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© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Since Benjamini and Hochberg (1995) introduced the concept of the false discovery rate (FDR), the FDR has been an
important tool in multiple testing. Procedures based on the FDR obtained more power than those based on the family wise
error rate (FWER). However, these were not themost powerful test in terms of the false non-discovery rate (FNR) whichwas
discussed in the large sample case by Genovese and Wasswerman (2002). For this reason, Benjamini et al. (2006), Storey
(2002) and Nettleton et al. (2006) introduced several adaptive linear step-up procedures.

Benjamini et al. (2006) introduced adaptive linear step-up procedures and established a more powerful test. Since the
one stage linear step-up procedure at desired level qwas actually a test at level qm0

m , wherem is the number of tests andm0 is
the number of true nulls, they tried to estimate the accurate level qm0

m . Specifically, they suggested the two-stage procedure;
the first stage for estimating qm0

m and the second stage for performing hypothesis tests using the one stage linear step-up
procedure with the estimator of qm0

m from the first stage. They proposed the estimator of level q m
m0

as follows:

q = q
mm0

(= q/π0),

wherem0 is the estimator ofm0, and estimatedm0 by using the following relationship

m0 ≤ m − (R − V ), (1.1)

where R is the number of rejections and V is the number of false rejections in the first stage. However, there were two
problems when estimatingm0. One is to find a good predictor of V and the other is to obtain the closest estimator tom0.

For the answer to the first problem, there were two approaches suggested by Benjamini et al. (2006). One is based on
the classical rejection method which rejects the null hypotheses if p-value is less than a given critical value, λ. The other is
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Table 1
2 × 2 table of the m hypothesis tests classified by whether the null hypotheses are
rejected or not and whether the tested null hypotheses are true or not.

Accept H0 Reject H0 Total

Null true U V m0
Alternative true T S m1

Total W R m

based on the one stage linear step-up procedure at level, λ. V is approximated as λm0 by the classical rejection method and
λRm0

m by the one stage linear step-up procedure. Then, based on the classical rejectionmethod, we obtain Storey’s estimator
(Storey, 2002) as follows:

m0 =
m − R
1 − λ

. (1.2)

Meanwhile, we can drive the two-stage linear step-up procedure (Benjamini et al., 2006) with the one stage linear step-up
procedure. We will only focus on the classical rejection method in this paper.

The answer to the second problem is related to the derivation of the inequality (1.1). Usually, the set of the rejected hy-
potheses does not contain all of the alternative hypotheses and it causes the inequality (1.1). In other words, when λ is close
to 1, all of the alternative hypotheses would be included in the set of the rejected hypotheses. It implies that the bias ofm0
becomes smaller. However, the variance ofm0 typically becomes larger. Liang and Nettleton (2012) discussed this problem
and showed that their dynamically adaptive procedure (RB20∗) was improved in terms of MSE. We suggest procedures that
allow λ to go to one with an appropriate convergence rate. The simulation study shows that our novel procedures with
appropriate tuning parameters are superior to pre-existing procedures in terms of FDR and power. Furthermore, when the
effect size is small, our method is even better than RB20∗ in terms of MSE.

The rest of the paper is organized as follows. We introduce new adaptive linear step-up procedures and explain the con-
nection with pre-existing procedures in Section 2. Then, we show how these methods control the FDR and behave asymp-
totically in Section 3. A simulation study is presented in Section 4 to compare our procedures with pre-existing procedures
in case where the test statistics are dependent as well as independent. The paper concludes with the discussion in Section 5.

2. Method

2.1. Terminology

Before introducing new procedures, we define several terminologies. Let Hi denote the tested null hypothesis and let
Hi = 0 (or 1) if the ith tested null hypothesis is true (or false) for i = 1, . . . ,m. Let G1 and G0 be the set of the alternative
hypotheses (Hi = 1) and the set of the null hypotheses (Hi = 0), respectively. |G1| = m1 and |G0| = m0. We can categorize
them number of tests as in Table 1 and then π0 (= m0/m) is defined as the proportion of the null hypotheses. Let Pi denote
the ith p-value, i = 1, . . . ,m, and P(1) < · · · < P(m) be the ordered p-values.

2.2. Fixed linear step-up procedure

For Storey’s estimator (1.2) to be unbiased, it needs to satisfy

P(G1 ⊂ GR(λ)) = 1, (2.1)

where GR(λ) = {i ∈ {1, . . . ,m} : Pi ≤ λ}. GR(λ) is the set of the rejected hypotheses at a given threshold, λ. When Eq. (2.1)
is true, the inequality (1.1) will be an equality almost surely. This indicates that as long as GR contains G1, we will be able to
achieve the closest estimator tom0. However, GR does not usually contain G1.

To see the case where G1 is contained in GR, consider the case of a trivial threshold. When the threshold λ is equal to
1, GR(1) becomes the whole set and one has G1 ⊂ GR. This trivial threshold, however, is inappropriate because we cannot
estimatem0 when λ = 1. So, we consider λ = 1 − ϵ instead. In other words, we suggest the threshold λm such that

λm ↗ 1 as m → ∞. (2.2)

The performance of this estimator depends on the convergence rate of λm.
To investigate the convergence rate ofλm, we borrow themodel setting, called the randomeffects (or hierarchical)model,

from Efron et al. (2001) and Genovese and Wasswerman (2004). Assume that for 0 ≤ π0 ≤ 1:

(Hi, Ξi, Pi)′s are independent with Hi, the ith hypothesis, and Pi, the ith p-value;
H1, . . . ,Hm ∼ Bernoulli(1 − π0);

Ξ1, . . . , Ξm ∼ LF;
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Pi|Hi = 0, Ξi = ξi ∼ Uniform(0, 1);
Pi|Hi = 1, Ξi = ξi ∼ ξi;

Pi ∼ G, with G(t) = π0t + (1 − π0)F(t) and F(t) =


ξ(t)dLF,

where Ξ1, . . . , Ξm denote distribution functions and LF is an arbitrary probability measure over a class of distribution
functions F that is stochastically dominated by the Uniform(0, 1) (i.e. t ≤ P(ξ ≤ t) for all t and t < P(ξ ≤ t) for some t)
and G is strictly concave with density g = G′.

Under this model,
g(t) = π0 + (1 − π0)f (t) ≥ π0, (2.3)

where f (t) = F ′(t). Furthermore, since G is strictly concave,
g(1) = min

t∈[0,1]
g(t). (2.4)

If we let πg ≡ g(1) ≥ π0, then πg ≥ π0 by (2.3) and (2.4) and it can be estimated by a kernel function

πg, K =


∞

−∞

1
b
K


1 − u

b


dG(u),

whereG is an empirical CDF and b = 1 − λm. We set the kernel function K(t) = I(|t| ≤ 1), where I(·) denotes an indicator
function. The way K(·) is defined is a little bit different from the traditional definition because we need to deal with the fact
that G(1) = 1. Then,

πg,I(|t|≤1) = πg =

G(1 + b) −G(1 − b)
b

=
1 −G(λm)

1 − λm
=

1 − # {Pi ≤ λm} /m
1 − λm

. (2.5)

Remark 1. The kernel function K(·) to estimate πg can be defined in different ways.

When λm is fixed, this is exactly the same as the well-known Storey’s estimator (Storey, 2002) which is based on the estima-
tor of G. However, for fixedm, Storey’s estimator does not control the FDR and so, it is modified later in Storey et al. (2004).
We also consider the modified version,

π∗

g =
m − # {Pi ≤ λm} + 1

m(1 − λm)
.

The performance of this estimator depends on the convergence rate of λm. We suggest
λm = 1 − c · m−1/3/ log{log(m)},

where c is a positive constant number. Using this estimator, we define the new adaptive linear step-up procedure.

Definition 1 (P-LSU1 (Proposed Linear Step-Up Procedure 1)). Step 1. Estimatem0 = m ·π∗
g .

Step 2. Ifm0 = 0, reject all hypotheses; otherwise, test the hypotheses using the linear step-up procedure at level qm/m0.

We discuss the asymptotic behaviors and the convergence rate of b in Section 3.

2.3. Dynamically adaptive procedure

Similarly to (2.2), consider the following procedure

π0 =
m + 1 − (m − τm)

m{1 − P(m−τm)}
=

τm + 1
m{1 − P(m−τm)}

,

where τm → ∞ and τm/m → 0 as m → ∞. Note that when τm is fixed, π0 is exactly the same as the quantile adaptive
linear step-up procedure in Benjamini et al. (2006). The performance of this estimator relies on the convergence rate of τm.
We suggest

τm = ⌊mα
⌋ ,

where α ∈ (0, 1). Then, the proportion of τm tom goes to zero asm → ∞. Based on this estimator, we define another new
adaptive linear step-up procedure.

Definition 2 (P-LSU2 (Proposed Linear Step-Up Procedure 2)). Step 1. Estimatem0 =
τm+1

1−P(m−τm)
.

Step 2. Ifm0 = 0, reject all hypotheses; otherwise, test the hypotheses using the linear step-up procedure at level qm/m0.

3. Analytical result

In this section, we investigate how our proposed procedures control the FDR and behave asymptotically.
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3.1. Controlling the FDR

For fixedm, the procedures in Definitions 1 and 2 are the same as themodified version of Storey’s estimator (Storey et al.,
2004) and the quantile adaptive linear step-up procedure (Benjamini et al., 2006), respectively. In light of this, we can derive
the following two theorems.

Theorem 1. If the test statistics are independent, the adaptive linear step-up procedure in Definition 2 controls the false discovery
rate at level q.

Proof. Without loss of generality, let H1 come from G0 and let P1 be the p-value associated with H1. Define P (1) to be the
vector of p-values corresponding to the (m − 1) hypotheses excluding H1. Given P (1), let ℓ(P1) be the indicator that H1 is
rejected using P-LSU2, as a function of P1. Then, it is enough to show that EP(1){

m0m0(p∗)
} ≤ 1 by Eq. (5) in Benjamini et al. (2006),

where p∗
= p∗(P (1)) such that ℓ(P1) = I(P1 ≤ p∗). In case of P-LSU2, since m0 does not depend on p∗,m0(p∗) =

τm+1
1−P(m−τm)

.
If k ≤ m1 + 1, where k = m − τm,

EP(1)


m0m0(p∗)


=

m0

m − k + 1
EP(1){1 − P(k)} ≤ 1.

If k > m1 + 1, at least k − m1 − 1p-values from G0 \ {H1} are less than or equal to P(k). LetPi’s be the p-values from
G0 \ {H1}. Then,P(k−m1−1) ≤ P(k), which implies that

EP(1)


m0m0(p∗)


=

m0

m − k + 1
EP(1){1 − P(k)}

≤
m0

m − k + 1
EP(1){1 −P(k−m1−1)}

=
m0

m − k + 1


1 −

k − m1 − 1
m0


= 1.

The third equality follows from the fact thatP(k−m1−1) ∼ Beta(k − m1 − 1,m − k + 1). �

Note that the same result as Theorem 1 has been presented in Theorem 2 of Benjamini et al. (2006). However, their proof
contained a minor error and here we offer a correction. For example, in their proof, when k = m1 + 1, the statement does
not hold. The following theorem has been showed by Storey et al. (2004, Theorem 3). We prove this again in the light of the
approach in Benjamini et al. (2006) as they mentioned in the paper.

Theorem 2. When the test statistics are independent, the adaptive linear step-up procedure in Definition 1 controls the false
discovery rate at level q.

Proof. We use the same setting as the proof of Theorem 1. Let λm = λ.

EP(1)


m0m0(p∗)


≤ m0EP(1)


1 − λ

#

P (1) > λ


+ 1


≤ m0

1 − λ

EP(1)#

P (1) > λ


+ 1

≤ m0
1 − λ

EP(1)#{Pi > λ} + 1
≤ 1.

The second inequality holds by Jensen’s inequality. �

Theorems 1 and 2 show that our proposed procedures control the FDR for any fixedm.

3.2. Asymptotic results

From asymptotic theorems for kernel density estimation (see, e.g. Shao, 2003, Chapter 5.1), we can obtain the consistency
ofπg .

Lemma 1. Let b → 0 and m · b → ∞. If g(t) is left continuous at t = 1, thenπg − πg = op(1).

Proof. By Taylor’s expansion, g(1) =
G(1)−G(1−b)

b + op(1), which implies that πg − g(1) =
G(1−b)−G(1−b)

b + op(1) =

Op(
1

√
mb

) + op(1) = op(1). �

Combining this result and Lemma 2 below, we can show that the procedure based onπq in (2.5) controls the FDR at level
q, asymptotically.
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Lemma 2. Assume that G is concave andπ0
p

→ π∗

0 for some π∗

0 > π0. If we let T = supt∈[0,1]{t : π0t/G(t) ≤ q}, then

E {FDP(T )} ≤ q + o(1).

Proof. This follows from Theorem 5.2 in Genovese and Wasswerman (2002). �

If g(t) is smooth enough, we can obtain the asymptotic distribution.

Theorem 3. If the test statistics are independent, g(t) is left continuously differentiable at t = 1 and mb3 → 0,
√
mb(πg − πg)

d
→N(0, g(1)). (3.1)

Proof. By Taylor’s expansion,

√
mb{πg − g(1)} =

√
m


G(1 − b) −G(1 − b)

√
b


+ Op(

√

mb3).

If
√
m{

G(1−b)−G(1−b)
√
b

}
d

→N(0, g(1)), (3.1) holds. Now, we check Lindeberg’s condition. Let Xm,i =
1

√
b
{I (Pi ≤ 1 − b) − G(1−

b)} and σ 2
m = Var(

m
i=1 Xm,i) = m · g(1) + Op(mb). For any ϵ > 0,

1
σ 2
m

m
i=1

E

X2
m,iI


X2
m,i > ϵσ 2

m


=

1
g(1) + Op(b)

E

X2
m,1I


X2
m,1 > ϵσ 2

m


=

1
g(1) + Op(b)

×


|I(x≤−1)−G(1−b)|>

√
ϵσ 2

m

{I (x ≤ −1) − G(1 − b)}2 g(bx + 1)dx

→ 0 as m → ∞ by dominated convergence theorem.

Thus, by Lindeberg’s central limit theorem,
√
m{

G(1−b)−G(1−b)
√
b

}
d

→N(0, g(1)). �

Remark 2. Even though we choose different kernel functions, if it is appropriate, all of the arguments above will continue
to hold.

To obtain the asymptotic normal distribution, Theorem 3 tells us that λm should satisfy

m(1 − λm)3 → 0 and m(1 − λm) → ∞.

In this point of view, as we mentioned in Section 2, we suggest λm = 1 − c · m−1/3/ log{log(m)}, where c is a positive
constant.

4. Simulation study

4.1. Candidate procedures

Simulation study is performed to compare several adaptive linear step-up procedures with the procedures (P-LSU1 and
P-LSU2) proposed in this paper. We considered the following procedures:

(a) P-LSU1(c), the proposed linear step-up procedure in Definition 1 with a constant, c;
(b) S-HLF, the adaptive linear step-up procedure proposed by Storey (2002) with λ = 0.5;
(c) M-S-HLF, the modified version of Storey’s estimator in Storey et al. (2004);
(d) TST, the two stage linear step-up procedure by Benjamini et al. (2006);
(e) P-LSU2(α), the proposed linear step-up procedure in Definition 2 with the decaying rate, α;
(f) RB20∗, the right boundary procedure proposed by Liang and Nettleton (2012) with a candidate set for λ, Λ = {0.02,

0.04, . . . , 0.10, 0.15, 0.2, . . . , 0.95};
(g) MED, the median adaptive procedure proposed by Benjamini and Hochberg (2000);
(h) ABH, the adaptive linear step-up procedure of Benjamini and Hochberg (2000);
(i) ORC, the linear step-up procedure at level qm/m0 (ORACLE).

P-LSU2, RB20∗, MED, and ABH are dynamically adaptive procedures. All other procedures except ORC are fixed adaptive
procedures. All nine procedures control the FDR for fixedm or asymptotically.

For the first part of study, the simulation was repeated 10000 times. The standard error of the estimated values was the
order of 0.002 or less. The target level of the FDR, q, was 0.05. The p-values were generated in the following way. The null
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Table 2
Simulation study with independent test statistics. Estimates of the FDR from 8 different procedures are compared for 4 different levels ofm and 4 different
labels ofm0/m.

m m0/m = 0.25 m0/m = 0.50 m0/m = 0.75 m0/m = 1
64 512 4096 20000 64 512 4096 20000 64 512 4096 20000 64 512 4096 20000

P-LSU1(1) 0.044 0.047 0.047 0.048 0.049 0.049 0.049 0.049 0.051 0.050 0.050 0.050 0.057 0.052 0.048 0.050
P-LSU1(2) 0.042 0.045 0.047 0.048 0.048 0.048 0.049 0.049 0.050 0.050 0.050 0.050 0.054 0.051 0.047 0.049
P-LSU1(3) 0.040 0.044 0.046 0.047 0.047 0.048 0.049 0.049 0.049 0.049 0.050 0.050 0.054 0.051 0.047 0.049
P-LSU1(4) 0.036 0.043 0.046 0.047 0.045 0.047 0.048 0.049 0.048 0.049 0.050 0.050 0.052 0.051 0.047 0.049
P-LSU1(5) 0.030 0.042 0.045 0.046 0.042 0.047 0.048 0.049 0.048 0.049 0.049 0.050 0.051 0.050 0.047 0.049
S-HLF 0.044 0.040 0.039 0.039 0.050 0.046 0.046 0.046 0.051 0.049 0.049 0.048 0.055 0.050 0.046 0.049
M-S-HLF 0.040 0.039 0.039 0.039 0.047 0.046 0.046 0.046 0.049 0.049 0.049 0.048 0.054 0.050 0.046 0.049
TST 0.023 0.023 0.022 0.022 0.035 0.034 0.034 0.034 0.042 0.041 0.041 0.041 0.049 0.047 0.044 0.047
P-LSU2(0.1) 0.044 0.048 0.049 0.049 0.051 0.051 0.051 0.051 0.056 0.055 0.055 0.054 0.064 0.057 0.058 0.058
P-LSU2(0.2) 0.044 0.048 0.048 0.049 0.051 0.050 0.050 0.050 0.056 0.054 0.053 0.052 0.064 0.057 0.054 0.054
P-LSU2(0.4) 0.043 0.046 0.047 0.048 0.049 0.049 0.049 0.050 0.052 0.051 0.050 0.050 0.059 0.054 0.050 0.051
P-LSU2(0.5) 0.041 0.045 0.047 0.048 0.048 0.049 0.049 0.049 0.051 0.050 0.050 0.050 0.057 0.053 0.048 0.050
P-LSU2(0.6) 0.038 0.043 0.045 0.047 0.048 0.048 0.049 0.049 0.050 0.050 0.050 0.050 0.056 0.052 0.048 0.050
P-LSU2(0.8) 0.026 0.033 0.038 0.040 0.044 0.046 0.047 0.047 0.049 0.049 0.049 0.049 0.054 0.050 0.047 0.049
P-LSU2(0.9) 0.019 0.023 0.027 0.030 0.037 0.041 0.043 0.044 0.048 0.048 0.048 0.049 0.052 0.050 0.047 0.049
RB20∗ 0.035 0.039 0.043 0.045 0.044 0.044 0.046 0.048 0.048 0.047 0.048 0.049 0.052 0.049 0.046 0.049
MED 0.025 0.024 0.024 0.024 0.044 0.042 0.042 0.042 0.050 0.048 0.048 0.048 0.052 0.050 0.046 0.049
ABH 0.033 0.027 0.024 0.023 0.042 0.037 0.035 0.035 0.047 0.044 0.043 0.043 0.051 0.049 0.046 0.049
ORC 0.050 0.050 0.050 0.050 0.051 0.050 0.050 0.050 0.051 0.050 0.050 0.050 0.050 0.049 0.046 0.049

Table 3
Simulation study with independent test statistics. Estimates of power from 8 different procedures are compared for 4 different levels of m and 3 different
labels ofm0/m.

m m0/m = 0.25 m0/m = 0.50 m0/m = 0.75
64 512 4096 20000 64 512 4096 20000 64 512 4096 20000

P-LSU1(1) 0.7656 0.7866 0.7944 0.7977 0.6483 0.6559 0.6596 0.6604 0.5357 0.5343 0.5352 0.5356
P-LSU1(2) 0.7685 0.7868 0.7932 0.7964 0.6497 0.6562 0.6592 0.6600 0.5344 0.5347 0.5351 0.5356
P-LSU1(3) 0.7627 0.7844 0.7917 0.7952 0.6480 0.6555 0.6587 0.6596 0.5335 0.5347 0.5350 0.5355
P-LSU1(4) 0.7521 0.7815 0.7902 0.7941 0.6437 0.6547 0.6582 0.6593 0.5326 0.5344 0.5349 0.5354
P-LSU1(5) 0.7320 0.7782 0.7887 0.7931 0.6357 0.6535 0.6578 0.6590 0.5300 0.5341 0.5348 0.5353
S-HLF 0.7778 0.7715 0.7702 0.7702 0.6559 0.6515 0.6513 0.6513 0.5381 0.5339 0.5329 0.5329
M-S-HLF 0.7638 0.7699 0.7700 0.7702 0.6484 0.6506 0.6512 0.6512 0.5336 0.5333 0.5329 0.5329
TST 0.6961 0.6959 0.6957 0.6956 0.6133 0.6127 0.6133 0.6132 0.5170 0.5150 0.5142 0.5144
P-LSU2(0.1) 0.7674 0.7768 0.7797 0.7854 0.6497 0.6523 0.6513 0.6541 0.5425 0.5410 0.5411 0.5396
P-LSU2(0.2) 0.7674 0.7812 0.7892 0.7928 0.6497 0.6526 0.6542 0.6560 0.5425 0.5396 0.5381 0.5373
P-LSU2(0.4) 0.7700 0.7874 0.7944 0.7980 0.6505 0.6558 0.6591 0.6603 0.5391 0.5358 0.5352 0.5354
P-LSU2(0.5) 0.7668 0.7859 0.7932 0.7968 0.6505 0.6563 0.6595 0.6604 0.5376 0.5351 0.5352 0.5356
P-LSU2(0.6) 0.7598 0.7809 0.7896 0.7937 0.6499 0.6559 0.6590 0.6599 0.5360 0.5349 0.5351 0.5356
P-LSU2(0.8) 0.7158 0.7482 0.7651 0.7736 0.6417 0.6500 0.6541 0.6558 0.5336 0.5340 0.5343 0.5347
P-LSU2(0.9) 0.6735 0.6981 0.7189 0.7320 0.6226 0.6363 0.6437 0.6471 0.5308 0.5318 0.5324 0.5331
RB20∗ 0.7474 0.7689 0.7833 0.7901 0.6412 0.6462 0.6530 0.6563 0.5304 0.5297 0.5320 0.5334
MED 0.7071 0.7060 0.7055 0.7055 0.6420 0.6395 0.6395 0.6395 0.5365 0.5327 0.5317 0.5318
ABH 0.7413 0.7188 0.7063 0.7003 0.6343 0.6245 0.6195 0.6167 0.5283 0.5228 0.5198 0.5188
ORC 0.8053 0.8042 0.8037 0.8038 0.6639 0.6624 0.6624 0.6624 0.5398 0.5372 0.5363 0.5363

distributions were identically N(0, 1) and the alternative distributions were N(µi, 1), where µi = i for i = 1, 2, 3 and 4.
This cycle was repeated to produce the desired m1 values under H1. The number of tests, m, was set at 64, 512, 4096 and
20000 and the fraction of null hypotheses, π0(= m0/m), was 25%, 50%, 75% and 100%. We assumed that the test statistics
are independent and p-values were calculated as Pj = 1−Φ(Yj) for j = 1, . . . ,m, where Yj’s come from the null distribution
for i = 1, . . . ,m0 and the alternative distribution for i = m0 + 1, . . . ,m. To investigate sensitivity to the choice of tuning
parameters (c andα), for P-LSU1,we chose c = 1, 2, 3, 4, and5 and the decaying rate,α, was set at 0.1, 0.2, 0.4, 0.5, 0.6, 0.8,
and 0.9 on P-LSU2.

4.2. Simulation result for independent tests

Table 2 shows that our two proposed procedures control the FDRwell so that their estimates are closer to the target level
q = 0.05 than others except the case where α = 0.1, 0.2, 0.8, and 0.9. The case of m0/m = 1 seems to be an exception,
but whenm is big enough, they control the FDR well again. Note that when the decaying rate, α, is too small (α = 0.1, 0.2),
P-LSU2 has slightly bigger FDR in case of m0/m = 1. In Table 3, we compared the power among the procedures. Storey’s
procedure performs well when m = 64 and its power is stable even though the sample size m changes because of the
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Fig. 1. Under the independence assumption, 9 procedures are compared in terms of FDR, relative power and MSE of m0 . Solid line: P-LSU1; dotted line:
P-LSU2; dashed line: ORC; ×: S-HLF; △: M-S-HLF; ♦: TST; +: RB20∗

; ◦: MED; #: ABH.

fixed choice of λ. The proposed procedures perform better for large m. When m = 20 000, the performance of P-LSU1 with
c = 1, 2, 3, 4 and P-LSU2 with α = 0.4, 0.5, 0.6 are better than that of any other procedures. This is a predictable result
because when m is small, the asymptotic variance of the estimator of m0 is expected to be big, but when m is big enough,
the affect of variance is small.

Whenm = 64, the choice of tuning parameter, c , influences on the performance of P-LSU1. For example, when c = 4 or
5, the power and FDR of P-LSU1 are relatively worse. However, the performance of P-LSU1 becomes robust to the choice of
the tuning parameter, when m is big enough. For P-LSU2, when the decaying rate, α, is too small or too big (α = 0.1, 0.2,
0.8, 0.9), the performance of P-LSU2 is not good. On the other hand, whenwe chooseα between 0.4 and 0.6, P-LSU2 is robust
to the choice of α and works well. Based on this sensitivity study, we suggest to choose c between 1 and 3, and α between
0.4 and 0.6.

4.3. Simulation study for comparingMSE

4.3.1. Simulation result for independent tests
To investigate MSE, another simulation study was carried out with the same setting as the one conducted by Liang and

Nettleton (2012). Specifically, the simulationwas repeated 10000 times and the number of tests,m, was 10000. The fraction
of null hypotheses,m0/m, was set to be 25%, 50% and 75%. The null distribution and the alternative distributionwereN(0, 1)
andN(µ, 0), respectively. For the alternative distribution,µwas set atµ = 0.5, 1, 2, 4 and 8 to cover the range of all possible
effect sizes. When the effect size is small (µ = 0.5), the alternative p-values are well mixed with the null p-values. On the
other hand, when effect size is large (µ = 8), the alternative p-values are well-separated from the null p-values. The tuning
parameters were set at c = 3 and α = 0.6.

In Fig. 1, MSE of P-LSU1 and P-LSU2 is smaller than those of any others when the possible effect size is small (µ = 0.5 or
1). This is because when the effect size is small, the bias influences on the results a lot. In terms of FDR and power, P-LSU1
and P-LSU2 are similar and are the most powerful and closest to the desired level 0.05 over all 5 different levels of µ. This
shows that even though P-LSU1 and P-LSU2 are not the best in terms of MSE for the large effect size, these procedures are
superior in terms of power.
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Fig. 2. Under the dependence assumption, 9 procedures are compared in terms of FDR, relative power and MSE of m0 . Solid line: P-LSU1; dotted line:
P-LSU2; dashed line: ORC; ×: S-HLF; △: M-S-HLF; ♦: TST; +: RB20∗

; ◦: MED; #: ABH.

4.3.2. Simulation result for dependent test
To examine the case where the test statistics are correlated, we borrow the setting from Liang and Nettleton (2012). The

test statistics have block auto-regressive order 1 correlation structure with correlation of ρ|i−j| for the ith element and jth
element within any block and block size of 50. The correlation coefficient ρ was set at −0.9. The tuning parameters were
set at c = 3 and α = 0.6.

In Fig. 2, since there exists a correlation between the test statistics, when the effect size is small (µ = 0.5 or 1), all
procedures, even including ORC, do not control the FDR very well. The performance of P-LSU1 and P-LSU2 are similar. They
are the most powerful test among all procedures and have the smallest MSE for the small effect size (µ = 0.5).

We conclude this sectionwith a comment on the usefulness of our proposedmodels. Practically, we usually consider two-
sided tests so that the effective size is not big enough as in case of µ = 0.5 or 1 and the correlation structure is unknown.
In this point of view, P-LSU1 and P-LSU2 are recommended in the real data analysis.

5. Discussion

When the effect size is big enough, the performance of existing adaptive procedures are good and we can find an
appropriate threshold λ by dynamically adaptive procedures such as RB20∗. However, in practice, we do not knowwhether
the effect size is big or not. Also, since the two-sided tests are usually preferred by practitioners and the test statistics are
commonly correlated, it is very likely that the null p-values are mixed with the alternative p-values. Therefore, P-LSU1 and
P-LSU2 are recommended to use when analyzing real data.

To use our proposed procedures, we need to determine an appropriate c for P-LSU1 and α for P-LSU2. In the paper, we
study the sensitivity of the choice of c and α. We find that when c is between 1 and 3 and α is between 0.4 and 0.6, the two
proposed procedures are robust to the choice of the tuning parameters.
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