tr(Hr
! ) =

∑n
j=1(1 + !(jn)−r ; r = 1; 2; : : : .

Speckman (1981) showed that, if p¿ 2, (jn = j2pc0 {1 + o(1)} for 16 j6 n, where
c0 = �2p{∫ 1

0 f(t)1=(2p) dt}−2p, and the o(1) term is uniform for j = o(n2=5). Combining
this result, it follows that

∑
16j6n3=(4p)

(1 + !(jn)−r =
∑

16j6n3=(4p)

(1 + !c0j2p)−r{1 + o(1)}

= (!c0)−1=(2p)
∫ ∞

0

dt
(1 + t2p)r

{1 + o(1)}:

On the other hand, {(jn}nj=1 are nondecreasing and therefore (jn¿O(n3=2) for j¿
n3=(4p), so that

∑
n3=(4p)¡j6n

(1 + !(jn)−r6O{n(n3=2!)−r}: (6.2)

The upper bound in (6.2) is thus o{!−1=(2p)} if r¿ 2. Hence tr(Hr
! ) = !−1=(2p)c(f)

(2�)−1
∫ +∞

−∞ (1+t2p)−r dt {1+o(1)} for r¿ 2, and its dominating term can be expressed
from Lemma 1 in terms of the kernel function K . The proof is completed by observing
(I−P)2 −(I−H!)2 =(2H!−H 2

! )−P and {(I−P)2 −(I−H!)2}2 =(2H!−H 2
! )2 −P.

Proof of Theorem 1. Some additional notations will be introduced :rst. Put Sn = 2−1

(RSS0 − RSS1)=
2 and Tn = 2−1n(RSS0 − RSS1)=RSS1. Then under H0, following
Theorem 1 of Ramil-Novo and GonzKalez-Manteiga (2000), we see that

(RSS0 − RSS1)=
2 − tr{(I − P)2 − (I − H!)2}
[2 tr{(I − P)2 − (I − H!)2}2]1=2

L→ N(0; 1): (6.3)



92 C. Zhang / Journal of Statistical Planning and Inference 126 (2004) 73–95

Applying Lemma 2 along with assumptions made on the orders of the approximation
errors of tr(H!) and tr(H 2

! ), we arrive at

Sn − !−1=(2p)c(f){K (0) − 2−1K ∗ K (0)}
{2!−1=(2p)c(f)

∫
(K − 2−1K ∗ K)2(t) dt}1=2

L→ N(0; 1): (6.4)

Furthermore it is easy to verify that under the null hypothesis, RSS1=n=
2+OP(n−1=2)+
OP{(n!1=(2p))−1}, which together with (6.4) leads to

Tn − !−1=(2p)c(f){K (0) − 2−1K ∗ K (0)}
{2!−1=(2p)c(f)

∫
(K − 2−1K ∗ K)2(t) dt}1=2

L→ N(0; 1): (6.5)

Using the inequality x=(1 + x)6 log(1 + x)6 x for x¿ − 1, we obtain

Gn;S(!) = (n=2){(RSS0 − RSS1)=RSS1 + OP(n−2!−1=p)} = Tn + OP(n−1!−1=p);

which means that (6.5) also holds when Tn is replaced by Gn;S(!). The proof is then
completed by applying Lemma 1 and the identities∫ ∞

0

dy
(1 + y2p)

=
1

2p sin{�=(2p)}�;
∫ ∞

0

dy
(1 + y2p)2 =

(2p − 1)
4p2 sin{�=(2p)}�;∫ ∞

0

dy
(1 + y2p)3 =

(2p − 1)(4p − 1)
16p3 sin{�=(2p)}�;∫ ∞

0

dy
(1 + y2p)4 =

(2p − 1)(4p − 1)(6p − 1)
96p4 sin{�=(2p)} �:

Proof of Theorem 2. Under the alternative hypothesis, we can obtain RSS1=n = 
2 +
OP(n−1=2) + OP{n−1!−1=(2p)}+ O(!). Arguing as in the proof of Theorem 1, it su;ces
to consider :rst the term Sn = 2−1(RSS0 − RSS1)=
2. Put gn = (g(x1); : : : ; g(xn))T and
”n = (	1; : : : ; 	n)T. Then we obtain

Sn = S0
n + [gT

n{(I − P)2 − (I − H!)2}gn
+ 2gT

n{(I − P)2 − (I − H!)2}”n]=(2
2); (6.6)

where the distribution of S0
n is identical to that of Sn under the null hypothesis.

We now deal with the latter two terms in (6.6). Let gn! denote the solution to the
variational problem,

min
s∈Wp

2 [0;1]

[
n−1

n∑
i=1

{g(xi) − s(xi)}2 + !
∫ 1

0
{s(p)(x)}2 dx

]

and de:ne gn! = (gn!(x1); : : : ; gn!(xn))T. Then it follows that

n−1gT
n (H! − P)2gn = n−1gT

n!gn! − n−1gT
nPgn: (6.7)
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The smoothness condition of g and the regularity assumption of the design ensure that
n−1gT

ngn =‖g‖2
f + o(1) and n−1gT

nPgn = o(1). Application of Lemma 4.1 in Craven and

Wahba (1979) gives that n−1(gn! −gn)T(gn! −gn)6 !
∫ 1

0 {g(p)(x)}2 dx. Combining this
inequality with the triangle inequality leads to

n−1gT
n!gn!¿ 2−1n−1gT

ngn − n−1(gn! − gn)T(gn! − gn)

¿ 2−1‖g‖2
f − !

∫ 1

0
{g(p)(x)}2 dx + o(1) (6.8)

in which the negligible term, denoted by o(1), is independent of !. We also deduce
from Chen (1994), the representation expressed as

n−1gT
n (H! − H 2

! )gn = !‖g(p)
n! ‖2

f{1 + o(1)}: (6.9)

Furthermore, it can easily be shown that the cross term gT
n{(I − P)2 − (I −H!)2}”n =

‖g‖fOP(n1=2). This along with (6.6), (6.7) and (6.9) yields

rKSn − an
(2an)1=2 =

rKS0
n − an

(2an)1=2 + rKn={2
2(2an)1=2}[n−1gT
n!gn! + o(1)

+ 2!‖g(p)
n! ‖2

f{1 + o(1)} + 2‖g‖fOP(n−1=2)]; (6.10)

where an = rKcK!−1=(2p)c(f), and rK S0
n−an

(2an)1=2

L→ N(0; 1) following directly from the proof
of Theorem 1. This completes the proof of the :rst part.

Hence (6.8) and (6.10) imply that the test statistics (rKSn − an)=(2an)1=2 or
(rKGn;S−an)=(2an)1=2 can detect a signal g∈Lf2 [0; 1]\{1; x; : : : ; xp−1} with g∈Wp

2 [0; 1]
from the alternative set, if

‖g‖2
f¿C{! + n−1!−1=(4p)} (6.11)

holds for some su;ciently large C. In this case, minimization over ! in the lower
bound above leads to the optimal rate of smoothing parameter != O{n−4p=(4p+1)}, and
thus (6.11) is satis:ed for ‖g‖f¿C1n−2p=(4p+1) for some su;ciently large C1. This
:nishes the proof.

Proof of Theorem 3. The arguments that we use here are similar to those of SerNing
(1980, Chapter 10) or Eubank and LaRiccia (1993).

To compute the relative e;ciency, suppose that the spline-based test uses n2 ob-
servations, whereas the test using local polynomial smoother is to be based on n1

observations. Denote by !2 = C2p
2 n−4p=(4p+1)

2 {c(f)}2p and h1 = C1n
−2=(4p+1)
1 the cor-

responding smoothing parameters. Now consider the local alternative for Gn2 ;S(!2) to
be of the form

∑p−1
j=0 �jxj + {n2!

1=(4p)
2 ={c(f)}1=2}−1=2g2(x), and let the local alterna-

tive for Gn1 ;L(h1) be of the form
∑p−1

j=0 �jxj + {n1h
1=2
1 }−1=2g1(x), with gi ∈Lf2 [0; 1] ∩

Wp
2 [0; 1] \ {1; : : : ; xp−1}; i = 1; 2. In order to compare the powers of the two tests, the
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alternatives must coincide asymptotically, which leads to the requirement

lim

{
n2!

1=(4p)
2 ={c(f)}1=2

n1h
1=2
1

}−1=2

g2(x) = g1(x) (6.12)

for all x∈ [0; 1].
Under the local alternative above, the asymptotic power of Gn2 ;S(!2), by Eq. (6.10), is

1−;{z3−(rK =cK )1=2‖g2‖2
f=(2
2

√
2)}, with ; the standard normal distribution function.

Similarly, the Gn1 ;L(h1) test using n1 observations has the limiting power, given by
1 − ;{z3 − (rK=cK)1=2‖g1‖2

f=(2
2
√

2)}. If we equate these two limiting powers and
make use of (6.12), we obtain

lim(n1=n2) =
{

(C2=C1)1=2 (rK =cK )1=2

(rK=cK)1=2

}(4p+1)=(4p)

:

This establishes the conclusion of (4.1). Similar arguments can be applied to the proof
of (4.2).
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