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ABSTRACT. Prediction error is critical to assess model fit and evaluate model prediction. We
propose the cross-validation (CV) and approximated CV methods for estimating prediction error
under the Bregman divergence (BD), which embeds nearly all of the commonly used loss functions
in the regression, classification procedures and machine learning literature. The approximated CV
formulas are analytically derived, which facilitate fast estimation of prediction error under BD. We
then study a data-driven optimal bandwidth selector for local-likelihood estimation that minimizes
the overall prediction error or equivalently the covariance penalty. It is shown that the covariance
penalty and CV methods converge to the same mean-prediction-error-criterion. We also propose a
lower-bound scheme for computing the local logistic regression estimates and demonstrate that the
algorithm monotonically enhances the target local likelihood and converges. The idea and methods
are extended to the generalized varying-coefficient models and additive models.
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1. Introduction

Prediction error is critical to assess the performance of statistical methods and select statisti-
cal models. Different loss functions are used for computing the prediction error in different
machine-learning problems. In binary classification, for example, the misclassification error
rate is more suitable because the class labels are not numeric. Other important margin-based
loss functions have been introduced for binary classification in the machine-learning litera-
ture (Hastie et al., 2001). Hence, it is important to assess the prediction error under a broad
class of loss functions.

A broad and important class of loss functions is the Bregman q-class divergence. It
accounts for different types of output variables and includes the quadratic loss, the deviance
loss for the exponential family of distributions, the misclassification loss and other popu-
lar loss functions in machine learning; see section 2. Once a prediction error criterion is
chosen, the estimates of prediction error are needed. Desirable features include computa-
tional expediency and theoretical consistency. In the traditional non-parametric regression
models, residual-based cross-validation (CV) is a useful data-driven method for automatic
smoothing (Wong, 1983; Rice, 1984; Hall & Johnstone, 1992; Härdle et al., 1992) and can be
handily computed. With the arrival of the optimism theorem (Efron, 2004), estimating the
prediction error becomes estimating covariance-penalty terms. Following Efron (2004), the
covariance penalty can be estimated using model-based bootstrap procedures. A viable model-
free method is the CV estimation of the covariance penalty. Both methods can be shown to
be asymptotically equivalent to the first-order approximation. However, both methods are
extremely computationally intensive in the context of local-likelihood estimation, particularly
for large sample sizes. The challenge then arises from efficient computation of the estimated
prediction error based on CV.
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The computational problem is resolved via the newly developed approximate formulas for
the CV covariance-penalty estimates. A key component is to establish the ‘leave-one-out
formulas’, which offer an analytic connection between the leave-one-out estimates and their
‘keep-all-in’ counterparts. This technical work integrates the infinitesimal perturbation idea
(Pregibon, 1981) with the Sherman–Morrison–Woodbury formulas (Golub & Van Loan, 1996,
p. 50). It is a natural extension of the CV formula for least-squares regression estimates and
generalized linear regression estimates (Davidson & Hinkley, 1997, p. 67), and is applicable
to both parametric and non-parametric models.

The applications of estimated prediction error pervade almost every facet of statistical
model selection and forecasting. To be more specific, we focus on local-likelihood estimation
in varying coefficient models for response variables having distributions in the exponential
family. Typical examples include fitting Bernoulli distributed binary responses,
and Poisson distributed count responses, among many other non-normal outcomes. As a
flexible non-parametric model-fitting technique, the local-likelihood method possesses nice
sampling properties. For details, see, for example, Tibshirani & Hastie (1987), Staniswalis
(1989), Severini & Staniswalis (1994) and Fan et al. (1995). An important issue in applica-
tions is the choice of smoothing parameter. Currently, most of the existing methods deal
with Gaussian type of responses; clearly there is a lack of methodology for non-Gaussian
responses. The approximate CV provides a simple and fast method for this purpose. The
versatility of the choice of smoothing parameters is enhanced by an appropriate choice of
the divergence measure in the q-class of loss functions.

The computational cost of the approximate CV method is further reduced via a newly
introduced empirical version of CV, called ECV, which is based on an empirical construction
of the ‘degrees of freedom’, a notion which provides useful insights into the local-likelihood
modelling complexity. We propose a data-driven bandwidth selection method, based on mini-
mizing ECV, which will be shown to be asymptotically optimal in minimizing a broad q-class
of prediction error. Compared with the two-stage bandwidth selector of Fan et al. (1998), our
proposed method has a broader domain of applications and can be more easily understood
and implemented.

Some specific attentions are needed for the local logistic regression with binary responses,
whose distribution belongs to an important member of the exponential family. To address
the numerical instability, we propose to replace the Hessian matrix by its global lower-bound
(LB) matrix, which does not involve estimating parameter vectors and therefore can easily
be inverted before the start of the Newton–Raphson (NR) iteration. A similar idea of LB
was used in Böhning & Lindsay (1988) for some parametric fitting. We make a conscien-
tious effort to further develop this idea for the local logistic estimation. The resulting LB
method gains a number of advantages: the LB algorithm, at each iteration, updates the gra-
dient vector but does not recalculate the Hessian matrix; thus, is as simple and stable as the
local least-squares regression estimation. The LB method ensures that each iterative estimate
monotonically increases the target local likelihood. In contrast, this property is not shared by
the standard NR method. Hence, the LB iteration is guaranteed to converge to the true local
MLE, whereas the NR is not necessarily convergent. Moreover, we develop a new and adap-
tive data-driven method for bandwidth selection, which can effectively guard against under-
or oversmoothing.

The paper is organized as follows. Section 2 addresses the issue of estimating prediction
error. Section 3 develops computationally feasible versions of the CV estimates of the pre-
diction error. Section 4 proposes a new bandwidth selection method for binary responses,
based on the LB method and the CV estimates of the prediction error. Section 5 describes
the extension to generalized varying-coefficient model. Section 6 presents simulation evalua-
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tions and section 7 analyses real data. Technical conditions and proofs are relegated to the
Appendix.

2. Estimating prediction error

To begin with, we assume that the response variable Y given the vector X of input variables
has a distribution in the exponential family, taking the form

fY |X(y;�(x))= exp[{y�(x)−b(�(x))}/a(�)+ c(y, �)], (1)

for some known functions a(·), b(·) and c(·, ·), where �(x) is called a canonical parameter
and � is called a dispersion parameter, respectively. It is well known that m(x)≡E(Y |X=x)=
b′(�(x)) and �2(x) ≡ var(Y |X=x)=a(�)b′′(�(x)); see Nelder & Wedderburn (1972) and
McCullagh & Nelder (1989). The canonical link is g(·)= (b′)−1(·), resulting in g(m(x))=�(x).
For simplicity of notation and exposition, we will focus only on estimating the canonical
parameter �(x).

2.1. Bregman divergence

The prediction error depends on the divergence measure. For non-Gaussian responses, the
quadratic loss function is not always adequate. For binary classification, a reasonable choice
of divergence measure is the misclassification loss, Q(Y, m̂)= I{Y =/ I(m̂ > 0.5)}, where I(·) is
an indicator function and m̂ is an estimator. However, this measure does not differentiate
the predictions m̂=0.6 and m̂=0.9 when Y =1 or 0. In the case that Y =1, m̂=0.9 gives a
better prediction than m̂=0.6. The negative Bernoulli log likelihood, Q(Y, m̂)=−Y ln(m̂) −
(1 − Y ) ln(1 − m̂), captures this. Other loss functions possessing similar properties include
the hinge loss function, Q(Y, m̂)=max{1 − (2Y − 1)sign(m̂ − 0.5), 0}, in the support vector
machine and the exponential loss function, Q(Y, m̂)= exp{−(Y − 0.5) ln(m̂/(1 − m̂))}, popu-
larly used in AdaBoost. These four loss functions, shown in Fig. 1, belong to the margin-
based loss functions written in the form, V (Y ∗F ), for Y ∗ =2Y −1 and some function F.
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Fig. 1. Illustration of margin-based loss functions. Line types are indicated in the legend box. Each
function has been re-scaled to pass through the point (0, 1).
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Fig. 2. Illustration of Q(Y, m̂) as defined in (2). The concave curve is the q-function; the two dashed
lines indicate locations of Y and m̂; the solid strict line is q(m̂)+q′(m̂)(Y − m̂); the length of the vertical
line with arrows at each end is Q(Y, m̂).

To address the versatility of loss functions, we appeal to a device introduced by Bregman
(1967) and Efron (1986). For a concave function q(·), define a q-class of error measures Q as

Q(Y, m̂)=q(m̂)+q′(m̂)(Y − m̂)−q(Y ). (2)

A graphical illustration of Q associated with q is displayed in Fig. 2. Due to the concavity
of q, Q is non-negative. However, since Q(·, ·) is not generally symmetric in its arguments,
Q is not a ‘metric’ or ‘distance’ in the strict sense. Hence, we call Q the Bregman ‘divergence’
(BD).

It is easy to see that, with the flexible choice of q, the BD is suitable for a broad class
of error measures. Below we present some notable examples of the Q-loss constructed from
the q-function. A function q1(m)=am − m2 for some constant a yields the quadratic loss
Q1(Y, m̂)= (Y − m̂)2. For the exponential family (1), the function q2(m)=2{b(�) − m�} with
b′(�)=m results in the deviance loss,

Q2(Y, m̂)=2{Y (�̃− �̂)−b(�̃)+b(�̂)}, (3)

where b′(�̃)=Y and b′(�̂)= m̂. For a binary response variable Y, q(m)=min{m, 1 − m}
gives the misclassification loss; q(m)=2 min{m, 1 − m} results in the hinge loss; q3(m)=
2{m(1−m)}1/2 yields the exponential loss,

Q3(Y, m̂)= exp{−(Y −0.5) ln(m̂ (1− m̂))}. (4)

2.2. Prediction error under Bregman divergence

Let mi =m(Xi) and m̂i be its estimate based on independent observations {(Xi , Yi)}n
i =1. Set

erri =Q(Yi , m̂i) and Erri =Eo{Q(Y o
i , m̂i)}, where Y o

i is an independent copy of Yi and is
independent of (Y1, . . ., Yn), and Eo refers to the expectation with respect to the proba-
bility law of Y o

i . Note that the conditional prediction error, defined by Erri , is not obser-
vable, whereas the apparent error, erri , is observable. As noted in Tibshirani (1996), directly
estimating the conditional prediction error is very difficult. Alternatively, estimating Erri is
equivalent to estimating the optimism Oi =Erri − erri .
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Efron (2004) derives the optimism theorem to represent the expected optimism as the
covariance penalty, namely, E(Oi)=2 cov(�̂i , Yi), where �̂i =−q′(m̂i)/2. As a result, the
predictive error can be estimated by

Êrri = erri +2 ĉovi , (5)

where ĉovi is an estimator of the covariance penalty, cov(�̂i , Yi). This is an insightful gener-
alization of AIC. Henceforth, the total prediction error Err=∑n

i =1 Erri can be estimated by
Êrr=∑n

i =1 Êrri .

2.3. Estimation of covariance penalty

In non-parametric estimation, we write m̂i,h, �̂i,h, Êrri(h) and Êrr(h) to stress their dependence
on a smoothing parameter h. The CV estimation of Erri is Q(Yi , m̂−i

i,h), where the superscript
−i indicates deletion of the ith data point (Xi , Yi) in the fitting process. This yields the CV
estimate of the total prediction error by

Êrr
CV

(h)=
n∑

i =1

Q(Yi , m̂−i
i,h). (6)

Naive computation of {m̂−i
i,h}n

i =1 is intensive. Section 3 will devise strategies by which actual
computations of the leave-one-out estimates are not needed. A distinguished feature is that
our method is widely applicable to virtually all regression and classification problems. The
approximated CV is particularly attractive to a wide array of large and complex problems in
which a quick and crude selection of the model parameter is needed.

By comparing (6) and (5), we see that the covariance penalty is estimated by

n∑
i =1

{Q(Yi , m̂−i
i,h)−Q(Yi , m̂i,h)}.

This can be linked with the jackknife method for estimating the covariance penalty. Hence,
it is expected that the CV method is asymptotically equivalent to a bootstrap method.

2.4. Asymptotic prediction error

To gain insight into Êrr(h), we appeal to asymptotic theory. Simple algebra shows that

Erri(h)=Eo{Q(Y o
i , m̂i,h)}=Q(mi , m̂i,h)+E{Q(Yi , mi)}.

By Taylor’s expansion and (2), Q(mi , m̂i,h)
.=−(m̂i,h −mi)2q′′(m̂i,h)/2. Hence,

Erri(h)
.=−(m̂i,h −mi)2q′′(m̂i,h)/2+E{Q(Yi , mi)}.

Note that the last term does not depend on h and hence minimizing Êrr(h) is asymptotically
equivalent to the minimizing mean-prediction-error-criterion,

MPEC(h)=−2−1
∫

E[{m̂h(x)−m(x)}2 |X ]q′′(m(x))fX (x) dx, (7)

with X = (X1, . . ., Xn) and fX (x) being the probability density of X. This criterion differs from
the mean-integrated-squared-error criterion defined by

MISE(h)=
∫

E[{m̂h(x)−m(x)}2 |X ]{b′′(�(x))}−2fX (x) dx, (8)

recalling that �̂(x)−�(x)
.={b′′(�(x))}−1{m̂h(x)−m(x)}.

© Board of the Foundation of the Scandinavian Journal of Statistics 2008.



Scand J Statist 35 Prediction error estimation under Bregman divergence 501

Expression (7) reveals that asymptotically, different loss functions automatically introduce
different weighting schemes in (7). This provides a useful insight into various error measures
used in practice. The weighting schemes vary substantially over the choices of q. In particular,
for the q1-function yielding the quadratic loss in section 2.1, the q2-function producing the
deviance-loss and the q3-function inducing the exponential-loss for the binary responses, they
deliver, respectively,

MPEC1(h)=
∫

E[{m̂h(x)−m(x)}2 |X ] fX (x) dx,

MPEC2(h)=
∫

E[{m̂h(x)−m(x)}2 |X ]{b′′(�(x))}−1fX (x) dx,

MPEC3(h)=
∫

E[{m̂h(x)−m(x)}2 |X ]{4[m(x){1−m(x)}]3/2}−1fX (x) dx.

3. Approximate cross-validation

This section aims at deriving the approximate and empirical versions of (6) for the local
maximum-likelihood (ML) estimator. We focus on the univariate case in this section. The
results will be extended to the generalized varying coefficient models in section 5 incorporat-
ing multivariate covariates.

Assume that the function �(·) has a (p+1)th continuous derivative at a point x. For Xj

close to x, a Taylor expansion implies that �(Xj)
.=xj(x)T�(x), in which xj(x)= (1, (Xj −x), . . .,

(Xj − x)p)T and �(x)= (�0(x), . . ., �p(x))T. Based on independent observations, �(x) can be
estimated by maximizing the local log-likelihood,

`(�; x)≡
n∑

j =1

l(xj(x)T�; Yj)Kh(Xj −x), (9)

in which l(·; y)= ln{fY |X (y; ·)} denotes the conditional log-likelihood function, Kh(·)=K (·/h)/h
for a kernel function K , and h is a bandwidth. Let �̂(x)= (�̂0(x), . . ., �̂p(x))T be the local ML

estimator. Then, the local MLEs of �(x) and m(x) are given by �̂(x)= �̂0(x) and
m̂(x)=b′(�̂(x)), respectively. A similar estimation procedure, based on the n−1 observations
excluding (Xi , Yi), leads to the local log-likelihood function `−i(�; x), and the corresponding

local MLEs, �̂
−i

(x), �̂
−i

(x) and m̂−i(x), respectively. Note that K -fold (K < n) CV is compar-
atively less frequently used in non-parametric smoothing for selecting h.

3.1. Leave-one-out formulas

Let X(x)= (x1(x), . . ., xn(x))T, W(x;�)=diag{Kh(Xj − x)b′′(xj(x)T�)}, and Sn(x;�)=
X(x)TW(x;�)X(x). Define

H(x;�)={W(x;�)}1/2X(x){Sn(x;�)}−1X(x)T{W(x;�)}1/2.

This projection matrix is an extension of the hat matrix in multiple linear regression and will
be useful for computing the leave-one-out estimator. Let Hii(x;�) be its ith diagonal element
and set Hi =Hii(Xi ; �̂(Xi)). Below we summarize our main result.

Proposition 1
Assume condition A2 in the Appendix. Then for any h > 0 and i =1, . . ., n,

�̂
−i

(x)− �̂(x)
.=−{Sn(x; �̂(x))}−1xi(x)Kh(Xi −x){Yi −b′(xi(x)T�̂(x))}

1−Hii(x; �̂(x))
, (10)
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�̂
−i
i − �̂i

.=− Hi

1−Hi
· Yi − m̂i

b′′(�̂i)
, (11)

m̂−i
i − m̂i

.=− Hi

1−Hi
(Yi − m̂i). (12)

Note that the approximation becomes exact when the loss function is the quadratic loss; as
shown in Zhang (2003), m̂−i

i = m̂i −{Hi/(1−Hi)}(Yi − m̂i). In addition, for h→∞, (10) coin-
cides with the counterpart of generalized linear models (Davidson & Hinkley, 1997, p. 67).
Furthermore, the results can easily be extended to the estimator that minimizes the local
Bregman divergence, replacing l(xj(x)T�; Yj) in (9) by Q(Yj , g−1(xj(x)T�)). Using proposition 1,
we can derive a simplified formula for computing the CV estimate of the overall prediction
error.

Proposition 2
Assume conditions A1 and A2 in the Appendix. Then for any h > 0,

Êrr
CV .=

n∑
i =1

[
Q(Yi , m̂i)+2−1q′′(m̂i)(Yi − m̂i)2{1−1/(1−Hi)2}]

. (13)

Proposition 2 gives an approximation formula, which avoids computing ‘leaving-one-out’
estimates, for all q-class of loss functions. In particular, for the function q1, we have

n∑
i =1

(Yi − m̂−i
i )2 =

n∑
i =1

(Yi − m̂i)2/(1−Hi)2.

For this particular loss function, the approximation is actually exact. For the function q2

leading to the deviance loss Q2 defined in (3), we have
n∑

i =1

Q2(Yi , m̂−i
i )

.=
n∑

i =1

[
Q2(Yi , m̂i)− (Yi − m̂i)2

b′′(�̂i)
{1−1/(1−Hi)2}

]
.

For the exponential loss defined in (4) for binary classification, we have
n∑

i =1

Q3(Yi , m̂−i
i )

.=
n∑

i =1

[
Q3(Yi , m̂i)− (Yi − m̂i)2

4{m̂i(1− m̂i)}3/2

{
1−1/(1−Hi)2

}]
.

Remark 1. An alternative approach to smoothing in likelihood-based models is smooth-
ing splines. For non-Gaussian responses with a univariate predictor, Xiang & Wahba (1996)
selected the penalization parameter to minimize the comparative Kullback–Leibler loss, in
which an approximate ‘leave-one-out’ formula is derived through a series of first-order
Taylor expansions. The argument presented here for ‘leave-one-out’ formulas is somewhat
more direct and can conveniently be extended to smoothing splines and other smoothing
techniques dealing with multivariate predictors under the broader q-class of loss functions.

3.2. Two theoretical issues

Two theoretical issues are particularly interesting. The first one concerns the asymptotic con-
vergence of ĥACV, the minimizer of the right-hand side of (13). Following a suitable modi-
fication to the result of Altman & MacGibbon (1998), the ratio ĥACV/hAMPEC converges in
probability to 1, where hAMPEC is the minimizer of the asymptotic form of MPEC(h) defined
in (7).

© Board of the Foundation of the Scandinavian Journal of Statistics 2008.
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Table 1. Comparison of the asymptotic optimal bandwidths hAMPEC(q2)
from (14), hAMISE from (15) and hAMPEC(q3) ( for Bernoulli Res-
ponses), using p=1 and the Epanechnikov kernel

hAMPEC(q2) hAMISE hAMPEC(q3)

Example Poisson Bernoulli Poisson Bernoulli Bernoulli

1 0.070 0.106 0.079 0.108 0.107
2 0.089 0.151 0.099 0.146 0.148
3 0.127 0.184 0.136 0.188 0.186

The explicit expression of hAMPEC, associated with the q-class of error measures, can be
obtained by the delta method. Setting −2−1q′′(m(x)){b′′(�(x))}2 to be the weight function,
hAMPEC (for odd degrees p of local polynomial fitting) can be derived from Fan et al. (1995,
p. 147):

hAMPEC(q)=Cp(K )

[
a(�)

∫
b′′(�(x))q′′(m(x)) dx

n
∫ {�(p+1)(x)}2{b′′(�(x))}2q′′(m(x))fX (x) dx

]1/(2p+3)

,

where Cp(K ) is a constant depending only on the degree and kernel of the local regression.
In particular, for the q2-function which gives the deviance loss, we have

hAMPEC(q2)=Cp(K )

[
a(�) |�X|∫ {�(p+1)(x)}2b′′(�(x))fX (x) dx

]1/(2p+3)

n−1/(2p+3), (14)

where |�X| measures the length of the support of fX . Apparently, this asymptotically optimal
bandwidth differs from the asymptotically optimal bandwidth,

hAMISE =Cp(K )

[
a(�)

∫ {b′′(�(x))}−1dx∫ {�(p+1)(x)}2fX (x) dx

]1/(2p+3)

n−1/(2p+3), (15)

determined by minimizing the asymptotic MISE(h) of �̂ defined in (8), with an exception of
the Gaussian family.

The second issue concerns how far away hAMPEC(q2) departs from hAMISE. For Poisson
and Bernoulli response variables, Table 1 shows that the differences between hAMPEC(q2) and
hAMISE are noticeable for the examples in section 6.1. To gain further insights, we will need
the following definition.

Definition 1
Two functions F and G are called ‘similarly ordered’ if {F (s) − F (t)}{G(s) − G(t)}≥ 0 for all
s in the domain of F and all t in the domain of G, and ‘oppositely ordered’ if the inequality is
reversed.

The following theorem characterizes the relation between hAMPEC(q2) and hAMISE.

Proposition 3
Define F (x)={�(p+1)(x)}2b′′(�(x))fX (x) and G(x)={b′′(�(x))}−1. Assume that p is odd.

(a) If F and G are oppositely ordered, then hAMPEC(q2) ≤ hAMISE. If F and G are similarly
ordered, then hAMPEC(q2)≥hAMISE.

(b) Assume that b′′(�(x)) is bounded away from 0 and ∞. Write mb′′ =minx∈�X b′′(�(x)) and
Mb′′ =maxx∈�X b′′(�(x)). If �(x) is a polynomial function of degree p+1, and fX is a
uniform density on �X , then

© Board of the Foundation of the Scandinavian Journal of Statistics 2008.
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{
4mb′′ Mb′′

(mb′′ +Mb′′ )2

}1/(2p+3)

≤ hAMPEC(q2)
hAMISE

≤ 1,

in which the equalities are satisfied if and only if the exponential family is Gaussian.

3.3. Empirical cross-validation

The approximate CV criterion (13) can be further simplified. To this end, we first approxi-
mate the ‘degrees of freedom’

∑n
i =1 Hi (Hastie & Tibshirani, 1990). To facilitate presenta-

tion, we now define the ‘equivalent kernel’ K(t) induced by the local-polynomial fitting as
the first element of the vector S−1(1, t, . . ., tp)TK (t), in which the matrix S = (�i + j−2)1≤i, j≤p+1

with �k =∫
tkK (t) dt (see Ruppert & Wand, 1994).

Proposition 4
Assume conditions A and B in the Appendix. Then

n∑
i =1

Hi =K(0)
( |�X| /h

){1+oP(1)},

where |�X| denotes the length of the support of the random variable X.

Proposition 4 shows that the degrees of freedom is asymptotically independent of the
design density and the conditional density. It approximates the notion of model complexity in
non-parametric fitting.

Proposition 4 does not specify the constant term. To use the asymptotic formula for finite
samples, we need some bias corrections. Note that when h→∞, the local polynomial fitting
becomes a global polynomial fitting. Hence, its degrees of freedom should be p+1. This leads
us to propose the following empirical formula:

n∑
i =1

Hi
.= (p+1−a)+{Cn/(n−1)}K(0) |�X|/h. (16)

In the Gaussian family, Zhang (2003) used simulations to determine the choices a and C
(see Table 2), which uses the Epanechnikov kernel function, K (t)=0.75(1− t2)+. Interestingly,
our simulation studies in section 6 demonstrate that these choices also work well for Poisson
responses. However, for Bernoulli responses, we find that for p=1, slightly different choices
given by a =0.7 and C =1.09 provide better approximations.

We propose the empirical version of the estimated total prediction error by replacing Hi

in (13) with their empirical average,

H̄E = (p+1−a)/n+{C/(n−1)}K(0) |�X|/h,

leading to the empirical cross-validation (ECV) criterion,

Table 2. Choices of a and C, in the empirical formulas (16) and
(28), for the pth degree local polynomial regression for Gaussian
responses

Design type p a C Design type p a C
Fixed 0 0.55 1 Random 0 0.30 0.99

1 0.55 1 1 0.70 1.03
2 1.55 1 2 1.30 0.99
3 1.55 1 3 1.70 1.03
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Êrr
ECV

(h)=
n∑

i =1

[
Q(Yi , m̂i)+2−1q′′(m̂i)(Yi − m̂i)2

{
1−1/(1− H̄E )2

}]
. (17)

This avoids calculating the smoother matrix H. Yet, it turns out to work reasonably well in
practice. A data-driven optimal bandwidth selector, ĥECV, can be obtained by minimizing (17).

4. Non-parametric logistic regression

Non-parametric logistic regression plays a prominent role in classification and regression anal-
ysis. Yet, distinctive challenges arise from the local MLE and bandwidth selection. When
the responses in a local neighborhood are entirely zeros or entirely ones (or nearly so), the
local MLE does not exist. Müller & Schmitt (1988, p. 751) reported that the local-likelihood
method suffers from a substantial proportion of ‘incalculable estimates’. Fan & Chen (1999)
proposed to add a ridge parameter to attenuate the problem. The numerical instability prob-
lem still exists as the ridge parameter can be very close to zero. A numerically viable solution
is the lower bound method, which we now introduce.

4.1. Lower bound method for local MLE

The lower-bound method is very simple. For optimizing a concave function L, the LB method
replaces the Hessian matrix �2L(�) in the Newton–Raphson algorithm by a negative definite
matrix B, such that �2L(�)≥B, for all �. Lemma 1, shown in Böhning (1999, p. 14), indicates
that the Newton–Raphson estimate, with the Hessian matrix replaced by the surrogate B, can
always enhance the target function L.

Lemma 1
Starting from any �0, the LB iterative estimate, defined by �LB =�0 − B−1�L(�0), satisfies
L(�LB)−L(�0)≥−2−1�L(�0)TB−1�L(�0)≥0.

For local logistic regression, �2`(�; x)=−X(x)TW(x;�)X(x). Since 0 ≤ W(x;�) ≤ 4−1K(x),
where K(x)=diag{Kh(Xj − x)}, the Hessian matrix �2`(�; x) indeed has a lower bound,
B(x)=−4−1X(x)TK(x)X(x), and the LB-adjusted Newton–Raphson iteration for computing
�̂(x) becomes

�L =�L−1 −{B(x)}−1X(x)TK(x)r(x;�L−1), L =1, 2, . . ., (18)

where r(x;�)= (r1(x;�), . . ., rn(x;�))T with rj(x;�)=Yj −1/[1+ exp{−xj(x)T�}].
The LB method offers a number of advantages to compute �̂(x). First, the corresponding

LB matrix B(x) is free of the parameter vector �, and thus can be computed in advance of the
NR iteration. This in turn reduces the computational cost. Second, the LB matrix is stable, as
it is the same matrix used in the least-squares local-polynomial regression estimates and does
not depend on estimated local parameters. Third, since the local-likelihood function `(�; x)
is concave, the LB iteration is guaranteed to increase `(�; x) at each step and converge to its
global maximum �̂(x).

4.2. A hybrid bandwidth selection method

For binary responses, our simulation studies show that the bandwidth choice minimizing (13)
or its empirical version (17) tends to produce over-smoothed estimates. Such a problem was
also encountered in Aragaki & Altman (1997) and Fan et al. (1998, Table 1). Because of
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the importance of binary responses in non-parametric regression and classification, a new
bandwidth selector that specifically accommodates binary responses is needed.

We first employ the LB scheme (18) to derive a new one-step estimate of �̂
−i

(x), starting from
�̂(x). Define Sn(x)=X(x)TK(x)X(x) and Si = eT

1 {Sn(Xi)}−1e1Kh(0), where e1 = (1, 0, . . ., 0)T. The
resulting leave-one-out formulas and the CV estimates of the total prediction error are displayed
in proposition 5.

Proposition 5
Assume conditions A1 and A2 in the Appendix. Then for local-likelihood MLE in the Bernoulli
family, for any h > 0 and i =1, . . ., n,

�̂
−i

(x)− �̂(x)
.=−4{Sn(x)}−1xi(x)Kh(Xi −x){Yi −b′(xi(x)T�̂(x))}

1−Kh(Xi −x)xi(x)T{Sn(x)}−1xi(x)
, (19)

�̂
−i
i − �̂i

.=−4{Si /(1−Si)}(Yi − m̂i), (20)

m̂−i
i − m̂i

.=−4b′′(�̂i){Si /(1−Si)}(Yi − m̂i), (21)

Êrr
CV .=

n∑
i =1

⎡⎣Q(Yi , m̂i)+2−1q′′(m̂i)(Yi − m̂i)2

⎡⎣1−
{

1+ 4b′′(�̂i)Si

1−Si

}2
⎤⎦⎤⎦. (22)

Using a bandwidth selector that minimizes (22) tends to under-smooth the binary responses.
To better appreciate this, note that the second term in (22) is approximately

−q′′(m̂i)(Yi − m̂i)2{4b′′(�̂i)}Si , (23)

and the second term in (13) can be approximated as

−q′′(m̂i)(Yi − m̂i)2Hi . (24)

As demonstrated in lemma 3 in the Appendix, Si decreases with h and Hi
.= Si . Since

0 ≤ 4b′′(�̂i) ≤ 1 for the Bernoulli family, (23) down weighs the effects of model complexity,
resulting in a smaller bandwidth.

The above discussion leads us to define a hybrid version of Êrr
CV

as

n∑
i =1

⎡⎣Q(Yi , m̂i)+2−1q′′(m̂i)(Yi − m̂i)2

⎡⎣1−
{

1+ 2b′′(�̂i)Si

1−Si
+ 2−1Hi

1−Hi

}2
⎤⎦⎤⎦, (25)

which averages terms in (23) and (24) to mitigate the oversmoothing problem of criterion
(13). This new criterion has some desirable properties: 2b′′(�̂i)Si /(1−Si)+2−1Hi/(1−Hi) is
bounded below by 2−1Hi/(1−Hi); thus, guarding against undersmoothing, and is bounded
above by {Si /(1−Si)+Hi/(1−Hi)}/2, thus diminishing the influence of oversmoothing. An
empirical CV criterion is to replace Si and Hi in (25) by their empirical averages, which
are (16) divided by n. A hybrid bandwidth selector for binary responses can be obtained by
minimizing this ECV.

5. Extension to generalized varying-coefficient model

This section extends the techniques of sections 3 and 4 to a useful class of multi-predictor
models. The major results are presented in propositions 6–8.

Consider multivariate predictor variables, containing a scalar U and a vector X=
(X1, . . ., Xd )T. For the response variable Y having a distribution in the exponential-family,
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define by m(u, x)=E(Y |U =u, X=x) the conditional mean regression function, where
x= (x1, . . ., xd )T. The generalized varying-coefficient model assumes that the (d +1)-variate
canonical parameter function �(u, x)=g(m(u, x)), with the canonical link g, takes the form

g(m(u, x))=�(u, x)=
d∑

k =1

ak(u)xk =xTA(u), (26)

for a vector A(u)= (a1(u), . . ., ad (u))T of unknown smooth coefficient functions.
We first describe the local-likelihood estimation of A(u), based on the independent observa-

tions {(Uj , Xj , Yj)n
j =1}. Assume that the ak(·)’s are (p+1) times continuously differentiable at

a fitting point u. Put A(`)(u)= (a(`)
1 (u), . . ., a(`)

d (u))T. Denote by �(u)= (A(u)T, . . ., A(p)(u)T/p!)T

the d(p+1) by 1 vector of coefficient functions along with their derivatives, uj(u)=
(1, (Uj − u), . . ., (Uj − u)p)T, and Id a d × d identity matrix. For observed covariates Uj close
to the point u,

A(Uj)
.=A(u)+ (Uj −u)A(1)(u)+ · · ·+ (Uj −u)pA(p)(u)/p!={uj(u)⊗ Id}T�(u),

in which the symbol ⊗ denotes the Kronecker product, and thus from (26), �(Uj , Xj)
.=

{uj(u)⊗Xj}T�(u). The local-likelihood MLE �̂(u) maximizes the local log-likelihood function,

`(�; u)=
n∑

j =1

l({uj(u)⊗Xj}T�; Yj)Kh(Uj −u).

The first d entries of �̂(u) supply the local MLEs Â(u) of A(u), and the local MLEs of
�(u, x) and m(u, x) are given by �̂(u, x)=xTÂ(u) and m̂(u, x)=b′(�̂(u, x)), respectively. A simi-
lar estimation procedure, applied to n−1 observations excluding (Ui , Xi , Yi), leads to the local

log-likelihood function, `−i(�; u), and the corresponding local MLEs, �̂
−i

(u), �̂
−i

(u, x) and
m̂−i(u, x), respectively.

5.1. Leave-one-out formulas

To derive the leave-one-out formulas in the case of multivariate covariates, we need some
additional notation. Let

X∗(u)= (u1(u)⊗X1, . . ., un(u)⊗Xn)T,

W∗(u;�)=diag{Kh(Uj −u)b′′({uj(u)⊗Xj}T�)},

S∗
n (u;�)=X∗(u)TW∗(u;�)X∗(u),

and define a projection matrix as

H∗(u;�)={W∗(u;�)}1/2X∗(u){S∗
n (u;�)}−1X∗(u)T{W∗(u;�)}1/2.

Let H∗
ii(u;�) be its ith diagonal entry and H∗

i =H∗
ii(Ui ; �̂(Ui)). Propositions 6 and 7 present

the leave-one-out formulas and CV estimate of the total prediction error.

Proposition 6
Assume condition A2 in the Appendix. Then for any h > 0 and i =1, . . ., n,

�̂
−i

(u)− �̂(u)
.=−{S∗

n (u; �̂(u))}−1{ui(u)⊗Xi}Kh(Ui −u){Yi −b′({ui(u)⊗Xi}T�̂(u))}
1−H∗

ii(u; �̂(u))
,

�̂
−i
i − �̂i

.=− H∗
i

1−H∗
i

· Yi − m̂i

b′′(�̂i)
,

m̂−i
i − m̂i

.=− H∗
i

1−H∗
i

(Yi − m̂i).
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Proposition 7
Assume conditions A1 and A2 in the Appendix. Then for any h > 0,

Êrr
CV .=

n∑
i =1

[Q(Yi , m̂i)+2−1q′′(m̂i) (Yi − m̂i)2{1−1/(1−H∗
i )2}]. (27)

5.2. Empirical cross-validation

In the generalized varying-coefficient model, the asymptotic expression of the degrees of
freedom

∑n
i =1 H∗

i is given below.

Proposition 8
Assume conditions A and C in the Appendix. Then

n∑
i =1

H∗
i =dK(0)

( |�U| /h
){1+oP(1)}.

As h→∞, the total number of model parameters becomes d(p+1) and this motivates us to
propose the empirical formula for degrees of freedom:

n∑
i =1

H∗
i

.=d [(p+1−a)+{Cn/(n−d)}K(0) |�U| /h]. (28)

The empirical version of the estimated total prediction error is to replace H∗
i in (27) by

d [(p+1 − a)/n+{C/(n − d)}K(0) |�U| /h]. Call Êrr
ECV

(h) the empirical version of the CV cri-

terion. Compared with the bandwidth selector in Cai et al. (2000), the Êrr
ECV

(h)-minimizing
bandwidth selector, ĥECV, is much easier to obtain.

5.3. Binary responses

For Bernoulli responses, the LB method in section 4 continues to be applicable for obtain-
ing �̂(u) and �̂

−i
(u). For the local logistic regression, �2`(�; u) has a lower bound, B(u)=

−4−1X∗(u)TK∗(u)X∗(u), where K∗(u)=diag{Kh(Uj − u)}. Similar to (18), the LB-adjusted
NR iteration for �̂(u) proceeds as follows,

�L =�L−1 −{B(u)}−1X∗(u)TK∗(u)r∗(u;�L−1), L =1, 2, . . .,

where r∗(u;�)= (r∗
1(u;�), . . ., r∗

n(u;�))T with

r∗
j (u;�)=Yj −1/(1+ exp[−{uj(u)⊗Xj}T�]).

The leave-one-out formulas and the CV estimates of the prediction error are similar to those
in proposition 5, with Sn(x) replaced by

S∗
n (u)=X∗(u)TK∗(u)X∗(u)

and Si by

S∗
i = (e1 ⊗Xi)T{S∗

n (Ui)}−1(e1 ⊗Xi)Kh(0).

In the spirit of (25), the hybrid selection criterion for bandwidth is

n∑
i =1

⎡⎣Q(Yi , m̂i)+2−1q′′(m̂i)(Yi − m̂i)2

[
1−

{
1+ 2b′′(�̂i)S∗

i

1−S∗
i

+ 2−1H∗
i

1−H∗
i

}2 ]⎤⎦. (29)
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The ECV criterion can be obtained similarly via replacing S∗
i and H∗

i by their empirical
averages, which are (28) divided by n.

6. Simulations

For Bernoulli responses, we apply the hybrid bandwidth selector to local logistic regression.
Throughout our simulations, we use the q2-function associated with the deviance loss for
bandwidth selection, combined with the local-linear likelihood method and the Epanechnikov
kernel. Unless specifically mentioned otherwise, the sample size is n=400.

6.1. Generalized non-parametric regression model

For simplicity, we assume that the predictor variable X has the uniform probability den-
sity on the interval (0, 1). The bandwidth ĥECV is searched over an interval, [hmin, 0.5], at
a geometric grid of 30 points. We take hmin =3h0 for Poisson regression, whereas for logis-
tic regression, we take hmin =5h0 in example 1 and hmin =0.1 in examples 2 and 3, where
h0 =max[5/n, max2≤j≤n{X(j) −X(j−1)}], with order statistics X(1) ≤· · ·≤X(n).

Poisson regression: We first consider the response variable Y which, conditional on X =x,
follows a Poisson distribution with parameter �(x). The function �(x)= ln{�(x)} is given in
the test examples,

Example 1: �(x)=3.5[exp{−(4x −1)2}+ exp{−(4x −3)2}]−1.5,
Example 2: �(x)= sin{2(4x −2)}+1.0,
Example 3: �(x)=2−0.5(4x −2)2.

As an illustration, we first generate from (X , Y ) one sample of independent observations
{(Xj , Yj)n

j =1}. Figure 3(A) plots the degrees of freedom as a function of h. It is clearly seen
that the actual values (denoted by dots) are well approximated by the empirical values
(denoted by circles) given by (16). To see the performance of ĥECV, Fig. 3(B) gives boxplots of
the relative error, {ĥECV −hAMPEC(q2)}/hAMPEC(q2) and {ĥECV −hAMISE}/hAMISE, based on 100
random samples; refer to Table 1 for values of hAMPEC(q2) and hAMISE. We observe that ĥECV is
closer to hAMPEC(q2) than to hAMISE; this is in accordance with the discussion of section 3.2. In
Fig. 3(C), we simulate another 100 random samples and for each set obtain ĥECV to estimate
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Fig. 3. Local-likelihood non-parametric regression for Poisson responses. (A) Plot of
∑n

i =1 Hi versus
h. Dots denote the actual values, centres of circles stand for the empirical values given by (16), for
local-linear smoother with a =0.70 and C =1.03. (B) Boxplots of {ĥECV −hAMPEC(q2)}/hAMPEC(q2) and
{ĥECV − hAMISE}/hAMISE. (C) Estimated curves from three typical samples are presented correspond-
ing to the 25th (the dotted curve), the 50th (the dashed curve), and the 75th (the dash-dotted curve)
percentiles among the ASE-ranked values. The solid curves denote the true functions.

© Board of the Foundation of the Scandinavian Journal of Statistics 2008.



510 C. Zhang Scand J Statist 35

�(x). We present the estimated curves from three typical samples. The typical samples are
selected in such a way that their ASE values, in which ASE=n−1

∑n
j =1{�̂(Xj)−�(Xj)}2, are

equal to the 25th (dotted line), 50th (dashed line) and 75th (dash-dotted line) percentiles
in the 100 replications. Inspection of these fitted curves suggests that the bandwidth selector
based on minimizing the CV deviance does not exhibit undersmoothing in the local-likelihood
regression estimation. Similar plots for examples 2 and 3 are omitted.

Logistic regression: We now consider the Bernoulli response variable Y with canonical
parameter, �(x)= logit{P(Y =1|X =x)}, chosen according to

Example 1: �(x)=7[exp{−(4x −1)2}+ exp{−(4x −3)2}]−5.5,
Example 2: �(x)=2.5 sin(2�x),
Example 3: �(x)=2− (4x −2)2.

In Fig. 4, we conduct the simulation experiments serving a similar purpose to Fig. 3. Plots in
the middle panel support the convergence of the hybrid bandwidth selector ĥECV to hAMPEC(q2),
without suffering from the under- or oversmoothing problem.

6.2. Generalized varying-coefficient model

We consider examples of the generalized varying-coefficient model (26). We take hmin =3h0

for Poisson regression, where h0 =max[5/n, max2≤j≤n{U(j) −U(j−1)}], and hmin =0.1 for logistic
regression.

Poisson regression: We consider a variable Y, given values (u, x) of the covariates (U , X),
following a Poisson distribution with parameter �(u, x), where the varying-coefficient func-
tions in ln{�(u, x)} are specified as d =3, a1(u)=5.5+0.1 exp(2u −1), a2(u)=0.8u(1−u) and
a3(u)=0.2 sin2(2�u). We assume that U is a uniform random variable on the interval [0, 1] and
is independent of X= (X1, X2, X3)T, with X1 ≡1, where (X2, X3) follows a zero-mean and unit-
variance bivariate normal distribution with correlation coefficient 1/

√
2. In Fig. 5, plot (A)

reveals that the actual degrees of freedom are well captured by the empirical formula (28).
To evaluate the performance of ĥECV, we generate 100 random samples of size 400. Figure
5(B)–(D) plots the estimated curves of a1(u), a2(u) and a3(u) from three typical samples. The
typical samples are selected so that their ASE values, in which ASE=n−1

∑n
j =1{�̂(Uj , Xj) −

�(Uj , Xj)}2, correspond to the 25th (dotted line), 50th (dashed line) and 75th (dash-dotted
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Fig. 4. Local-likelihood non-parametric regression for Bernoulli responses. Notes are similar to those of
Fig. 3. Here ĥECV minimizes the empirical version of (25); the formula (16) uses a =0.70 and C =1.09
for Hi and a =0.70 and C =1.03 for Si .

© Board of the Foundation of the Scandinavian Journal of Statistics 2008.



Scand J Statist 35 Prediction error estimation under Bregman divergence 511

0.2 0.4

10

15

20

25

30

35

Poisson

0 0.5 1
5.5

5.55

5.6

5.65

5.7

5.75

5.8

5.85
Estimated a1(u) 

0 0.5 1
–0.05

0

0.05

0.1

0.15

0.2

0.25
Estimated a2(u) 

0 0.5 1
–0.05

0

0.05

0.1

0.15

0.2

0.25
Estimated a3(u)A B C D

Fig. 5. Local-likelihood varying coefficient regression for Poisson responses. (A) Plot of
∑n

i =1 H∗
i versus

h. Dots denote the actual values, centres of circles stand for the empirical values given by (28), for
local-linear smoother with a =0.70 and C =1.03. (B)–(D) Estimated curves from three typical samples
are presented corresponding to the 25th (the dotted curve), the 50th (the dashed curve), and the 75th
(the dash-dotted curve) percentiles among the ASE-ranked values. The solid curves denote the true
functions.

line) percentiles in the 100 replications. These plots provide convincing evidences that ĥECV,
when applied to multiple smooth curves (possessing comparable degrees of smoothness)
simultaneously, performs competitively well with that to fitting a single smooth curve.

Logistic regression: Consider the varying-coefficient logistic regression model for Bernoulli
responses, where varying-coefficient functions in logit{P(Y =1|U =u, X=x)} are specified as
d =3, a1(u)= exp(2u − 1) − 1.5, a2(u)=0.8{8u(1 − u) − 1} and a3(u)=0.9{2 sin(�u) − 1}. We
assume that X1 =1; X2 and X3 are uncorrelated standard normal variables, and are indepen-
dent of U ∼ U (0, 1). Figure 6 depicts plots whose captions are similar to those for Fig. 5.
Compared with previous examples of univariate logistic regression and varying-coefficient
Poisson regression, the current model fitting for binary responses is considerably more chal-
lenging. Despite the increased difficulty, the LB local-likelihood logistic regression estimates,
using the hybrid bandwidth selector ĥECV, captures the major features of the model structure
with reasonably good details.
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Fig. 6. Local-likelihood varying coefficient regression for Bernoulli responses. Notes are similar to those
of Fig. 5. Here ĥECV minimizes the empirical version of (29); the formula (28) uses a =0.70 and C =1.09
for H∗

i and a =0.70 and C =1.03 for S∗
i .
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6.3. Generalized additive model

Estimating multi-variate non-parametric regression functions is a challenging task. An
efficient technique which overcomes the ‘curse-of-dimensionality’ is the generalized additive
modelling (Hastie & Tibshirani, 1990). It assumes that

�(X)=g(E(Y |X))=	+
d∑

j =1

fj(Xj)

for a parameter 	 and univariate smooth functions f1, . . ., fd . To ensure identifiability, the con-
ditions E{fj(Xj)}=0, j =1, . . ., d , are usually imposed. The unknown parameter and functions
can be estimated via iterative back-fitting local-likelihood estimation, in which only univari-
ate smoothing is needed. Thus, the bandwidth selection method in sections 3 and 4 can be
adopted. Consider independent covariates X1 ∼U (0, 1), X2 ∼U (0, 1) and X3 ∼U (−1, 1). For
Poisson regression with 	=4,

f1(X1)= sin(2�X1)/5−E{sin(2�X1)/5},

f2(X2)={2− (4X2 −2)2}/5−E[{2− (4X2 −2)2}/5]

and

f3(X3)=X 2
3 /5−E(X 2

3 /5),

Fig. 7 plots local-likelihood estimates of fj based on 100 replications of size 200. Similar plots
in Fig. 8 are for logistic regression with 	=0,

f1(X1)=2 sin(2�X1)−E{2 sin(2�X1)},

f2(X2)={2− (4X2 −2)2}−E{2− (4X2 −2)2}

and

f3(X3)=X 2
3 −E(X 2

3 ).

The results further support the effectiveness of the proposed ĥECV when applied to multivari-
ate modelling.
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Fig. 7. Generalized additive regression for Poisson responses. Notes are similar to those of Fig. 5.
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Fig. 8. Generalized additive regression for Bernoulli responses. Notes are similar to those of Fig. 5.

7. Real data applications

Example 7.1 (Bank employee data)

We apply the hybrid bandwidth selection method for binary responses to analyse an
employee (year 1995) dataset (example 11.3 of Albright et al., 1999) of the Fifth National
Bank of Springfield. The bank, whose name has been changed, was charged in court with
that its female employees received substantially smaller salaries than its male employees. For
each of its 208 employees, the dataset consists of eight variables, including JobGrade, a cate-
gorical variable for the current job level, with possible values 1–6 (6 is highest); YrHired, year
employee was hired; YrBorn, year employee was born; Gender: a categorical variable with
values ‘Female’ and ‘Male’; YrsPrior, number of years of work experience at another bank
prior to working at Fifth National.

To understand how the probability of promotion to high levels of managerial job (and thus
high salary) is associated with gender and years of work experience, and how this association
changes with respect to age, we fit a varying-coefficient logistic model,

logit{P(Y =1 |U =u, X1 =x1, X2 =x2)}=a0(u)+a1(u)x1 +a2(u)x2, (30)

with Y the indicator of JobGrade at least 4, U the covariate Age, X1 the indicator of being
Female, and X2 the covariate WorkExp (calculated as 95 −YrHired+YrsPrior). Following
Fan & Peng (2004), outliers have been deleted, with the remaining 199 data for analysis. For
this medium-sized data, use of the bandwidth selector ĥACV which minimizes (29) seems to
be more natural than ĥECV.

Our preliminary study shows a monotone decreasing pattern in the fitted curve of a2(u).
This is no surprise; the covariates Age and WorkExp are highly correlated, as can be seen
from the scatter plot in Fig. 9(A). Such high correlation may cause some identifiability prob-
lem, thus in model (30), we replace X2 with a de-correlated variable, X2 −E(X2 |U ), which is
known to be uncorrelated with any measurable function of U. The projection part,
E(X2 |U =u), can easily be estimated by a univariate local linear regression fit. Likewise, its
bandwidth parameter can simply be chosen to minimize the approximate CV function (for
Gaussian family), illustrated in Fig. 9(B).

After the de-correlation step, we now refit model (30). The bottom panel of Fig. 9 depicts
the estimated functions of a0(u), a1(u) and a2(u), ± 1.96 times their estimated standard error.
The selected bandwidth is 16.9 (see Fig. 9(C)). Both the intercept term and (de-correlated)
WorkExp have the statistically significant effects on the probability of promotion. As an
employee gets older, the probability of getting promoted keeps increasing until around 40
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Fig. 9. Applications to the job grade data set modelled by (30). (A) Scatter plot of work experience
versus age along with a local linear fit. (B) Plot of the approximate cross-validation (CV) function for
the local linear fit in (A). (C) Plot of the approximate CV function, defined in (29), for fitting varying
coefficient functions. (D)–(F) Estimated a0(u), a1(u) and a2(u), respectively, where the dotted curves are
the estimated functions ± 1.96 times the estimated standard errors.

years of age and levels off after that. It is interesting to note that the fitted coefficient func-
tion of a1(u) for gender is below zero within the entire age span. This may be interpreted as
the evidence of discrimination against female employees being promoted and lends support
to the plaintiff.

To see whether the choice of smoothing variable U makes a difference in drawing the
above conclusion, we fit again model (30) with U given by the covariate WorkExp and X2 by
the de-correlated Age (due to the same reason of monotonicity as in the previous analysis).
Again, the result (omitted here) shows that gender has an adverse effect and the evidence
for discrimination continues to be strong. Indeed, the estimated varying-function of a1(u) is
qualitatively the same as that in Fig. 9, as far as the evidence of discrimination is concerned.

We would like to make a final remark on the de-correlation procedure: This step does not
alter (30), particularly the function a1(·). If this step is not taken, then the estimate of a1(u)
from either choice of U continues to be below zero and thus does not alter our previous
interpretation of the gender effect.

Example 7.2 (Boston Housing data)

The data set contains the response MEDV, the median value of owner-occupied homes (in
$1000’s) in 506 US census tracts of the Boston metropolitan area in 1970, along with several
explanatory variables which might affect housing values (see Harrison & Rubinfeld, 1978).
The covariates CRIM (per capita crime rate by town), ZN (proportion of residential land
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Fig. 10. Applications to the Boston housing data modelled by (31).

zoned for lots over 25,000 sq. ft.), INDUS (proportion of non-retail business acres per town),
NOX (nitric oxides concentration (parts per 10 million)), RM (average number of rooms per
dwelling), AGE (proportion of owner-occupied units built prior to 1940), DIS (weighted dis-
tances to five Boston employment centres), RAD (index of accessibility to radial highways),
TAX (full-value property-tax rate per $10,000), PTRATIO (pupil–teacher ratio by town), B
(1000(Bk−0.63)2 where Bk is the proportion of blacks by town) and LSTAT (% lower status
of the population) are denoted by X1, . . ., X12, respectively.
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Fig. 11. Applications to the Boston housing data modelled by (32).

First, we intend to understand the association between the median value of owner-occupied
homes, denoted by Y , and the 12 covariates. The additive model

E(Y |X1 =x1, . . ., X12 =x12)=	+
12∑

j =1

fj(xj) (31)

is fitted to the data set, and the proposed ĥECV is applied. Figure 10 depicts the estimated
curves fj(·). The trends in panels (D) and (J), for example, suggest that the housing price
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tends to be lower in the tracts with more crowded schools, and decreases with the level of
air pollution.

Second, to predict whether the median housing price can be categorized as either ‘high’ or
‘low’ (compared with the average of MEDV), the additive logistic model

logit{P(Y ∗ =1|X1 =x1, . . ., X12 =x12)}=	+
12∑

j =1

fj(xj) (32)

is fitted to the data set, where Y ∗ equals 1 if Y exceeds the average of MEDV and 0 otherwise.
The estimated component curves are illustrated in Fig. 11. The effects of most covariates on
housing price agree well with those in Fig. 10.

8. Discussion

In this paper, we aim to develop effective methods for estimating prediction error under a
broad q-class of loss functions, with applications to non-parametric regression and classifi-
cation.

A number of extensions could be further made. First, a comparison with alternative
approaches and other smoothing techniques could be carefully carried out. Second, the cur-
rent paper focuses on non-parametric estimators with a fixed number of explanatory vari-
ables. For the analysis of high-dimensional data, like spatio-temporal fMRI brain images,
functional data objects and gene expression profiles, it would be interesting to investigate the
prediction error estimation for penalized estimators in the presence of a diverging number of
covariates. These issues will be explored in future work.
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Appendix

We first impose some technical assumptions, which are not the weakest possible.

Condition A

A1. The function q is concave and q′′(·) is continuous.
A2. b′′(·) is continuous and bounded away from zero.
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A3. The kernel function K is a symmetric probability density function with bounded sup-
port, and is Lipschitz continuous.

A4. (nh)−1 ln(1/h)→0 as n→∞.

Condition B

B1. The design variable X has a bounded support �X and the density function fX is
Lipschitz continuous and bounded away from 0.

B2. �(x) has continuous (p+1)th derivative in �X .
B3. n→∞, h→0, nh→∞ and n2
−1h→∞ for some 
< 1− s−1 and some s > 0.

Condition C

C1. The covariate U has a bounded support �U and its density function fU is Lipschitz
continuous and bounded away from 0.

C2. aj(u), j =1, . . ., d , has continuous (p+1)th derivative in �U .
C3. The matrix �(u)=E{b′′(�(u, X))XXT |U =u} is positive definite for each u ∈�U and is

Lipschitz continuous.
C4. There exists some s > 0 such that E(‖X‖2s) <∞. Also, n → ∞, h → 0, nh → ∞ and

n2
−1h→∞ for some 
< 1− s−1.

Notation

Throughout our derivations, we simplify notation by writing �j(x;�)=xj(x)T�, mj(x;�)=
b′(�j(x;�)), Zj(x;�)={Yj − mj(x;�)}/b′′(�j(x;�)), z(x;�)= (Z1(x;�), . . ., Zn(x;�))T and
wj(x;�)=Kh(Xj −x)b′′(�j(x;�)); their corresponding quantities evaluated at �̂(x) are denoted
by �̂j(x), m̂j(x), Ẑj(x), ẑ(x) and ŵj(x). Similarly, define Ŝn(x)=Sn(x; �̂(x)).

Weighted local likelihood (illustrated for section 3)

To compute approximately �̂
−i

(x) from �̂(x), we apply the ‘infinitesimal perturbation’ idea
developed in Pregibon (1981). For fixed i, we introduce the weighted local log likelihood,

`i,�(�; x)=
n∑

j =1

�ij l(xj(x)T�; Yj)Kh(Xj −x), (33)

with the weight �ii =� and other weights �ij =1. Let �̂i,�(x) be the maximizer, which is the
local ML estimator when �=1 and the leave-one-out estimator when �=0. The weighted
local MLE can be found via the Newton–Raphson iteration,

�L =�L−1 −{�2`i,�(�L−1; x)}−1�`i,�(�L−1; x), L =1, 2, . . ., (34)

where �` denotes the gradient vector and �2` the Hessian matrix. (Explicit expressions of �`

and �2` are given in lemma 2.) The key ingredient for calculating the leave-one-out estimator
is to approximate it by its one-step estimator using the ‘keep-all-in’ estimator �̂(x) as the
initial value. Before proving the main results, we need lemma 2 below.

Lemma 2
For `i,�(�; x) defined in (33),

�`i,�(�; x)=X(x)TVi(�)W(x;�)z(x;�)/a(�), (35)

�2`i,�(�; x)=−X(x)TVi(�)W(x;�)X(x)/a(�), (36)

in which Vi(�)=diag{�i1, . . ., �in} and ri(x;�)=Yi −mi(x;�),
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X(x)TVi(�)W(x;�)z(x;�)=X(x)TW(x;�)z(x;�)− (1−�)xi(x)Kh(Xi −x)ri(x;�), (37)

X(x)TVi(�)W(x;�)X(x)=X(x)TW(x;�)X(x)− (1−�)wi(x;�)xi(x)xi(x)T. (38)

Proof. Defining a vector �(x;�)= (�1(x;�), . . ., �n(x;�))T, we have that

�`i,�(�; x)= ∂�(x;�)
∂�

∂`i,�(�; x)
∂�(x;�)

=X(x)T ∂`i,�(�; x)
∂�(x;�)

, (39)

�2`i,�(�; x)=X(x)T ∂2`i,�(�; x)
∂�(x;�)∂�(x;�)T

X(x). (40)

Since

`i,�(�; x)=
n∑

j =1

�ij [{Yjxj(x)T�−b(xj(x)T�)}/a(�)+ c(Yj , �)]Kh(Xj −x),

it is easy to check that (35) can be derived from (39) and

∂`i,�(�; x)/∂�j(x;�)=�ij{Yj −b′(�j(x;�))}Kh(Xj −x)/a(�). (41)

Following (41), we see that ∂2`i,�(�; x)/{∂�j(x;�)∂�k(x;�)}=0 for j =/ k, and ∂2`i,�(�; x)/
{∂�j(x;�)}2 =−�ijb′′(�j(x;�))/a(�)Kh(Xj −x). This along with (40) gives (36). Equations (37)–
(38) follow from decomposing an identity matrix I into Vi(�) and I−Vi(�).

Proof of Proposition 1. From (35) and (36), (34) can be rewritten as

�L =�L−1 +{X(x)TVi(�)W(x;�L−1)X(x)}−1X(x)TVi(�)W(x;�L−1)z(x;�L−1). (42)

Setting �=0 in (42), the one-step estimate of �̂
−i

(x) starting from �0 = �̂(x) is

�̂(x)+{X(x)TVi(0)W(x; �̂(x))X(x)}−1{X(x)TVi(0)W(x; �̂(x))ẑ(x)}.

Using the definition of �̂(x) (satisfying �`i,�(�; x)=0 with �=1), along with (37) and (38),

the above one-step estimate of �̂
−i

(x) equals

�̂(x)−{Ŝn(x)− ŵi(x)xi(x)xi(x)T}−1xi(x)Kh(Xi −x){Yi − m̂i(x)}. (43)

By the Sherman–Morrison–Woodbury formula (Golub & Van Loan, 1996, p. 50),

{Ŝn(x)− ŵi(x)xi(x)xi(x)T}−1 ={Ŝn(x)}−1 + ŵi(x){Ŝn(x)}−1xi(x)xi(x)T{Ŝn(x)}−1

1− ŵi(x)xi(x)T{Ŝn(x)}−1xi(x)
.

Thus

{Ŝn(x)− ŵi(x)xi(x)xi(x)T}−1xi(x)={Ŝn(x)}−1xi(x)/{1−Hii(x; �̂(x))},

by which (43) becomes

�̂(x)−{Ŝn(x)}−1xi(x)Kh(Xi −x){Yi − m̂i(x)}/{1−Hii(x; �̂(x))}.

This expression approximates �̂
−i

(x) and thus leads to (10). To show (11) and (12), note that

�̂i = �̂i(Xi), m̂i = m̂i(Xi), �̂
−i
i = �̂

−i
i (Xi), m̂−i

i = m̂−i
i (Xi) and

Hi = eT
1 {Ŝn(Xi)}−1e1Kh(0)b′′(�̂i). (44)

Applying (10) gives

�̂
−i
i − �̂i = eT

1 {�̂
−i

(Xi)− �̂(Xi)} .=−eT
1 {Ŝn(Xi)}−1e1Kh(0)(Yi − m̂i){1−Hii(Xi ; �̂(Xi))},
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leading to (11). This and a first-order Taylor’s expansion and the continuity of b′′ yield

m̂−i
i − m̂i =b′(�̂

−i
i )−b′(�̂i)

.= (�̂
−i
i − �̂i)b′′(�̂i) and thus (12).

Proof of Proposition 2. Recall �̂i =−q′(m̂i)/2 defined in section 2.2. By a first-order Taylor

expansion, we have that �̂i − �̂
−i
i =2−1{q′(m̂−i

i )−q′(m̂i)} .=2−1q′′(m̂i)(m̂
−i
i −m̂i) and Q(m̂−i

i , m̂i)
.=

−2−1q′′(m̂i)(m̂
−i
i − m̂i)2. These, applied to an identity given in a lemma of Efron (2004, section 4),

Q(Yi , m̂−i
i )−Q(Yi , m̂i)=2(�̂i − �̂

−i
i )(Yi − m̂−i

i )−Q(m̂−i
i , m̂i), lead to

Q(Yi , m̂−i
i )−Q(Yi , m̂i)

.=q′′(m̂i)(m̂
−i
i − m̂i)(Yi − m̂−i

i )+2−1q′′(m̂i)(m̂
−i
i − m̂i)2

=2−1q′′(m̂i){(Yi − m̂i)2 − (Yi − m̂−i
i )2}.

Summing over i and using (12) and (6), we complete the proof.

Proof of Proposition 3. From (14) and (15), we see that

hAMPEC(q2)
hAMISE

=
[
|�X|

∫
�X

F (x)G(x) dx
/{∫

�X

F (x) dx
∫

�X

G(y) dy
}]1/(2p+3)

. (45)

To show part (a), it suffices to consider oppositely ordered F and G. In this case, by the
Tchebychef’s inequality (Hardy et al., 1988, p. 43 and 168), we obtain

|�X|
∫

�X

F (x)G(x) dx ≤
∫

�X

F (x) dx
∫

�X

G(y) dy.

Since F ≥0 and G ≥0, it follows that

|�X|
∫

�X

F (x)G(x) dx
/{∫

�X

F (x) dx
∫

�X

G(y) dy
}

≤1,

which along with (45) indicates that hAMPEC(q2)≤hAMISE.
To verify part (b), it can be seen that under its assumptions, for a constant C > 0, F (x)=

C/|�X|b′′(�(x)) is oppositely ordered with G(x)={b′′(�(x))}−1, and thus the conclusion of part
(a) immediately indicates the upper bound 1. To show the lower bound, we first observe that
(45) becomes

hAMPEC(q2)
hAMISE

=
[

|�X|2∫
�X

b′′(�(x)) dx
∫

�X
{b′′(�(y))}−1dy

]1/(2p+3)

. (46)

Incorporating the Grüss integral inequality (Mitrinović et al., 1993),∣∣∣∣ 1
|�X|

∫
�X

F (x)G(x) dx − 1
|�X|2

∫
�X

F (x) dx
∫

�X

G(y) dy

∣∣∣∣≤ 1
4

(MF −mF )(MG −mG),

where MF =maxx∈�X F (x), mF =minx∈�X F (x) and MG and mG are similarly defined, we
deduce∫

�X

b′′(�(x)) dx
∫

�X

{b′′(�(y))}−1dy ≤ (mb′′ +Mb′′ )2/(4mb′′ Mb′′ )|�X|2.

This applied to (46) gives the lower bound.
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Proof of Proposition 4. Define H=diag{1, h, . . ., hp}. From (44), we have that

Hi = (nh)−1eT
1 {n−1H−1Ŝn(Xi)/b′′(�̂(Xi))H−1}−1e1K (0), (47)

where Ŝn(x)=∑n
j =1 xj(x)xj(x)TKh(Xj − x)b′′(xj(x)T�̂(x)). By Taylor’s expansion and the

assumptions on b′′ and fX , it follows that uniformly in x ∈�X , n−1H−1Ŝn(x)/b′′(�̂(x))H−1 =
fX (x)S +oP(1). Combining this expression with (47), it can be shown that

n∑
i =1

Hi =
n∑

i =1

1
nhfX (Xi)

eT
1 S−1e1K (0){1+oP(1)}= K(0)

nh

n∑
i =1

1
fX (Xi)

{1+oP(1)},

which will finish the proof.

Lemma 3
Assume that the kernel function K is non-negative, symmetric and uni-modal. Then for
i =1, . . ., n, Si decreases in h > 0 for which Si is well-defined.

Proof. Consider the matrices Ai(h)=X(Xi)Tdiag{K(|Xj −Xi |/h)}n
j =1X(Xi), i =1, . . ., n. If K

is non-negative and uni-modal, then 0 < h1 < h2 implies that Ai(h1)≤Ai(h2) or, equivalently,
{Ai(h1)}−1 ≥{Ai(h2)}−1. We complete the proof by noting Si = eT

1 {Ai(h)}−1e1K (0), since K is
symmetric.

Proof of Proposition 5. The one-step estimate of �̂
−i

(x), starting from �0 = �̂(x), is given by

�̂(x)+4{X(x)TVi(0)K(x)X(x)}−1{X(x)TVi(0)W(x; �̂(x))ẑ(x)}, (48)

i.e.

�̂(x)−4{Sn(x)−Kh(Xi −x)xi(x)xi(x)T}−1xi(x)Kh(Xi −x){Yi − m̂i(x)}.

Again, using the Sherman–Morrison–Woodbury formula,

{Sn(x)−Kh(Xi −x)xi(x)xi(x)T}−1 ={Sn(x)}−1 +Kh(Xi −x){Sn(x)}−1xi(x)xi(x)T

×{Sn(x)}−1/�i(x),

where �i(x)=1−Kh(Xi −x)xi(x)T{Sn(x)}−1xi(x) and thus

{Sn(x)−Kh(Xi −x)xi(x)xi(x)T}−1xi(x)={Sn(x)}−1xi(x)/�i(x),

by which (48) becomes �̂(x) − 4{Sn(x)}−1xi(x)Kh(Xi −x){Yi − m̂i(x)}/�i(x). This expression

approximates �̂
−i

(x) and thus leads to (19). Applying (19), we have

�−i
i − �̂i = eT

1 {�̂
−i

(Xi)− �̂(Xi)} .=−4eT
1 {Sn(Xi)}−1e1Kh(0)(Yi − m̂i)/(1−Si),

which leads to (20). Proofs of (21) and (22) are similar to those of proposition 2.

Proofs of Propositions 6 and 7. The technical arguments are similar to those of propositions
1 and 2 and are omitted.
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Proof of Proposition 8. Recalling the definition of H∗
i in section 5.2, we have that for

�i = e1 ⊗Xi ,

H∗
i = (nh)−1�T

i {n−1(H⊗ Id )−1Ŝ∗
n (Ui)(H⊗ Id )−1}−1�i ×K (0)b′′(�̂(Ui , Xi)), (49)

where

Ŝ
∗
n(u)=

n∑
j =1

[{uj(u)uj(u)T}⊗ (XjX
T
j )

]
Kh(Uj −u)b′′

(
{uj(u)⊗Xj}T�̂(u)

)
.

It can be shown that uniformly in u ∈�U ,

n−1(H⊗ Id )−1Ŝ∗
n (u)(H⊗ Id )−1

=n−1
n∑

j =1

[{
H−1uj(u)uj(u)TH−1}⊗ (XjX

T
j )

]
Kh(Uj −u)b′′(�(u, Xj))+oP(1)

= fU (u)[S ⊗E{b′′(�(u, X))XXT |U =u}]+oP(1)= fU (u){S ⊗�(u)}+oP(1).

This expression applied to (49) further implies that
n∑

i =1

H∗
i =

n∑
i =1

K(0)
nhfU (Ui)

{
XT

i �(Ui)−1Xib′′(�(Ui , Xi))
}{1+oP(1)}. (50)

For (50), a direct calculation yields E{XT�(U )−1Xb′′(�(U , X))/fU (U )}=d |�U|.
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