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Abstract: In statistical analysis of functional magnetic resonance imaging (fMRI),

dealing with the temporal correlation is a major challenge in assessing changes

within voxels. This paper aims to address this issue by considering a semiparametric

model for single-voxel fMRI. For the error process in the semiparametric model

with autocorrelation matrix R, we adopt the difference-based method to construct

a banded estimate R̂ of R, and propose a refined estimate R̂−1
∗ of R−1. Under

mild regularity conditions, we establish consistency of R̂ and R̂∗ with explicit

convergence rates. We also demonstrate convergence of R̂−1
∗ in mean square under

the L∞ norm, though this convergence property does not hold for R̂−1. Data-

driven procedures for choosing the banding parameter and refining the estimate are

developed, and simulation studies reveal their satisfactory performance. Numerical

results suggest that R̂−1
∗ performs well when applied to the semiparametric test

statistics for detecting brain activity.

Key words and phrases: Autocorrelation matrix, difference-based method, fMRI,

inverse, semiparametric model.

1. Introduction

Functional magnetic resonance imaging (fMRI) is a powerful technique to

study the neural underpinnings of human cognition. It has been widely used

to detect the areas of the brain responsible for certain motor or sensory tasks.

An fMRI data set for a single scan on a single subject typically consists of a

time series of responses for each of the voxels throughout the brain, where a

voxel is a three dimensional rectangular cuboid. It is well known that fMRI data

are highly temporally correlated within the same voxel and spatially correlated

between different voxels (Lange (1996); Zarahn, Aguirre, and D’Esposito (1997)).

A common strategy for fMRI data analysis has two major components. The

first assesses the task-associated signal changes for each voxel, where adequate

accommodation of the within-voxel temporal correlation is required. The second

determines the regions of activation over the human brain based on the voxel-

wise assessment, where the spatial correlation across voxels should be taken into

consideration. We focus our attention on dealing with the temporal correlation,

an essential and challenging issue for the first component.
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Different statistical modeling and analysis approaches have been studied for

single-voxel fMRI, including the general linear model (GLM) approach (Lange

(1996); Lazar et al. (2001); Worsley et al. (2002)) and the semiparametric model

approach (Zhang and Yu (2008)). For the GLM approach, ignoring the temporal

correlation can result in biased test statistics for hypothesis testing of the model

parameters and thus lead to inaccurate detection of the brain activity. Several

methods have been proposed to handle the serial correlation with some variant of

the general linear model, that can be classified into three groups (Monti (2011)):

the pre-coloring method (Friston et al. (1995); Worsley and Friston (1995)), the

pre-whitening method with the error term of the model assumed to be AR(1)

(Bullmore et al. (1996)), AR(m) (Worsley et al. (2002)), and ARMA(1, 1) (Pur-

don et al. (2001)), among others, and the explicit noise modeling method (Lund

et al. (2006)).

Here, we consider the semiparametric approach that yields more accurate

prediction of the time-course behavior of neuronal responses than the GLM ap-

proach. For semiparametric inference, detection of the brain activity in a certain

voxel can be achieved via tests of significance of the hemodynamic response func-

tion (HRF). In constructing the semiparametric test statistics, estimation ofR−1

plays an important role, where R is the correlation matrix of the temporally cor-

related error process. A difference-based approach (Zhang et al. (2008)) was

developed to estimate the autocorrelation matrix of a stationary g-dependent

error process. Since the fMRI noise containing neural and nonneural sources has

long-range correlations (Friston et al. (2000)), it is desirable to explore whether

estimation of R, under a more general assumption of the error process, can ben-

efit from the difference-based method, which is computationally fast. Moreover,

asymptotic properties of the estimates of R and R−1 need to be established for

the semiparametric inference of fMRI.

We consider two classes of error processes. One is a linear process with

dependence structure related to the sample size; it covers a broad range of sta-

tionary time series models, for example, the stationary ARMA(p, q) model. The

other is a stationary gn-dependent process with gn being bounded or diverging; it

includes the g-dependent process (Zhang et al. (2008); Zhang and Yu (2008)) as

a special case. Under these assumptions, estimation of the Toeplitz error auto-

correlation matrix R is a challenging task. Directly applying the difference-based

approach leads to a badly behaved estimate of R, because too many autocovari-

ances are estimated. Several regularization methods (e.g., banding, tapering, and

thresholding) have been studied to yield consistent estimators for large covariance

matrices in areas of high-dimensional inference (Bickel and Levina (2008a,b); Cai,

Zhang, and Zhou (2010); El Karoui (2008); Furrer and Bengtsson (2007)) and

time series analysis (McMurry and Politis (2010); Wu and Pourahmadi (2009);
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Xiao and Wu (2012)). We adopt the regularization idea of banding and em-

ploy the difference-based approach to develop an estimate R̂ of R. For R−1, we

propose a refined estimate R̂−1
∗ .

Cai, Ren, and Zhou (2012), Wu and Pourahmadi (2009), and Xiao and Wu

(2012) have studied the banding method for large Toeplitz covariance matrix

estimation and obtained convergence rates of the estimates. Their results are not

readily translated into results for our methods and the asymptotic properties of R̂

and R̂−1
∗ are needed. Under some mild regularity conditions, we establish explicit

convergence rates of R̂ and R̂∗ and demonstrate convergence of R̂−1
∗ in mean

square under the L∞ norm. For practical guidance, data-driven approaches to

choosing the banding parameter and refining the estimate of R−1 are developed.

Our contribution to the analysis of brain fMRI is in providing a computationally

efficient and consistent estimate of R−1 for semiparametric inference.

The rest of this paper is organized as follows. Section 2 reviews the semi-

parametric model for fMRI in Zhang and Yu (2008), and develops the banded

estimate R̂. Section 3 obtains explicit convergence rates of R̂ and R̂∗, and estab-

lishes consistency of R̂−1
∗ under the L∞ norm. Section 4 provides the data-driven

methods for choosing the banding parameter and refining the estimate of R−1.

Section 5 presents simulation evaluations of R̂−1
∗ in applying it to the semipara-

metric test statistics in Zhang and Yu (2008). Section 6 is illustrated with fMRI

data. The Appendix includes the conditions and proofs for the main results; it

is available as an online supplement.

We introduce some notation. For a matrix A, λmin(A) and λmax(A) denote

the smallest and largest eigenvalues of A, respectively, and A ≻ 0 signifies that

A is positive definite. For A = {aij}, the L1, L2 and L∞ norms are ∥A∥1 =

maxj
∑

i |aij |, ∥A∥ ≡ ∥A∥2 = {λmax(A
TA)}1/2 and ∥A∥∞ = maxi

∑
j |aij |, re-

spectively. If A is symmetric, ∥A∥1 = ∥A∥∞ ≥ ∥A∥2; see, e.g., Golub and

Van Loan (1989). For a vector v = (v1, . . . , vp)
T , the Lr norm is ∥v∥r =

(
∑p

i=1 |vi|r)1/r for r ≥ 1. Denote by zp,q the pth column of the q × q iden-

tity matrix. The banding operator is defined as Mk(A) = {aij I(|i − j| ≤ k)}
(Bickel and Levina (2008b)), where k is a positive integer. In the following, c

and C denote generic positive constants which may vary from place to place, and

do not depend on n.

2. Model and Method

2.1. Semiparametric model for single-voxel fMRI

(Zhang and Yu (2008))

We briefly review the semiparametric model proposed by Zhang and Yu

(2008). For single-voxel fMRI, the observations are {y(ti), s1(ti), . . . , sℓ(ti)}ni=1,
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where y(·) is the fMRI signal, sj(ti) is the external input of the jth type of stimu-

lus at time ti, and ℓ is the number of stimulus or event types. The stimulus-related

variation of the signal in a particular voxel is characterized by the hemodynamic

response function (HRF). Denote by hj(t) the HRF corresponding to the jth

event type at time t after neural activity. Zhang and Yu (2008) assumed that

hj(t) = 0 for t > tm, j = 1, . . . , ℓ, where m is far below n. The semiparametric

model for single-voxel fMRI is expressed as

y = Sh+ d+ ϵ, (2.1)

where y = (y(t1), . . . , y(tn))
T , S = (S1, . . . ,Sℓ), h = (hT

1 , . . . ,h
T
ℓ )

T , d = (d(t1),

. . . , d(tn))
T , ϵ = (ϵ(t1), . . . , ϵ(tn))

T , ti = i/n for i = 1, . . . , n; Sj and hj denote

the n×m Toeplitz design matrix and the m× 1 HRF vector of the jth stimulus

type, respectively, for j = 1, . . . , ℓ,

Sj =



sj(0) 0 · · · 0

sj(t2 − t1) sj(0) · · · 0
...

...
. . .

...

sj(tm − t1) sj(tm − t2) · · · sj(0)
...

... · · ·
...

sj(tn − t1) sj(tn − t2) · · · sj(tn − tm)


n×m

;

hj = (hj(t1), . . . , hj(tm))T , d(·) is a smooth drift function, and ϵ(t) is a zero-mean

error process with correlation matrix R.

Estimation of R−1 is essential in semiparametric inference for fMRI. Con-

sider the hypotheses for detecting the brain activity in a certain voxel:

H0 : Uh = 0 versus H1 : Uh ̸= 0,

with U a full row rank matrix of size K0 × ℓm and K0 a positive inte-

ger. Zhang and Yu (2008) proposed the semiparametric test statistic K =

(Uĥ)T {U(S̃T R̂−1S̃)−1UT }−1(Uĥ)/{r̂T R̂−1r̂/(n − ℓm)} and the bias-corrected

version Kbc = (Uĥbc)
T {U(S̃T R̂−1S̃)−1UT }−1(Uĥbc)/{r̂TbcR̂−1r̂bc/(n − ℓm)},

where R̂−1 is the estimate of R−1. They further demonstrated that under H0,

K D→ χ2
K0

and Kbc
D→ χ2

K0
, assuming some regularity conditions of which one is

E(∥R̂−1 −R−1∥2∞) = o(1); (2.2)

see Condition A8 therein. We develop a consistent estimate of R and a refined

estimate of R−1 that fulfills (2.2).
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2.2. Assumption of the error process

It’s known that the error process consisting of physical and physiological

processes (Lund et al. (2006)) is highly temporally correlated. Assumptions on

the error process have included AR(1) (Bullmore et al. (1996)), AR(m) (Worsley

et al. (2002)), ARMA(1, 1) (Purdon et al. (2001)), and g-dependence (Zhang et

al. (2008); Zhang and Yu (2008)). We consider linear processes and gn-dependent

processes for the error.

Suppose {ϵ(ti)} is a zero-mean linear process (see, e.g., Shumway and Stoffer

(2011)) with dependence structure related to n. As in Condition A1 in the

Appendix,

ϵ(ti) =
∞∑

j=−∞
ϕn;jwi−j ,

where (i) ϕn;0 ≡ 1; (ii) for any n ≥ 1, there exists 1 ≤ gn ≤ n − 1 and αn > 4,

such that

|ϕn;j | ≤

{
C, if |j| ≤ gn

2 ,

C |2j|−αn , if |j| > gn
2 ,

with a constant C > 0; (iii) {wi}∞i=−∞ is a sequence of independent white noises

(WN) with E(wi) = 0, E(w2
i ) = σ2

w, and supiE(w4
i ) < ∞.

Assumption (ii) illustrates the decay rate of the coefficients, and αn > 4

guarantees that
∑∞

j=−∞ |ϕn;j | ≤ Cgn. From (iii), the error process has zero

mean and a finite fourth moment for any fixed n, which is weaker than the

Gaussian tail (Cai, Ren, and Zhou (2012)) and higher order of polynomial tail

(Xiao and Wu (2012)) assumptions. Condition A1 is satisfied by, for example,

the zero-mean stationary ARMA(p, q) model with a finite fourth moment and

independent white noises, for any 1 ≤ gn ≤ n− 1 and any fixed αn > 4.

Motivated by the g-dependence assumption in Zhang et al. (2008) and Zhang

and Yu (2008), we consider another class of error process with ϵ a zero-mean

stationary gn-dependent sequence, where gn can be bounded or diverge with n,

see Condition B1 in the Appendix. This assumption includes the g-dependent

process (Zhang et al. (2008); Zhang and Yu (2008)) as a special case. There is

overlap between A1 and B1, for example the zero-mean MA(gn) process with a

finite fourth moment and independent white noises satisfies both.

Under A1 or B1, the true autocorrelation matrix of {ϵ(ti)} is Toeplitz,

R =


1 ρ(1) · · · ρ(n− 1)

ρ(1) 1 · · · ρ(n− 2)
...

...
. . .

...

ρ(n− 1) ρ(n− 2) · · · 1

 ,
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where ρ(k) = γ(k)/γ(0), for k = 1, . . . , n− 1 and γ(k) = cov{ϵ(ti), ϵ(ti+k)} is the

autocovariance.

Remark 1. Under Condition A1,

γ(k) = σ2
w

∞∑
j=−∞

ϕn;jϕn;j+|k|, k = 0,±1, . . . ,±(n− 1). (2.3)

From (2.3), we can show that σ2
w ≤ γ(0) ≤ Cgn, and

|γ(k)| ≤

{
C(gn + 1− k), if 0 ≤ k ≤ gn,

C(2k − gn)
1−αn , if gn < k ≤ n− 1.

Therefore, A1 is significantly different from the assumptions in Cai, Ren, and

Zhou (2012) and Xiao and Wu (2012), where the dependence structures of the

time series are not related to n. Under B1, γ(k) = 0 for k > gn.

Under A1 then,

|ρ(k)| ≤


C(gn + 1− k)

γ(0)
, if 0 ≤ k ≤ gn,

C(2k − gn)
1−αn

γ(0)
, if gn < k ≤ n− 1,

so R is a “bandable” matrix where the entries decay as they move away from the

diagonal. The decay rate of |ρ(k)| for k > gn is much faster than that for k ≤ gn.

Thus, gn could be regarded as the natural banding parameter of R. Under B1,

R is a banded matrix with gn the exact banding parameter.

2.3. Estimation of the error autocorrelation matrix

Several methods have been proposed to estimate large Toeplitz covariance

matrices, see Cai, Ren, and Zhou (2012), McMurry and Politis (2010), Wu and

Pourahmadi (2009), and Xiao and Wu (2012), among others. Essentially, they

consider regularizing the sample covariance matrix, which is directly constructed

from the observed time series. However, for fMRI data, the error process is unob-

servable. To obtain the error autocovariance estimates, we adopt the difference-

based method (Zhang et al. (2008)), that is computationally fast. Since R is

“bandable” under either of the two conditions for the error process, we construct

a gn-banded estimate.

At (2.1), we take the second-order difference of (y − Sh) and get

e ≡ D2(y − Sh) = D2(ϵ+ d), (2.4)
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where D2 is the (n− 2)× n matrix

D2 =


1 −2 1 0 · · · 0

0 1 −2 1 · · · 0
...

...
...

...
...

...

0 0 0 0 · · · 1


(n−2)×n

.

Here, e(ti) = {ϵ(ti) − 2ϵ(ti−1) + ϵ(ti−2)} + {d(ti) − 2d(ti−1) + d(ti−2)}, for i =
3, . . . , n, where e(ti) = zT

i−2,n−2e and zp,q is the pth column of the q × q identity
matrix. Let γe(k) = cov{e(ti), e(ti+k)} for 0 ≤ k ≤ n− 3. Then

γe(k) = γ(k − 2)− 4γ(k − 1) + 6γ(k)− 4γ(k + 1) + γ(k + 2), k = 0, . . . , n− 3,

which impliesγe(0)
...

γe(k)

 = Ak

γ(0)
...

γ(k)

+Bk

(
γ(k + 1)

γ(k + 2)

)
, k = 0, . . . , n− 3, (2.5)

where Ak is a (k + 1)× (k + 1) matrix

Ak =


6 −8 2 0 0 · · · 0 0 0 0

−4 7 −4 1 0 · · · 0 0 0 0

1 −4 6 −4 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 · · · 0 1 −4 6


(k+1)×(k+1)

,

and Bk is a (k + 1)× 2 matrix, satisfying

B0 = (−8, 2), B1 =

(
2 0

−4 1

)
, BT

k =

(
0 · · · 0 1 −4

0 · · · 0 0 1

)
, k ≥ 2.

The basic idea of the difference-based method is to first obtain the empirical
estimates of γe(k) for k = 0, . . . , gn, and then, by (2.5), acquire the estimates of
γ(k) for k = 0, . . . , gn, which enables us to construct the error autocorrelation
matrix estimate. A two-step procedure describes in detail how to build a gn-
banded estimate of R.

Step I. An initial estimate of h is constructed based on the first-order difference
of y.

Let D1 be an (n− 1)× n matrix

D1 =


−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · −1 1


(n−1)×n

.
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The first-order difference of y yields

D1y = D1Sh+D1d+D1ϵ. (2.6)

By smoothness of the drift function in A3, d(ti) − d(ti−1) = d′(ti−1)n
−1 +

O(n−2) = O(n−1), and the term D1d in (2.6) can be ignored. Ordinary least-

squares method provides an initial estimate of the HRF,

ĥDBE = {(D1S)
T (D1S)}−1(D1S)

T (D1y).

Step II. Construct the gn-banded estimate of R based on the empirical estimates

of γe(k), for k = 0, . . . , gn.

Substituting ĥDBE for h in (2.4), we get ê ≡ D2(y−SĥDBE). The empirical

estimate of γe(k) is

γ̂e(k) =
1

n

n−k∑
i=3

ê(ti)ê(ti+k), k = 0, . . . , gn, (2.7)

where ê(ti) = zT
i−2,n−2ê, for i = 3, . . . , n. It is also used by Wu and Pourahmadi

(2009). By taking k = gn in (2.5),

γe = Agnγ +Bgn

(
γ(gn + 1) γ(gn + 2)

)T
, (2.8)

where γe = (γe(0), . . . , γe(gn))
T and γ = (γ(0), . . . , γ(gn))

T . Since γ(gn +1) and

γ(gn + 2) are negligible, as shown in Remark 1, we drop the second term on the

right hand side of (2.8) and estimate γ by

γ̂ = A−1
gn γ̂e, (2.9)

where γ̂e = (γ̂e(0), . . . , γ̂e(gn))
T . The estimate of ρ(k) is derived as

ρ̂(k) =


γ̂(k)

γ̂(0)
, if 0 ≤ k ≤ gn,

0, if gn < k ≤ n− 1,

where γ̂(k) = zT
k+1,gn+1γ̂, and the gn-banded estimate of R is

R̂ =


1 ρ̂(1) · · · ρ̂(n− 1)

ρ̂(1) 1 · · · ρ̂(n− 2)
...

...
. . .

...

ρ̂(n− 1) ρ̂(n− 2) · · · 1

 . (2.10)

This estimation procedure is for single-run fMRI. If we have a fixed number

of replications, the estimate of the autocorrelation matrix can be acquired as

follows.
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Let (y1,S1), . . . , (yN ,SN ) be the observations, where yi and Si are the vector

of response and the design matrix for the ith realization, and N is a fixed integer

denoting the number of replications. From Step I above, we obtain the initial

estimates of the HRFs, ĥi
DBE = {(D1S

i)T (D1S
i)}−1(D1S

i)T (D1y
i) for i =

1, . . . , N . The empirical estimates γ̂i
e is based on D2(y

i−Siĥi
DBE) following Step

II. We estimate γe by

γ̂e =
1

N

N∑
i=1

γ̂i
e. (2.11)

Thereafter, the same approaches as in Step II lead to R̂.

The estimate (2.11) parallels the one proposed in Cai, Ren, and Zhou (2012).

In the following, we focus on single-run fMRI.

3. Theoretical Results

We establish an explicit convergence rate of R̂, develop a positive-definite

estimate of R−1, and demonstrate consistency of the estimate under the L∞
norm. The conditions and proofs are given in the Appendix, available on the

online supplement.

Theorem 1. Assume A2−A5 in the Appendix. Under either of the following

two assumptions:

1. A1 in the Appendix holds, n = o(g8+2αn
n + 2αn) and g14n /n = o(1),

2. B1 in the Appendix holds and g14n /n = o(1),

for R̂ in (2.10), ∥R̂−R∥∞ = OP (g
7
n/n

1/2).

In Theorem 1, the banded estimate R̂ is consistent under the L∞ norm

with convergence rate g7n/n
1/2. Recall that γ is estimated by γ̂ = A−1

gn γ̂e, as in

(2.9). In Lemma 1 in the Appendix, we show that A−1
gn exists for any gn ≥ 1

and ∥A−1
gn ∥1 = O(g4n) as n → ∞, the major reason for the power of gn in the

convergence rate. It is the price we have to pay for the difference-based method

in order to gain computational efficiency. From Theorem 1, we obtain the same

convergence rate for R̂ under either the linear process assumption or the gn-

dependence assumption for the error process.

For the ARMA(p, q) model that satisfies A1, we can take gn to satisfy the

rate assumptions in Theorem 1 with any constant-valued αn > 4.

Remark 2. In Xiao and Wu (2012), the optimal convergence rate of the banded

autocovariance matrix estimate of stationary process is obtained. We compare

our convergence rate with theirs under the following conditions. Suppose that

{ϵ(ti)} are observed and ϵ(ti) =
∑∞

j=0 ϕjwi−j , where (i) ϕ0 = 1, (ii) |ϕj | ≤



484 XIAO GUO AND CHUNMING ZHANG

C|2j|−αn , for j ̸= 0, with αn ≡ α0 + 1, α0 > 3, (iii) {wi}∞i=−∞ are i.i.d. white
noises with E(wi) = 0, E(w2

i ) = σ2
w and E(wp

i ) < ∞ for a constant p > 4.
In Xiao and Wu (2012), the convergence rate of the banded estimate under

the L2 norm is {log(n)/n}α0/(2α0+1). For our convergence rate, the assumption
n = o(g8+2αn

n + 2αn) implies (1/n)(α0−2)/(2α0+10) = o(g7n/n
1/2). Since α0/(2α0 +

1) > (α0−2)/(2α0+10), the convergence rate in Xiao and Wu (2012) is sharper.
One important reason is that they considered the matrix L2 norm in order to
make use of the spectral density of the stationary process, while we use the L∞
norm which is not smaller than the L2 norm.

Proposition 1. Assume A1–A5 in the Appendix. If αngn → ∞ and g14n /n =
o(1), for R̂ in (2.10), ∥R̂−R∥∞ = oP (1).

Proposition 2. Assume A2−A6 in the Appendix. Under either of the following
two assumptions:

1. A1 in the Appendix holds, αngn → ∞ and g14n /n = o(1),

2. B1 in the Appendix holds and g14n /n = o(1),

for R̂ in (2.10), limn→∞ P(R̂ ≻ 0) = 1.

While Proposition 2 has R̂ positive definite with probability tending to one,
in finite-sample situations, R̂ may not be. To obtain positive-definite estimates,
several modification methods have been proposed (e.g., Cai and Zhou (2012);
Wu and Xiao (2011); Zhang et al. (2008); Zhang and Yu (2008)). Zhang et al.
(2008) and Zhang and Yu (2008) proposed a positive-definite estimate of R−1 by
refining R̂−1. Their estimate is

R̂−1
Z =

{
R̂−1, if R̂ ≻ 0,

In, otherwise,

where In is the n×n identity matrix and R̂ is constructed with gn = 2. Motivated
by Cai and Zhou (2012), we propose an estimate of R−1 by refining R̂−1

Z ,

R̂−1
∗ =

{
R̂−1, if R̂ ≻ 0 and ∥R̂−1∥∞ ≤ Dnω,

In, otherwise,
(3.1)

where 0 < ω < 1/2 and D > 0 are constants.
When R̂ is not positive definite, we estimate R−1 by In. This is reasonable,

because it is the true autocorrelation matrix when the error process is uncor-
related. Even if R̂ is positive definite, it is possible that the eigenvalues of R̂
are close to 0, resulting in a large scale of ∥R̂−1∥∞. In order to exclude the
case that R̂ is almost singular, we set a threshold on ∥R̂−1∥∞. Thus, R̂−1

∗ is a
positive-definite estimate of R−1 with the L∞ norm bounded by max{Dnω, 1}.
As an estimate of R, R̂∗ could be viewed as a refined version of R̂ and R̂Z .
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Proposition 3. Under A6 in the Appendix and the conditions of Theorem 1,

∥R̂Z −R∥∞ = OP (g
7
n/n

1/2), ∥R̂∗ −R∥∞ = OP (g
7
n/n

1/2).

Theorem 2. Assume A2–A6 in the Appendix. Under either of the following two
assumptions:

1. A1 in the Appendix holds, αngn → ∞ and g14n /n1−2ω = o(1),

2. B1 in the Appendix holds and g14n /n1−2ω = o(1),

for R̂−1
∗ defined in (3.1), we have

lim
n→∞

E(∥R̂−1
∗ −R−1∥2∞) = 0.

This result has R̂−1
∗ fulfilling Condition A8 in Zhang and Yu (2008) under

either of the two conditions for the error process. Hence, R̂−1
∗ offers a satisfac-

tory estimate of R−1 for the semiparametric inference for brain fMRI data. For
R̂−1

Z , the convergence property described in Theorem 2 also holds under certain

conditions, e.g., 0 < c ≤ λmin(R̂Z) ≤ λmax(R̂Z) < C or ∥R̂−1
Z ∥∞ ≤ C. These

conditions are relaxed here as ∥R̂−1
∗ ∥∞ is allowed to diverge with n.

Proposition 4. Under A6 in the Appendix and the conditions of Theorem 1,

∥R̂−1 −R−1∥∞ = OP

( g7n
n1/2

)
, ∥R̂−1

Z −R−1∥∞ = OP

( g7n
n1/2

)
,

∥R̂−1
∗ −R−1∥∞ = OP

( g7n
n1/2

)
.

4. Data-driven Methods for gn and R̂−1
∗

4.1. Choosing the banding parameter gn

Results in Section 3 give rates of gn that lead to consistency of R̂ and R̂−1
∗ ,

but they do not give much guidance for the choice of gn in practice. To select the
banding parameter, we utilize the idea of risk-minimization (Bickel and Levina
(2008b)) and the technique of subsampling (Politis, Romano, and Wolf (1999)).

Since the estimates of γe(k) and γ(k) do not perform well when k is close
to n, we select gn from {0, . . . , T} instead of {0, . . . , n − 1}, where T is a pre-
determined integer much less than (n − 1). In the theoretical analysis, we took
1 ≤ gn ≤ n−1, but in applications, one needs to consider the case of gn = 0. Let
γe,u = (γe(0), . . . , γe(u), 0, . . . , 0)

T and γu = (γ(0), . . . , γ(u), 0, . . . , 0)T be vectors
of length T+1, for u = 0, . . . , T . Denote by γ̂e,u = (γ̂e(0), . . . , γ̂e(u), 0, . . . , 0)

T the
estimate of γe,u, with γ̂e(k) calculated in (2.7) and by γ̂u = (γ̂(0), . . . , γ̂(u), 0, . . .,
0)T the estimate of γu, satisfying (γ̂(0), . . . , γ̂(u))T = A−1

u (γ̂e(0), . . . , γ̂e(u))
T .

Based on the risk-minimization method, we develop a two-step procedure to
select gn.
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Step 1. The initial choice of the banding parameter ge is that which minimizes

the risk

re(g) = E(∥γ̂e,g − γe,T ∥1), (4.1)

for g ∈ {2, . . . , T}.

We take ge not less than 2 because e, defined in (2.4), is the second-order differ-

ence of ϵ + d. For the simplest case, if ϵ is a sequence of white noises, e would

be 2-dependent.

Step 2. Select the banding parameter as the minimizer of

r(g) = E(∥γ̂g − γge∥1), (4.2)

for g ∈ {0, . . . , ge}.

Since the Toeplitz autocorrelation matrix is uniquely determined by the auto-

covariances, our risk functions (4.1) and (4.2) parallel the one in Wu and Pourah-

madi (2009), which is constructed based on the Toeplitz autocovariance matrix

and its estimate.

We subsample to estimate the risk functions. For {ê(ti)}ni=3, blocks of con-

secutive elements are used as legitimate subsamples. The length of each block is

b, predetermined in practice. Therefore, there are (n− b− 1) blocks, and the νth

one is {ê(tν+2), ê(tν+3), . . . , ê(tν+b+1)}, for ν = 1, . . . , n− b−1. We select V sub-

samples, denoted by G1, . . . , GV , such that Gµ = {ê(t(µ−1)⌊(n−b−2)/(V−1)⌋+3), . . .,

ê(t(µ−1)⌊(n−b−2)/(V−1)⌋+b+2)}, for µ = 1, . . . , V , where ⌊·⌋ denotes the floor func-

tion. To enhance the computational efficiency, only G1, . . . , GV are used. Denote

by γ̂ν
e,u = (γ̂νe (0), . . . , γ̂

ν
e (u), 0, . . . , 0)

T and γ̂ν
u = (γ̂ν(0), . . . , γ̂ν(u), 0, . . . , 0)T the

estimates of γe,u and γu based on the subsample Gν , respectively.

For (4.1), alternatively, each of G1, . . . , GV is used to estimate γe,T , which

serves as the “target”, and the other (V − 1) blocks are used to estimate γe,g for

g = 2, . . . , T . The “target” is a vector of length T +1, with T much smaller than

n, so the number of estimated parameters in the “target” is much reduced and

we use just one subsample to estimate the “target”. The estimated risk is

r̂e(g) =
1

V (V − 1)

V∑
ν=1

V∑
µ=1,µ ̸=ν

∥γ̂µ
e,g − γ̂ν

e,T ∥1.

The initial choice ĝe is the minimizer of r̂e(g) for g ∈ {2, . . . , T}. Similarly, we

estimate r(g) by

r̂(g) =
1

V (V − 1)

V∑
ν=1

V∑
µ=1,µ ̸=ν

∥γ̂µ
g − γ̂ν

ĝe
∥1,

and the banding parameter is selected as ĝ = argmin0≤g≤ĝe r̂(g).
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4.2. Choosing D and ω for R̂−1
∗

To calculate R̂−1
∗ , we develop data-driven methods for the choices of D > 0

and 0 < ω < 1/2. After ĝ is selected, if R̂ is not positive definite, from (3.1),

In is used to estimate R−1 and there is no need to choose D and ω. Therefore,

for the choices of D and ω, we only consider that R̂ ≻ 0 which implies that R̂−1

exists. In finite-sample situations, we can fix ω to be 1/2, since simulation results

(not shown) reveal that for different values of 0 < ω ≤ 1/2, with a proper choice

of D, the calculated R̂−1
∗ are not significantly different. In the following, we will

choose D from a proper interval on R+.

Following the procedure in Section 4.1, we take subsamples G1, . . . , GV .

Based on Gν , ν = 1, . . . , V , denote by R̂ν the estimate of R, and then the

refined estimate of R−1 is

R̂−1
∗;ν,D =

{
R̂−1

ν , if R̂ν ≻ 0, and ∥R̂−1
ν ∥∞ ≤ Dn1/2,

In, otherwise.

Then, D̂ is selected as the minimizer of

r̂∗(D) =
1

V

V∑
ν=1

∥R̂−1
∗;ν,D − R̂−1∥∞,

by grid search method.

5. Numerical Results

We report on simulation studies to evaluate the data-driven methods in Sec-

tion 4, check the performance of R̂−1
∗ by applying it to the test statistics K and

Kbc (Zhang and Yu (2008)) and compare the performance of R̂∗ and R̂Z in Zhang

and Yu (2008).

The hypotheses H0 : h = 0 versus H1 : h ̸= 0 are considered to test whether

there’s neural activity in a voxel or not. We generated data for a single run

with n = 400. According to the null hypothesis, hj(ti) = 0 for i = 1, . . . ,m,

j = 1, . . . , ℓ. We used d(ti) = 10 sin{π(ti − 0.21)} as the drift function. Three

types of errors were studied: MA(4), ARMA(1, 3), and the sum of AR(1) and

a white noise. For each type of error, we considered both a single event type

(ℓ = 1) with m = 20, and two event types (ℓ = 2) with m = 15. Stimuli were

generated as follows: for ℓ = 1, {s1(ti)} are independent Bernoulli(0.5); for ℓ = 2,

{s1(ti), s2(ti), 1− s1(ti)− s2(ti)} are independent from the trinomial distribution

(1; 1/3, 1/3, 1/3). For the local linear smoothing matrix Sd used in K and Kbc,

we used the Epanechnikov kernel function; see (3.3) in Zhang and Yu (2008) for

details. The bandwidth parameter of Sd was selected by the “pWPL” method

proposed in Zhang et al. (2008).
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The methods of choosing the banding parameter gn and selecting D and

ω for R̂−1
∗ are illustrated in Section 4. In our simulation study, we took V =

20. For the block size b, as a general guide, Politis, Romano, and Wolf (1999)

showed that b should grow to infinity while b/n → 0 with a rate n1/3; we took

b = ⌊Cbn
1/3⌋ where Cb > 0 is a constant. Simulation results (not shown) reveal

that smaller values of Cb correspond to underestimating the banding parameter

and larger values of Cb result in larger estimates. The choice of Cb = 8 has

overall good performance in selecting the banding parameter for different models

of the error process; we took b = ⌊8n1/3⌋ in the calculation. The choice of T is

also important in practice. One can use T ≤ n/4 as in Box and Jenkins (1976),

but the default value in R is T = 10 log(10n); we use T = ⌊CT log(10n)⌋ with

a positive constant CT , provided T < b. Simulation results (not shown) show

that the choice of CT has no significant impact on the selection of the banding

parameter. Taking computational efficiency into consideration, we fix CT = 3 in

practice, so T = ⌊3 log(10n)⌋.
To investigate the performance of R̂−1

∗ , we carried out 500 realizations in each

simulation study and drew a QQ plot of the empirical (1st to 99th) percentiles

of K and Kbc versus the theoretical percentiles of the χ2
ℓm distribution. We also

compared the performance of R̂∗ and R̂Z in Zhang and Yu (2008).

5.1. Example 1: MA(4) error process

The error process was generated by ϵ(ti) = z(ti) + θ1z(ti−1) + θ2z(ti−2) +

θ3z(ti−3) + θ4z(ti−4), where θ1 = 0.75, θ2 = 0.5, θ3 = 0.25 and θ4 = 0.35. For

a single event type, {z(ti)} were independent normal with mean 0 and variances

0.47862 and 0.47862/8, respectively. These choices give the signal-to-noise ratios

(SNRs) of about 1 and 8, respectively, where SNR = var(Sh)/var(ϵ). For two

event types, {z(ti)} had the same distribution but with variances 0.45752 and

0.45752/8, corresponding to SNRs about 1 and 8.

In order to see the importance of estimating the autocorrelation matrix R,

Figure 1 shows QQ plots of the percentiles of K and Kbc against those of the χ
2
ℓm

distribution. For the test statistics calculated in Figure 1, R was estimated by

In, which means the autocorrelation structure of the error process was ignored.

The test statistics calculated in the top panels are for a single event type and

those in the bottom panels are for two event types. From Figure 1, the finite

sampling distributions of the test statistics calculated with R estimated by In do

not show reasonable agreement with the χ2
ℓm distribution; one should take the

autocorrelation structure of the error process into consideration for fMRI data

analysis.

In Figure 2, we plot r̂e(g) versus g in the left panels and r̂(g) versus g in

the right panels for the MA(4) error process with SNR = 1 based on a single
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Figure 1. Empirical QQ plots of K and Kbc for the MA(4) error process,
statistics calculated with R estimated by In and data-driven method for
bandwidth choice. Statistics in the top panels calculated for a single event
type, those in the bottom panels for two event types. The solid line is the
45 degree straight line.

Figure 2. Plots of r̂e(g) versus g (left panels) and r̂(g) versus g (right panels)
for the MA(4) error process with SNR = 1 based on one realization. The
top panels are for a single event type and the bottom panels correspond to
two event types.
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realization. The top panels correspond to a single type of stimulus, and the

bottom panels are for two event types. Each plot shows a “V” shape with a

global minimizer, which indicates that the data-driven method for choosing gn is

valid.

Figure 3 gives QQ plots of the percentiles of K and Kbc against those of

the χ2
ℓm distribution for a single type of stimulus; Figure 4 shows QQ plots

constructed for two event types. In each figure, statistics calculated with the

true inverse autocorrelation matrix R−1 and the theoretical optimal choice of

bandwidth (see, e.g., (3) in Zhang (2003)) are plotted in the top panels, while

those using R̂−1
∗ and data-driven method for the bandwidth choice are plotted

in the bottom panels. The left and right panels correspond to large (SNR = 1)

and small (SNR = 8) noise levels, respectively.

In the top panels of Figure 3, the finite sampling distributions of K and Kbc

show reasonable agreement with the χ2
ℓm distribution for both large and small

noise levels. For the plots in the bottom panels, we draw the same conclusion;

the empirical distributions of K and Kbc calculated with R−1 and R̂−1
∗ are well

approximated by the χ2
ℓm distribution. In Figure 4, the QQ plots are constructed

for two event types and the results are similar in spirit to the ones in Figure 3.

5.2. Example 2: ARMA(1, 3) error process

The error process was ϵ(ti) = ηϵ(ti−1)+z(ti)+ξ1z(ti−1)+ξ2z(ti−2)+ξ3z(ti−3),

where η = 0.1, ξ1 = 0.9, ξ2 = 0.7, ξ3 = 0.25 and {z(ti)} were independent

N(0, σ2
z) and N(0, σ2

z/8). We took σ2
z = 0.40792 for ℓ = 1, and σ2

z = 0.38992 for

ℓ = 2, such that the corresponding SNRs are about 1 and 8.

To check the validity of the data-driven method for choosing D, we plot

r̂∗(D) versus D for the ARMA(1, 3) error process with SNR = 1 based on a

single realization, in Figure 5. The left panel is for a single event type and the

right panel for two event types. Each plot is approximately “V”-shaped, which

indicates that it is a reasonable way to select D̂ by minimizing r̂∗(D).

The QQ plots for K and Kbc against the χ2
ℓm distribution are presented in

Figure 6 for one event type and in Figure 7 for two event types. All plots show

that both K and Kbc have an approximated χ2
ℓm distribution. Based on the

conceivably good performance of R̂−1
∗ in the semiparametric test statistics, we

can conclude that R̂−1
∗ serves as a satisfactory estimate of R−1.

5.3. Example 3: Sum of AR(1) and white noise error process

The error process consists of an AR(1) time series and a sequence of white

noises, ϵ(ti) = ζ1(ti) + ζ2(ti). Here {ζ1(ti)} was the white noise, independent

N(0, σ2
ζ ) and N(0, σ2

ζ/8), respectively; {ζ2(ti)} were generated from the AR(1)

model ζ2(ti) = ρζ2(ti−1) + z(ti), where ρ = 0.638 and z(ti) ∼ N(0, σ2
z) and
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Figure 3. Empirical QQ plots of K and Kbc for the MA(4) error process
with a single event type, statistics in the top panels calculated with R−1

and theoretical optimal bandwidth choice, those in the bottom panels used
R̂−1

∗ and data-driven method for bandwidth choice. The solid line is the 45
degree straight line.

Figure 4. Empirical QQ plots of K and Kbc for the MA(4) error process
with two event types, statistics in the top panels calculated with R−1 and
theoretical optimal bandwidth choice, those in the bottom panels used R̂−1

∗
and data-driven method for bandwidth choice. The solid line is the 45 degree
straight line.
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Figure 5. Plots of r̂∗(D) versus D for the ARMA(1, 3) error process with
SNR = 1 based on a single realization. The left panel corresponds to a single
event type and the right panel is for two event types. The points in each
plot correspond to the ones used for the grid search method.

Figure 6. Empirical QQ plots of K and Kbc for the ARMA(1, 3) error process
with a single event type, statistics in the top panels calculated with R−1 and
theoretical optimal bandwidth choice, those in the bottom panels used R̂−1

∗
and data-driven method for bandwidth choice. The solid line is the 45 degree
straight line.

N(0, σ2
z/8), respectively. For a single event type, we took σ2

ζ = 0.24302 and

σ2
z = 0.48612, and for two event types, σ2

ζ = 0.23242 and σ2
z = 0.46472, which

give the SNRs of about 1 and 8.

Figure 8 and Figure 9 display the QQ plots of K and Kbc versus the χ2
ℓm

distribution. The former figure is constructed for a single event type while the

latter one is made for two event types. The test statistics calculated by R−1
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Figure 7. Empirical QQ plots of K and Kbc for the ARMA(1, 3) error process
with two event types, statistics in the top panels calculated with R−1 and
theoretical optimal bandwidth choice, those in the bottom panels used R̂−1

∗
and data-driven method for bandwidth choice. The solid line is the 45 degree
straight line.

Figure 8. Empirical QQ plots of K and Kbc for the AR(1) + WN error
process with a single event type, statistics in the top panels calculated with
R−1 and theoretical optimal bandwidth choice, those in the bottom panels
used R̂−1

∗ and data-driven method for bandwidth choice. The solid line is
the 45 degree straight line.
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Figure 9. Empirical QQ plots of K and Kbc for the AR(1) + WN error
process with two event types, statistics in the top panels calculated with
R−1 and theoretical optimal bandwidth choice, those in the bottom panels
used R̂−1

∗ and data-driven method for bandwidth choice. The solid line is
the 45 degree straight line.

and R̂−1
∗ have finite sampling distributions coinciding with the χ2

ℓm distribution

fairly well.

5.4. Comparison of R̂∗ and R̂Z

The difference between R̂∗ and the estimator R̂Z in Zhang et al. (2008)

and Zhang and Yu (2008), is that we develop data-driven methods to select the

banding parameter gn and choose ω and D for refining the estimator. The choice

of the banding parameter for R̂Z is gn = 2, and hence R̂Z is computationally

faster than R̂∗. In the following, we compare the two estimators based on the

error processes of Sections 5.1−5.3. We compare the average selected banding

parameter by the data-driven method with gn = 2 used in Zhang et al. (2008)

and Zhang and Yu (2008). The average loss of R̂∗ and R̂Z under the L∞ norm,

∥R̂∗ −R∥∞ and ∥R̂Z −R∥∞, were also compared.

Table 1 presents g0 (minimizer of the empirical version of (4.2)), the esti-

mated banding parameter by the data-driven method ĝ, and the losses of R̂∗ and

R̂Z under the L∞ norm. From Table 1, we see that the data-driven method picks

the banding parameter close to g0. For the MA(4) and ARMA(1, 3) models, the

loss of R̂∗ is smaller than that of R̂Z . For the AR(1)+WN model, where g0 = 2,
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Table 1. Comparison of g0 and estimated banding parameter, losses of R̂∗
and R̂Z .

Banding parameter Losses

SNR Model g0 ĝ (SD) R̂∗ (SD) R̂Z (SD)
Single event type

1 MA(4) 4 3.9 (0.04) 0.53 (0.03) 1.70 (0.01)
ARMA(1, 3) 3 2.8 (0.02) 0.34 (0.02) 1.09 (0.03)
AR(1) +WN 2 1.6 (0.03) 2.23 (0.02) 2.14 (0.01)

8 MA(4) 4 3.9 (0.04) 0.54 (0.03) 1.69 (0.01)
ARMA(1, 3) 3 2.7 (0.02) 0.38 (0.02) 1.04 (0.03)
AR(1) +WN 2 1.6 (0.03) 2.25 (0.02) 2.14 (0.01)

Two event types
1 MA(4) 4 3.9 (0.04) 0.52 (0.03) 1.70 (0.01)

ARMA(1, 3) 3 2.8 (0.02) 0.36 (0.02) 1.11 (0.03)
AR(1) +WN 2 1.6 (0.03) 2.24 (0.02) 2.14 (0.01)

8 MA(4) 4 3.9 (0.04) 0.53 (0.03) 1.70 (0.01)
ARMA(1, 3) 3 2.8 (0.02) 0.38 (0.02) 1.05 (0.03)
AR(1) +WN 2 1.7 (0.03) 2.24 (0.02) 2.14 (0.01)

R̂Z performs slightly better since the choice of the banding parameter is exactly

gn = 2.

6. Data Analysis

In an emotional control study, subjects saw a series of negative or positive

emotional images, and were asked to either suppress or enhance their emotional

responses to the image, or to simply attend to the image. The sequence of trials

was randomized. The time between successive trials also varied. The size of the

whole brain dataset is 64 × 64 × 30. At each voxel, the time series has 6 runs,

each containing 185 observations with a time resolution of 2 secs. Refer to Zhang

and Yu (2008) for details of the dataset and detection of activated brain regions.

The study aims to estimate the BOLD (Blood Oxygenation Level-Dependent)

response to each of the trial types for 1–18 seconds following the image onset.

The length of the estimated HRF is set equal to 18.

The methodological difference between Zhang and Yu (2008) and this paper

is between R̂−1
Z and R̂−1

∗ for estimating R−1, where R̂−1
∗ selects gn and D via

data-driven methods. Our numerical results indicate that the banding parameter

ĝ selected for R̂−1
∗ is very close to gn = 2 used for R̂−1

Z . They in turn yield

nearly identical estimates of HRF and the corresponding test statistics, without

altering the declared significance. For example, Table 2 reports the banding

parameter and D selected for R̂−1
∗ at two activated voxels. Figure 10 compares

the estimates of HRF using the semi-parametric model based on R̂−1
∗ and R̂−1

Z ,
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Figure 10. Compare estimates of HRF for each of six stimuli. Top panels:
at voxel (24, 32, 7); bottom panels: at voxel (49, 41, 10).

Table 2. Compare banding parameters used for R̂−1
∗ and R̂−1

Z at two voxels.

voxel for R̂−1
∗ for R̂−1

Z

(24, 32, 7) ĝ = 1, ĝe = 2, D̂ = 21 gn = 2

(49, 41, 10) ĝ = 2, ĝe = 2, D̂ = 16 gn = 2

and the parametric model via AFNI software (Zhang et al. (2008)). Similar

comparison can be performed at other voxels.

7. Discussion

Dealing with the temporally correlated error process is an important issue

in fMRI data analysis. The existing methods for handling this problem require

strong assumptions on the error process. We consider estimating the error au-

tocorrelation matrix and its inverse under a more general assumption on the

error process, that allows for a wider range of the error correlation structure.

The existing methods for estimating covariance matrix are not applicable to our

case because of the special structure of the semiparametric model for fMRI data.

We adopt a difference-based method, and develop a banded estimate of R and

a refined estimate of R−1. Compared with the smoothing-based method, the

difference-based method enjoys good practical performance and computational

efficiency. We demonstrate consistency of our proposed estimators and provide

data-driven approaches for calculating the estimates in practice. Hence, we pro-
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vide a computationally efficient and consistent estimate of R−1 for semiparamet-

ric inference.

The optimal convergence rate of the covariance matrix estimate is an impor-

tant topic, studied in Cai, Zhang, and Zhou (2010), Cai, Ren, and Zhou (2012),

Cai and Zhou (2012), and Xiao and Wu (2012). These results are not applica-

ble to our case. It would be interesting to investigate the optimal convergence

rate of the estimates of R and R−1 under our setting. Our proposed estimator

is particularly useful for analyzing fMRI data under the semiparametric model,

but may not be easily used to estimate the error correlation matrix for other

datasets, or for fMRI data with different models.
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Appendix: Conditions and Proofs

In this part, we will give the conditions and proofs of the main results in this paper.

Condition A.

A1. In model (2.1), ε(ti) =
∑∞
j=−∞ φn;jwi−j , where φn;0 = 1; for any n ≥ 1, there

exists 1 ≤ gn ≤ n − 1 and αn > 4, such that |φn;j | ≤ C for |j| ≤ gn/2 and
|φn;j | ≤ C|2j|−αn for |j| > gn/2, with a constant C > 0; {wi} is a sequence of
independent white noises with E(wi) = 0, E(w2

i ) = σ2
w, and supiE(w4

i ) <∞.

A2. Suppose λmin(Σ1) > C > 0, where Σ1 is an m` × m` matrix consisting of ` × `
blocks, i.e., Σ1 = (Σi,j)

`
i,j=1. Σi,j is an m × m matrix defined as Σi,j(u, v) =

cov{zTv,n−1(D1Si)z1,m, z
T
u,n−1(D1Sj)z1,m}, for 1 ≤ u, v ≤ m, 1 ≤ i, j ≤ `, and

zp,q is the pth column of the q × q identity matrix.

A3. The second derivative of the drift function d(t) is continuous and bounded, i.e.,
|d′′(t)| ≤ C.

A4. In model (2.1), {si(·)}, i = 1, . . . , `, are independent of {ε(·)}. For each 1 ≤ i ≤ `,
{si(·)} is a stationary gs-dependent time series, where gs > 0 is a fixed integer,
and E{s4i (t)} ≤ C <∞. Furthermore, {s1(tu), . . . , s`(tu)} and {s1(tv), . . . , s`(tv)}
are independent if |u− v| > gs. When |u− v| ≤ gs, E{si(tu)sj(tv)} depends on u
and v only through u− v, for any 1 ≤ i, j ≤ `.

A5. Suppose ti = i/n, i = 1, . . . , n.

A6. Assume 0 < c ≤ λmin(R) ≤ λmax(R) ≤ C, where c and C are constants.

Condition B.

B1. In model (2.1), ε is a stationary gn-dependent process with E{ε(ti)} = 0, c ≤
var{ε(ti)} ≤ Cgn and [E{ε(ti)4}]1/2 = O(γe(0)), where 1 ≤ gn ≤ n− 1.

Notation. Now, we will give some notation that will be used in the proofs.

1. Define ε1 = D1d + D1ε. Then, ε1(ti) = ε(ti) − ε(ti−1) + d(ti) − d(ti−1), where
ε1(ti) = zTi−1,n−1ε1, for i = 2, . . . , n.

2. Define e0 = D2ε, d0 = D2d and δ = D2S(h − ĥDBE). Then, e = e0 + d0 and
ê = e+δ. Also, e0(ti) = ε(ti)−2ε(ti−1)+ε(ti−2), d0(ti) = d(ti)−2d(ti−1)+d(ti−2)
and e(ti) = e0(ti) + d0(ti), where e0(ti) = zTi−2,n−2e0, d0(ti) = zTi−2,n−2d0 and

δ(ti) = zTi−2,n−2δ, for i = 3, . . . , n.

3. For a matrix Z, denote by Z(i, j) the entry of Z in the ith row and jth column.
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Proof. We will present and prove Lemmas 1–9, which will be needed in the proofs of
the main results.

Lemma 1 For the (k + 1)× (k + 1) matrix Ak and (k + 1)× 2 matrix Bk in (2.5) with
k ≥ 1,

(i) ‖A−1k ‖1 ≤ Ck
4,

(ii) ‖zT1,k+1A
−1
k ‖∞ ≤ Ck

3,

(iii) ‖A−1k Bk‖1 ≤ Ck2, ‖zT1,k+1A
−1
k Bk‖∞ ≤ Ck,

where zp,q is the pth column of the q × q identity matrix.

Proof : Let G, E, H and K be (k + 1)× (k + 1) matrices defined as follows:

G =



6 −4 1 0 0 · · · 0 0 0 0
−4 6 −4 1 0 · · · 0 0 0 0
1 −4 6 −4 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 · · · 1 −4 6 −4
0 0 0 0 0 · · · 0 1 −4 6


(k+1)×(k+1)

,

E =


0 0 0 · · · 0
0 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 , H =


−3 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 , K =


2 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 .

Then, Ak = K(G + E + H). To prove part (i), it suffices to show that G + E + H
is positive definite for any k ≥ 1, and ‖(G + E + H)−1‖1 = O(k4), since ‖A−1k ‖1 ≤
‖(G+ E +H)−1‖1‖K−1‖1 = ‖(G+ E +H)−1‖1.

First, we will show that G+E+H is positive definite for any k ≥ 2, as the result is
obvious for k = 1. From Theorem 2 of Hoskins and Ponzo (1972), G is positive definite.
Since E is positive semidefinite, G + E is positive definite. By the particular form of
matrix H, det(G+E +H) > 0 is a necessary and sufficient condition for G+E +H to
be positive definite. We can express G+E +H as a block matrix in the following way:

G+ E +H =

(
J1 J2
JT2 J3

)
,

where

J1 =

(
3 −4
−4 7

)
, J2 =

(
1 0 0 0 · · · 0 0
−4 1 0 0 · · · 0 0

)
2×(k−1)

,
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J3 =



6 −4 1 0 0 · · · 0 0 0 0
−4 6 −4 1 0 · · · 0 0 0 0
1 −4 6 −4 1 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 · · · 1 −4 6 −4
0 0 0 0 0 · · · 0 1 −4 6


(k−1)×(k−1)

.

Then,

G+ E +H =

(
I2×2 J2

0(k−1)×2 J3

)(
J1 − J2J−13 JT2 02×(k−1)

J−13 JT2 I(k−1)×(k−1)

)
,

so det(G + E + H) = det(J3)det(J1 − J2J−13 JT2 ). Due to Theorem 2 in Hoskins and
Ponzo (1972), det(J3) > 0. Now, we only need to show det(J1 − J2J−13 JT2 ) > 0.

Let xi,j = zTi,k−1J
−1
3 zj,k−1. From Theorem 5 of Hoskins and Ponzo (1972), x1,1 =

(k − 1)k/{(k + 1)(k + 2)}, x2,1 = x1,2 = 2(k − 1)(k − 2)/{(k + 1)(k + 2)} and x2,2 =
(k − 1)(k − 2)(5k − 6)/{k(k + 1)(k + 2)}. By direct calculation,

J1 − J2J−13 JT2 =

(
3− (k − 1)k/{(k + 1)(k + 2)} −4 + 2(k − 1)/(k + 1)
−4 + 2(k − 1)/(k + 1) 7− (5k + 6)(k − 1)/{k(k + 1)}

)
.

Thus, det(J1 − J2J
−1
3 JT2 ) = 12(2k + 3)/{k(k + 1)2(k + 2)} > 0, which implies that

det(G+ E +H) > 0 and hence G+ E +H is positive definite.

Next, we will show ‖(G+ E +H)−1‖1 = O(k4) as k →∞.

Since the ranks of E and H are both 1, from Miller (1981), (G + E)−1 = G−1 −
ν1G

−1EG−1 and (G + E + H)−1 = (G + E)−1 − ν2(G + E)−1H(G + E)−1, where
ν1 = {1 + tr(G−1E)}−1 and ν2 = [1 + tr{(G+ E)−1H}]−1. Therefore,

zTi,k+1(G+ E)−1zj,k+1 = ai,j − ν1ai,2a2,j , (S.1)

zTi,k+1(G+ E +H)−1zj,k+1 = (ai,j − ν1ai,2a2,j)
+3ν2(ai,1 − ν1ai,2a2,1)(a1,j − ν1a1,2a2,j), (S.2)

where ai,j = zTi,k+1G
−1zj,k+1, for 1 ≤ i, j ≤ k + 1.

From Theorem 5 of Hoskins and Ponzo (1972), for i = 1, . . . , k + 1,

ai,1 =
i(k + 2− i)(k + 3− i)

(k + 3)(k + 4)
, (S.3)

ai,2 =
(k + 2− i)(k + 3− i){i(3k + 4)− (k + 4)}

(k + 2)(k + 3)(k + 4)
. (S.4)

Direct calculation leads to

ν1 = {1 + tr(G−1E)}−1 = (1 + a2,2)−1
k→∞−−−−→ 1/6, (S.5)

ν2 = [1 + tr{(G+ E)−1H}]−1 = [1− 3{a1,1 − a21,2/(1 + a2,2)}]−1

= O(k3/4). (S.6)
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From (S.3) and (S.4), for any i = 1, . . . , k + 1, we have 0 < ai,1, ai,2 = O(k) and

ai,1 − ν1ai,2a2,1 =
(k + 2− i)(k + 3− i)

(k + 3)(k + 4)

4k2i+ 22ki+ 24i+ 2k3 + 10k2 + 8k

6k3 + 18k2 + 30k + 24
< 2. (S.7)

Since G−1 is symmetric, we can immediately get 0 < a1,j − ν1a1,2a2,j < 2 for any
j = 1, . . . , k + 1.

By Theorem 3 of Hoskins and Ponzo (1972),

k+1∑
i=1

ai,1 =

k+1∑
i=1

|ai,1| =
(k + 1)(k + 2)

12
,

k+1∑
i=1

ai,2 =

k+1∑
i=1

|ai,2| =
k(k + 1)

4
. (S.8)

Theorem 4 of Hoskins and Ponzo (1972) indicates that ‖G−1‖1 = O(k4), which
together with (S.1)–(S.8) implies,

‖(G+ E +H)−1‖1

= max
1≤j≤k+1

k+1∑
i=1

|(ai,j − ν1ai,2a2,j) + 3ν2(ai,1 − ν1ai,2a2,1)(a1,j − ν1a1,2a2,j)|

≤ ‖G−1‖1 + ν1 max
1≤j≤k+1

|a2,j |
k+1∑
i=1

|ai,2|

+3ν2 max
1≤j≤k+1

|a1,j − ν1a1,2a2,j |
k+1∑
i=1

|ai,1 − ν1ai,2a2,1|

= O(k4) +O(1)O(k)O(k2) +O(k3)O(1)O(k) = O(k4).

For part (ii), by (S.1)–(S.8),

‖zT1,k+1A
−1
k ‖∞ ≤ ‖z

T
1,k+1(G+ E +H)−1‖∞‖K−1‖∞ = ‖(G+ E +H)−1z1,k+1‖∞

= max
1≤i≤k+1

|(ai,1 − ν1ai,2a2,1) + 3ν2(ai,1 − ν1ai,2a2,1)(a1,1 − ν1a1,2a2,1)|

≤ max
1≤i≤k+1

|ai,1|+ ν1|a2,1| max
1≤i≤k+1

|ai,2|+ 3ν2|a1,1 − ν1a1,2a2,1| max
1≤i≤k+1

|ai,1 − ν1ai,2a2,1|

= O(k) +O(1)O(1)O(k) +O(k3)O(1)O(1) = O(k3).

For part (iii), we only consider k > 3, as the result for k ≤ 3 is obvious.

Since A−1k zk+1,k+1 = (G+E+H)−1K−1zk+1,k+1 = (G+E+H)−1zk+1,k+1, from
(S.2),

‖A−1k zk+1,k+1‖1 = ‖(G+ E +H)−1zk+1,k+1‖1

≤
k+1∑
i=1

|ai,k+1|+ ν1|a2,k+1|
k+1∑
i=1

|ai,2|+ 3ν2|a1,k+1 − ν1a1,2a2,k+1|
k+1∑
i=1

|ai,1 − ν1ai,2a2,1|
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≡ I + II + III. (S.9)

Theorem 3 in Hoskins and Ponzo (1972) implies that I = O(k2).

From Theorem 5 in Hoskins and Ponzo (1972), for i = 1, . . . , k + 1,

ai,k+1 = i(i+ 1)(k − i+ 2)/{(k + 3)(k + 4)}, (S.10)

which together with (S.5) and (S.8) implies that II = O(1)O(k−1)O(k2) = O(k).

By (S.3), (S.4), (S.5) and (S.10),

a1,k+1 − ν1a1,2a2,k+1 =
2(k + 1)

(k + 3)(k + 4)
− a1,2

1 + a2,2

6k

(k + 3)(k + 4)
= O(k−2). (S.11)

From (S.6), (S.7) and (S.11), III = O(k3)O(k−2)O(k) = O(k2). Therefore, by (S.9),
‖A−1k zk+1,k+1‖1 = O(k2). Similar arguments reveal that ‖A−1k zk,k+1‖1 = O(k2). Since,
for k > 3, Bk = [zk,k+1 − 4zk+1,k+1 zk+1,k+1],

‖A−1k Bk‖1 ≤ ‖A−1k zk,k+1 − 4A−1k zk+1,k+1‖1 + ‖A−1k zk+1,k+1‖1
≤ ‖A−1k zk,k+1‖1 + 4‖A−1k zk+1,k+1‖1 + ‖A−1k zk+1,k+1‖1 = O(k2).

From (S.2), (S.7) and (S.11),

|zT1,k+1A
−1
k zk+1,k+1|

= |(a1,k+1 − ν1a1,2a2,k+1) + 3ν2(a1,1 − ν1a1,2a2,1)(a1,k+1 − ν1a1,2a2,k+1)|
= O(k−2) +O(k3)O(k−2) = O(k).

Similarly, we can show |zT1,k+1A
−1
k zk,k+1| = O(k). Therefore,

‖zT1,k+1A
−1
k Bk‖∞ ≤ |zT1,k+1A

−1
k zk,k+1 − 4zT1,k+1A

−1
k zk+1,k+1|+ |zT1,k+1A

−1
k zk+1,k+1|

≤ |zT1,k+1A
−1
k zk,k+1|+ 4|zT1,k+1A

−1
k zk+1,k+1|+ |zT1,k+1A

−1
k zk+1,k+1| = O(k).

Now we complete the proof. �

Lemma 2 Under Condition A1 (or B1), for any k ∈ {0, 1, . . . , gn} and τ0;n > 0 that
satisfies τ−10;n = o(n/g2n) as n→∞,

P
(∣∣∣ 1
n

n−k∑
i=3

{e0(ti)e0(ti+k)} − γe(k)
∣∣∣ ≥ τ0;n) ≤ C g3n

nτ20;n
,

where e0(ti) = ε(ti)− 2ε(ti−1) + ε(ti−2) as in Notation 2.

Proof : First, we will give the proof under Condition A1. Since ε(ti) =
∑∞
j=−∞ φn;jwi−j ,

we have e0(ti) =
∑∞
j=−∞ ψjwi−j , where ψj ≡ ψn;j = φn;j − 2φn;j−1 + φn;j−2. Define

ẽ0(ti) =
∑gn+2
j=−gn−2 ψjwi−j and γ̃e(k) = cov{ẽ0(ti), ẽ0(ti+k)}. Then,

∣∣∣ 1
n

n−k∑
i=3

{e0(ti)e0(ti+k)} − γe(k)
∣∣∣ ≤ 1

n

∣∣∣ n−k∑
i=3

{e0(ti)e0(ti+k)− γe(k)}
∣∣∣+ (k + 2)|γe(k)|/n
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≤ 1

n

∣∣∣ n−k∑
i=3

{e0(ti)e0(ti+k)− γe(k)− ẽ0(ti)ẽ0(ti+k) + γ̃e(k)}
∣∣∣

+
1

n

∣∣∣ n−k∑
i=3

{ẽ0(ti)ẽ0(ti+k)− γ̃e(k)}
∣∣∣+ (k + 2)|γe(k)|/n

≡ I + II + III. (S.12)

Since τ−10;n = o(n/g2n) as n→∞ and |γe(k)| ≤ γe(0) = O(gn), there exists a constant L
0
,

such that, for any n > L
0

and k ∈ {0, 1, . . . , gn}, III < τ0;n/3. From (S.12), for n > L
0
,

P
(∣∣∣ 1
n

n−k∑
i=3

{e0(ti)e0(ti+k)} − γe(k)
∣∣∣ ≥ τ0;n) ≤ P(I ≥ τ0;n/3) + P(II ≥ τ0;n/3). (S.13)

From Lemma 3,

P(II ≥ τ0;n/3) = O(g3n/(nτ
2
0;n)). (S.14)

Therefore, we only need to consider term I. By Markov inequality,

P(I ≥ τ0;n/3)

≤
( 3

nτ0;n

)2
E
[∣∣∣ n−k∑

i=3

{e0(ti)e0(ti+k)− γe(k)− ẽ0(ti)ẽ0(ti+k) + γ̃e(k)}
∣∣∣2]. (S.15)

For any fixed n > L
0

and k ∈ {0, 1, . . . , gn}, let Qi = e0(ti)e0(ti+k)− ẽ0(ti)ẽ0(ti+k). De-
fineDi,u = E(Qi | wi−u, wi−u+1, . . .)−E(Qi | wi−u+1, wi−u+2, . . .), for u = 0,±1,±2, . . ..
It holds that

∑∞
u=−∞Di,u = Qi−E(Qi) = e0(ti)e0(ti+k)−γe(k)− ẽ0(ti)ẽ0(ti+k)+ γ̃e(k)

almost surely. For any u, {Di,u}3i=n−k is a martingale difference sequence w.r.t. Fi,u =
σ{wi−u, wi−u+1, . . .}, i.e., E(Di,u | Fi+1,u) = 0 for i = n − k, . . . , 3. In the following,
define ψ∗j = ψj for |j| ≤ gn + 2 and ψ∗j = 0 for |j| > gn + 2. Direct calculation leads to,

E(D2
i,u)

= E
{(
ψu+kwi−u

u−1∑
j=−∞

ψjwi−j + ψuwi−u

k+u−1∑
j=−∞

ψjwi+k−j + ψu+kψuw
2
i−u − ψu+kψuσ2

w

−ψ∗u+kwi−u
u−1∑
j=−∞

ψ∗jwi−j − ψ∗uwi−u
k+u−1∑
j=−∞

ψ∗jwi+k−j − ψ∗u+kψ∗uw2
i−u + ψ∗u+kψ

∗
uσ

2
w

)2}
= O(gn(ψ2

u + ψ2
u+k)),

which together with Lemma 7 of Xiao and Wu (2012) implies

E
{( n−k∑

i=3

Di,u

)2}
≤
n−k∑
i=3

E(D2
i,u) = O(ngn(ψ2

u + ψ2
u+k)). (S.16)

By Minkowski inequality and (S.16), for the expectation term in (S.15),

E
[∣∣∣ n−k∑

i=3

{e0(ti)e0(ti+k)− γe(k)− ẽ0(ti)ẽ0(ti+k) + γ̃e(k)}
∣∣∣2]
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= E
[∣∣∣ n−k∑

i=3

∞∑
u=−∞

Di,u

∣∣∣2] ≤ [ ∞∑
u=−∞

{
E
(∣∣∣ n−k∑

i=3

Di,u

∣∣∣2)}1/2]2
= O(ng3n).

From (S.15),

P(I ≥ τ0;n/3) = O(g3n/(nτ
2
0;n)). (S.17)

Combining (S.13), (S.14) and (S.17), we finish the proof for n > L
0
. It is easy to see

that the result is true for n ≤ L
0
.

Next, we will prove the Lemma under Condition B1. For any k = 0, 1, . . . , gn,

P
(∣∣∣ 1
n

n−k∑
i=3

{e0(ti)e0(ti+k)} − γe(k)
∣∣∣ ≥ τ0;n)

= P
(∣∣∣ 1

4n

[ n−k∑
i=3

{e0(ti) + e0(ti+k)}2 −
n−k∑
i=3

{e0(ti)− e0(ti+k)}2
]

−1

4
[{2γe(0) + 2γe(k)} − {2γe(0)− 2γe(k)}]

∣∣∣ ≥ τ0;n)
≤ P

(∣∣∣ 1
n

n−k∑
i=3

{e0(ti) + e0(ti+k)}2 − {2γe(0) + 2γe(k)}
∣∣∣ ≥ 2τ0;n

)
+P
(∣∣∣ 1
n

n−k∑
i=3

{e0(ti)− e0(ti+k)}2 − {2γe(0)− 2γe(k)}
∣∣∣ ≥ 2τ0;n

)
≤ P

(∣∣∣ 1
n

n−k∑
i=3

e21(ti)− {1 + ρe(k)}
∣∣∣ ≥ τ0;n

γe(0)

)
+P
(∣∣∣ 1
n

n−k∑
i=3

e22(ti)− {1− ρe(k)}
∣∣∣ ≥ τ0;n

γe(0)

)
≡ IV + V,

where e1(ti) = {e0(ti) + e0(ti+k)}/
√

2γe(0) and e2(ti) = {e0(ti) − e0(ti+k)}/
√

2γe(0).
Then, {e1(ti)} and {e2(ti)} are (2gn + 2)-dependent time series with mean zero.

We divide {e1(ti)}n−ki=3 into consecutive blocks with length 2gn+2, i.e. {e1(t3), . . . , e1(t2gn+4)},
{e1(t2gn+5), . . . , e1(t4gn+6)}, . . .. So, there are qn = d(n−k−2)/(2gn+2)e blocks, where
d·e denotes the ceiling function. The length of the last block is less than 2gn+2, if 2gn+2
is not a divisor of n− k− 2. Denote the sum of [e21(ti)−{1 + ρe(k)}] within these blocks

by b1, . . . , bqn . For example, b1 =
∑2gn+4
i=3 [e21(ti) − {1 + ρe(k)}]. Then, E(bj) = 0 for

j = 1, . . . , qn. {b1, b3, b5, . . .} are independent, so are {b2, b4, b6, . . .}. By Cauchy-Schwarz
inequality and Condition B1, we have

E(b21) ≤ (2gn + 2)

2gn+4∑
i=3

E[{e21(ti)− (1 + ρe(k))}2] ≤ C(2gn + 2)2.

Similarly, we can show that

E(b2j ) ≤ C(2gn + 2)2 for any j = 1, . . . , qn.
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Since τ−10;n = o(n/g2n), there exists a constant L1 > 0, such that for any n > L1 and
k ∈ {0, . . . , gn},

(k + 2){1 + ρe(k)} ≤ (gn + 2){1 + ρe(k)} ≤ 2(gn + 2) ≤ nτ0;n
2γe(0)

.

Then, due to Markov inequality, for n > L1, we have

IV ≤ P
(∣∣∣ n−k∑

i=3

[e21(ti)− {1 + ρe(k)}]
∣∣∣+ (k + 2){1 + ρe(k)} ≥ nτ0;n

γe(0)

)
≤ P

(∣∣∣ n−k∑
i=3

[e21(ti)− {1 + ρe(k)}]
∣∣∣ ≥ nτ0;n

2γe(0)

)
≤ P

(∣∣∣ ∑
j=1,3,5,...

bj

∣∣∣+
∣∣∣ ∑
j=2,4,6,...

bj

∣∣∣ ≥ nτ0;n
2γe(0)

)
≤ P

(∣∣∣ ∑
j=1,3,5,...

bj

∣∣∣ ≥ nτ0;n
4γe(0)

)
+ P

(∣∣∣ ∑
j=2,4,6,...

bj

∣∣∣ ≥ nτ0;n
4γe(0)

)
≤

{4γe(0)

nτ0;n

}2

E
{( ∑

j=1,3,5,...

bj

)2}
+
{4γe(0)

nτ0;n

}2

E
{( ∑

j=2,4,6,...

bj

)2}
=

{4γe(0)

nτ0;n

}2{ qn∑
j=1

E(b2j )
}

= O(g3n/(nτ
2
0;n)).

Similarly we can show, V = O(g3n/(nτ
2
0;n)). Hence, we finish the proof. �

Lemma 3 Under Condition A1, for any positive sequence τ0;n and k ∈ {0, 1, . . . , gn},

P
( 1

n

∣∣∣ n−k∑
i=3

{ẽ0(ti)ẽ0(ti+k)− γ̃e(k)}
∣∣∣ ≥ τ0;n) ≤ C g3n

nτ20;n
,

where ẽ0(ti) =
∑gn+2
j=−gn−2 ψjwi−j, ψj ≡ ψn;j = φn;j − 2φn;j−1 + φn;j−2 and γ̃e(k) =

cov{ẽ0(ti), ẽ0(ti+k)}.

Proof : Since ẽ0(ti) =
∑gn+2
j=−gn−2 ψjwi−j , {ẽ0(ti)} is (2gn + 4)-dependent. For any

k = 0, 1, . . . , gn,

P
( 1

n

∣∣∣ n−k∑
i=3

{ẽ0(ti)ẽ0(ti+k)− γ̃e(k)}
∣∣∣ ≥ τ0;n)

= P
(∣∣∣ n−k∑

i=3

[{ẽ0(ti) + ẽ0(ti+k)}2 − {2γ̃e(0) + 2γ̃e(k)}]

−
n−k∑
i=3

[{ẽ0(ti)− ẽ0(ti+k)}2 − {2γ̃e(0)− 2γ̃e(k)}]
∣∣∣ ≥ 4nτ0;n

)
≤ P

(∣∣∣ n−k∑
i=3

[ẽ21(ti)− {1 + ρ̃e(k)}]
∣∣∣ ≥ nτ0;n

γ̃e(0)

)



S10 Xiao Guo and Chunming Zhang

+P
(∣∣∣ n−k∑

i=3

[ẽ22(ti)− {1− ρ̃e(k)}]
∣∣∣ ≥ nτ0;n

γ̃e(0)

)
, (S.18)

where ρ̃e(k) = γ̃e(k)/γ̃e(0), ẽ1(ti) = {ẽ0(ti)+ẽ0(ti+k)}/{2γ̃e(0)}1/2 and ẽ2(ti) = {ẽ0(ti)−
ẽ0(ti+k)}/{2γ̃e(0)}1/2. Then, {ẽ1(ti)} and {ẽ2(ti)} are (3gn + 4)-dependent with mean
zero.

Divide {ẽ1(ti)}n−ki=3 into non-overlapped consecutive blocks with length 3gn + 4, i.e.,
{ẽ1(t3), . . . , ẽ1(t3gn+6)}, {ẽ1(t3gn+7), . . . , ẽ1(t6gn+10)}, . . .. There are qn = d(n − k −
2)/(3gn + 4)e blocks, where d·e denotes the ceiling function. The length of the last
block is less than 3gn + 4, if 3gn + 4 is not a divisor of n − k − 2. Denote by bj the
sum of [ẽ21(ti) − {1 + ρ̃e(k)}] within the jth block, for j = 1, . . . , qn. For example,

b1 =
∑3gn+6
i=3 [ẽ21(ti)−{1 + ρ̃e(k)}]. Then, E(bj) = 0 for j = 1, . . . , qn. We can show that

{b1, b3, b5, . . .} are independent, and so are {b2, b4, b6, . . .}.

Since γ̃e(0) = σ2
w

∑gn+2
j=−gn−2 ψ

2
j = O(gn) and

E{ẽ40(ti)} =

gn+2∑
j=−gn−2

ψ4
jE(w4

i−j) +
∑∑

−gn−2≤j 6=j′≤gn+2

ψ2
jψ

2
j′σ

4
w = O

(( gn+2∑
j=−gn−2

ψ2
j

)2)
,

we have

E[|ẽ21(ti)− {1 + ρ̃e(k)}|2] = E[{ẽ0(ti) + ẽ0(ti+k)}4]/{4γ̃2e (0)} − {1 + ρ̃e(k)}2

= O
(( gn+2∑

j=−gn−2
ψ2
j

)2/{
4σ4

w

( gn+2∑
j=−gn−2

ψ2
j

)2})
− {1 + ρ̃e(k)}2 = O(1).

By Cauchy-Schwarz inequality, E(b21) ≤ (3gn + 4)
∑3gn+6
i=3 E[|ẽ21(ti) − {1 + ρ̃e(k)}|2] =

O(g2n). Similarly, we can show that E(b2j ) = O(g2n) for j = 1, . . . , qn, which together with
Markov inequality implies

P
(∣∣∣ n−k∑

i=3

[ẽ21(ti)− {1 + ρ̃e(k)}]
∣∣∣ ≥ nτ0;n

γ̃e(0)

)
≤ P

(∣∣∣ ∑
j=1,3,5,...

bj

∣∣∣+
∣∣∣ ∑
j=2,4,6,...

bj

∣∣∣ ≥ nτ0;n
γ̃e(0)

)
≤ P

(∣∣∣ ∑
j=1,3,5,...

bj

∣∣∣ ≥ nτ0;n
2γ̃e(0)

)
+ P

(∣∣∣ ∑
j=2,4,6,...

bj

∣∣∣ ≥ nτ0;n
2γ̃e(0)

)
≤

{2γ̃e(0)

nτ0;n

}2

E
{( ∑

j=1,3,5,...

bj

)2}
+
{2γ̃e(0)

nτ0;n

}2

E
{( ∑

j=2,4,6,...

bj

)2}
=

{2γ̃e(0)

nτ0;n

}2{ qn∑
j=1

E(b2j )
}

= O
( g2n
n2τ20;n

qng
2
n

)
= O

( g3n
nτ20;n

)
. (S.19)

Similar arguments lead to

P
(∣∣∣ n−k∑

i=3

[ẽ22(ti)− {1− ρ̃e(k)}]
∣∣∣ ≥ nτ0;n

γ̃e(0)

)
= O

( g3n
nτ20;n

)
. (S.20)
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By (S.18), (S.19) and (S.20), we complete the proof. �

Lemma 4 Under Conditions A2, A4 and A5, for any constant τ1 > 0 and 1 ≤ i, j ≤ `,

P(‖Σ̂i,j − Σi,j‖∞ > τ1) ≤ C/n,

where Σ̂i,j = (D1Si)
T (D1Sj)/n and Σi,j is defined in Condition A2.

Proof : For notational simplicity, define sr;i = si(r/n), for r = 0, . . . , n− 1.

Let J be an m×m matrix defined as

J(u, v) =

{
n−1

∑n−v+u−2
r=0 (sr+1;j − sr;j)(sr+v−u+1;i − sr+v−u;i), if 1 ≤ u < v ≤ m,

n−1
∑n−u+v−2
r=0 (sr+1;i − sr;i)(sr+u−v+1;j − sr+u−v;j), if 1 ≤ v ≤ u ≤ m.

For 1 ≤ u < v ≤ m,

|Σ̂i,j(u, v)− J(u, v)|

=
∣∣∣ 1
n

n−v−1∑
r=−1

(sr+1;j − sr;j)(sr+v−u+1;i − sr+v−u;i)

− 1

n

n−v+u−2∑
r=0

(sr+1;j − sr;j)(sr+v−u+1;i − sr+v−u;i)
∣∣∣

≤ 1

n

{
|s0;j(sv−u;i − sv−u−1;i)|+

n−v+u−2∑
r=n−v−1

|(sr+1;j − sr;j)(sr+v−u+1;i − sr+v−u;i)|
}

≡ K(u, v), (S.21)

where s−1;i = s−1;j = 0 and K is an m×m matrix. Similarly, for 1 ≤ v ≤ u ≤ m,

|Σ̂i,j(u, v)− J(u, v)|

≤ 1

n

{
|s0;i(su−v;j − su−v−1;j)|+

n−u+v−2∑
r=n−u−1

|(sr+1;i − sr;i)(sr+u−v+1;j − sr+u−v;j)|
}

≡ K(u, v). (S.22)

By Markov inequality and Cauchy-Schwarz inequality,

P
( ∑∑
1≤u<v≤m

K(u, v) >
τ1
4

)
≤ 16

τ21n
2
E
([ ∑∑

1≤u<v≤m

{
|s0;j(sv−u;i − sv−u−1;i)|

+

n−v+u−2∑
r=n−v−1

|(sr+1;j − sr;j)(sr+v−u+1;i − sr+v−u;i)|
}]2)

= O(1/n2),

and similarly, we can show P(
∑∑

1≤v≤u≤m
K(u, v) > τ1/4) = O(1/n2).
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Since, by Condition A4, Σi,j is a Toeplitz matrix and so is J, we have ‖J−Σi,j‖∞ ≤
‖zT1,m(J − Σi,j)‖1 + ‖zTm,m(J − Σi,j)‖1 =

∑m
v=1 |J(1, v) − Σi,j(1, v)| +

∑m
v=1 |J(m, v) −

Σi,j(m, v)|. From (S.21) and (S.22),

P(‖Σ̂i,j − Σi,j‖∞ > τ1) ≤ P(‖J− Σi,j‖∞ + ‖Σ̂i,j − J‖∞ > τ1)

≤ P(‖J− Σi,j‖∞ > τ1/2) + P(‖Σ̂i,j − J‖∞ > τ1/2)

≤ P
( m∑
v=1

|J(1, v)− Σi,j(1, v)|+
m∑
v=1

|J(m, v)− Σi,j(m, v)| > τ1
2

)
+P
(∑∑
1≤u,v≤m

K(u, v) >
τ1
2

)
≤

m∑
v=1

P(|J(1, v)− Σi,j(1, v)| > τ1/(4m))

+

m∑
v=1

P(|J(m, v)− Σi,j(m, v)| > τ1/(4m)) +O(1/n2). (S.23)

Following basically the same method in the proof of Lemma 3, we can show P(|J(1, v)−
Σi,j(1, v)| > τ1/(4m)) = O(1/n) and P(|J(m, v)− Σi,j(m, v)| > τ1/(4m)) = O(1/n). By
(S.23) we complete the proof. �

Lemma 5 Under Conditions A2, A4 and A5, for any constant τ1 > 0,

P(‖Σ̂1 − Σ1‖ > τ1) ≤ C/n,

where Σ̂1 = (D1S)T (D1S)/n and Σ1 is defined in Condition A2.

Proof : Σ̂1 could be expressed as a block matrix, i.e., Σ̂1 = (Σ̂i,j)
`
i,j=1 where Σ̂i,j =

(D1Si)
T (D1Sj)/n. Since Σ̂1 and Σ1 are symmetric matrices,

P(‖Σ̂1 − Σ1‖ > τ1) ≤ P(‖Σ̂1 − Σ1‖∞ > τ1) ≤ P
(∑∑
1≤i,j≤`

‖Σ̂i,j − Σi,j‖∞ > τ1

)
≤

∑∑
1≤i,j≤`

P(‖Σ̂i,j − Σi,j‖∞ > τ1/`
2) = O(1/n).

The last inequality is derived from Lemma 4. �

Lemma 6 Under Conditions A1 (or B1) and A2–A5, for any τ2 ≡ τ2;n > 0,

P(‖(D1S)T ε1‖2 ≥ τ2) ≤ Cng2n/τ2,

where ε1 = D1d + D1ε as in Notation 1.

Proof : First, we will show the result under Conditions A1–A5. Let (η1, . . . , η`m)T =

(D1S)T ε1 and ϑi,j = zTi,n−1(D1S)zj,`m. For j = 1, . . . , `m, ηj =
∑n−1
i=1 ε1(ti+1)ϑi,j

=
∑n−1
i=1 {ε(ti+1)− ε(ti)}ϑi,j +

∑n−1
i=1 {d(ti+1)− d(ti)}ϑi,j .

P(‖(D1S)T ε1‖2 ≥ τ2) = P
( `m∑
j=1

η2j ≥ τ2
)
≤

`m∑
j=1

P(η2j ≥ τ2/(`m))
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≤
`m∑
j=1

P
(∣∣∣ n−1∑

i=1

{ε(ti+1)− ε(ti)}ϑi,j
∣∣∣ ≥ τ

1/2
2

2(`m)1/2

)
+

`m∑
j=1

P
(∣∣∣ n−1∑

i=1

{d(ti+1)− d(ti)}ϑi,j
∣∣∣ ≥ τ

1/2
2

2(`m)1/2

)
≡ I + II. (S.24)

For term I, define φ∗k = φn;k−φn;k−1, so ε(ti+1)− ε(ti) =
∑∞
k=−∞ φ∗kwi+1−k. Then,

n−1∑
i=1

{ε(ti+1)− ε(ti)}ϑi,j =

n−1∑
i=1

∞∑
k=−∞

φ∗kwi+1−kϑi,j =

∞∑
k=−∞

n−1∑
i=1

φ∗kwi+1−kϑi,j . (S.25)

For each k and j, define βk,j = (φ∗kw2−kϑ1,j , . . . , φ
∗
kwn−kϑn−1,j)

T . Divide βk,j into
blocks with length gs + 1, and hence there are qn = d(n− 1)/(gs + 1)e blocks. The
sum of the elements of βk,j within the uth block is denoted by κk,j,u, for u = 1, . . . , qn.

For example, κk,j,1 =
∑gs+1
i=1 φ∗kwi+1−kϑi,j . Then, E(κk,j,u) = 0, E(κ2k,j,u) ≤ (gs +

1)
∑gs+1
i=1 E[{φ∗kwi+1−kϑi,j}2] = O((gs + 1)2φ∗2k ), {κk,j,1, κk,j,3, . . .} are independent and

so are {κk,j,2, κk,j,4, . . .}. Then,

E
{( n−1∑

i=1

φ∗kwi+1−kϑi,j

)2}
≤ 2E

{( ∑
u=1,3,5,...

κk,j,u

)2}
+ 2E

{( ∑
u=2,4,6,...

κk,j,u

)2}
= O(nφ∗2k ),

which together with (S.25) and Minkowski inequality implies

E
[∣∣∣ n−1∑

i=1

{ε(ti+1)− ε(ti)}ϑi,j
∣∣∣2] = E

[∣∣∣ ∞∑
k=−∞

n−1∑
i=1

(φ∗kwi+1−kϑi,j)
∣∣∣2]

≤
[ ∞∑
k=−∞

{
E
(∣∣∣ n−1∑

i=1

(φ∗kwi+1−kϑi,j)
∣∣∣2)}1/2]2

= O(ng2n). (S.26)

By Markov inequality and (S.26),

I ≤ 4`m

τ2

`m∑
j=1

E
[∣∣∣ n−1∑

i=1

{ε(ti+1)− ε(ti)}ϑi,j
∣∣∣2] = O(ng2n/τ2).

Similar arguments can be applied to show that II = O(ng2n/τ2). From (S.24), we complete
the proof.

Next, we will provide the proof under Conditions B1 and A2–A5. Since {ε(ti+1)−
ε(ti)} is (gn + 1)-dependent and any column of D1S is (gs + 1)-dependent, the vector
αj = ({ε(t2)− ε(t1)}ϑ1,j , . . . , {ε(tn)− ε(tn−1)}ϑn−1,j)T is (gn + gs + 1)-dependent, j =
1, . . . ,m. We divide αj into blocks with length gn + gs + 1 as we did before. So, there
are d(n− 1)/(gn + gs + 1)e blocks. The sum of elements in αj within the wth block is
denoted by fj,w, for w = 1, . . . , d(n− 1)/(gn + gs + 1)e. By Conditions B1 and A4, it is



S14 Xiao Guo and Chunming Zhang

easy to see that E(f2j,w) ≤ Cg3n. Hence,

P
(∣∣∣ n−1∑

i=1

{ε(ti+1)− ε(ti)}ϑi,j
∣∣∣ ≥ τ

1/2
2

2(`m)1/2

)
≤ P

(∣∣∣ ∑
w=1,3,5,...

fj,w

∣∣∣ ≥ τ
1/2
2

4(`m)1/2

)
+ P

(∣∣∣ ∑
w=2,4,6,...

fj,w

∣∣∣ ≥ τ
1/2
2

4(`m)1/2

)
≤ 16`m

τ2

{
E
(∣∣∣ ∑

w=1,3,5,...

fj,w

∣∣∣2)+ E
(∣∣∣ ∑

w=2,4,6,...

fj,w

∣∣∣2)} = O(ng2n/τ2)

Since (S.24) still holds under Condition B1, similar arguments can be applied to show
that I = O(ng2n/τ2) and II = O(ng2n/τ2). From (S.24), we complete the proof. �

Lemma 7 Under Conditions A1 (or B1) and A2–A5, for any τ3 ≡ τ3;n > 0,

P
( 1

n

n∑
i=3

δ2(ti) ≥ τ3
)
≤ Cg2n

τ3n
+
C

n
,

where δ(ti) is the (i− 2)th element of δ = D2S(h− ĥDBE) as defined in Notation 2.

Proof : The proof is the same under either Condition A1 or B1.

Since ε1 = D1d + D1ε, from model (2.1),

ĥDBE = {(D1S)T (D1S)}−1(D1S)T (D1y) = h + {(D1S)T (D1S)}−1(D1S)T ε1.

Thus,

n∑
i=3

δ2(ti) = ‖D2S(h− ĥDBE)‖2 = ‖D0(D1S){(D1S)T (D1S)}−1(D1S)T ε1‖2

≤ ‖D0‖2‖(D1S){(D1S)T (D1S)}−1‖2‖(D1S)T ε1‖2

≤ 4‖{(D1S)T (D1S)}−1‖‖(D1S)T ε1‖2 = 4n−1‖Σ̂−11 ‖ × ‖(D1S)T ε1‖2, (S.27)

where Σ̂1 = (D1S)T (D1S)/n and D0 is an (n− 2)× (n− 1) matrix defined as

D0 =


−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1


(n−2)×(n−1)

,

such that D2 = D0D1. By Condition A2, when 2−1λmin(Σ1) ≥ ‖Σ̂1 − Σ1‖,

C

2
≤ 1

2
λmin(Σ1) ≤ λmin(Σ1)− ‖Σ̂1 − Σ1‖ ≤ λmin(Σ1) + λmin(Σ̂1 − Σ1) ≤ λmin(Σ̂1),
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and thus, ‖Σ̂−11 ‖ = 1/λmin(Σ̂1) ≤ 2/C, which together with (S.27) implies

P
( 1

n

n∑
i=3

δ2(ti) ≥ τ3
)
≤ P(‖Σ̂−11 ‖‖(D1S)T ε1‖2 ≥ τ3n2/4)

= P(‖Σ̂−11 ‖‖(D1S)T ε1‖2 ≥ τ3n2/4, ‖Σ̂1 − Σ1‖ ≤ λmin(Σ1)/2)

+P(‖Σ̂−11 ‖‖(D1S)T ε1‖2 ≥ τ3n2/4, ‖Σ̂1 − Σ1‖ > λmin(Σ1)/2)

≤ P(‖(D1S)T ε1‖2 ≥ Cτ3n2/8) + P(‖Σ̂1 − Σ1‖ > C/2)
≡ I + II. (S.28)

By Lemma 6, if we take τ2;n = Cτ3n
2/8, I = O(g2n/(τ3n)). From Lemma 5, by choosing

τ1 = C/2, II = O(1/n). From (S.28), we complete the proof. �

Lemma 8 Under Conditions A1 (or B1) and A2–A5, for ε0 ≡ ε0;n > 0 that satisfies
ε0 = O(g6n), ε0n/g

11
n →∞ and ε20n

2/g11n →∞, and for any k ∈ {0, . . . , gn},

P(|γ̂e(k)− γe(k)| ≥ ε0/g5n) ≤ Cg13n /(nε20).

Proof : The proof is the same under either Condition A1 or B1.

Since ê(ti) = e(ti) + δ(ti), we have

1

n

n−k∑
i=3

ê(ti)ê(ti+k) =
1

n

n−k∑
i=3

{e(ti) + δ(ti)}{e(ti+k) + δ(ti+k)}

=
1

n

n−k∑
i=3

e(ti)e(ti+k) +
1

n

n−k∑
i=3

e(ti)δ(ti+k) +
1

n

n−k∑
i=3

e(ti+k)δ(ti) +
1

n

n−k∑
i=3

δ(ti)δ(ti+k).

By Cauchy-Schwarz inequality,

P
(
|γ̂e(k)− γe(k)| ≥ ε0

g5n

)
= P

(∣∣∣ 1
n

n−k∑
i=3

{ê(ti)ê(ti+k)} − γe(k)
∣∣∣ ≥ ε0

g5n

)
≤ P

(∣∣∣ 1
n

n−k∑
i=3

{e(ti)e(ti+k)} − γe(k)
∣∣∣+

2

n

{ n∑
i=3

e2(ti)

n∑
i=3

δ2(ti)
}1/2

+
1

n

n∑
i=3

δ2(ti) ≥
ε0
g5n

)
≤ P

(∣∣∣ 1
n

n−k∑
i=3

{e(ti)e(ti+k)} − γe(k)
∣∣∣ ≥ ε0

3g5n

)
+ P

( 2

n

{ n∑
i=3

e2(ti)

n∑
i=3

δ2(ti)
}1/2

≥ ε0
3g5n

)
+P
( 1

n

n∑
i=3

δ2(ti) ≥
ε0

3g5n

)
≡ I + II + III. (S.29)

From Conditions A3 and A5, we have |d0(ti)| ≤ 2C/n2, where d0(ti) = d(ti) −
2d(ti−1) + d(ti−2). Since e(ti) = e0(ti) + d0(ti), by Cauchy-Schwarz inequality, for large
n,

I ≤ P
(∣∣∣ 1
n

n−k∑
i=3

{e0(ti)e0(ti+k)} − γe(k)
∣∣∣ ≥ ε0

4g5n

)
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+P
( 2

n

{ n∑
i=3

e20(ti)

n∑
i=3

d20(ti)
}1/2

+
1

n

n∑
i=3

d20(ti) ≥
ε0

12g5n

)
≤ P

(∣∣∣ 1
n

n−k∑
i=3

{e0(ti)e0(ti+k)} − γe(k)
∣∣∣ ≥ ε0

4g5n

)
+P
( 2

n

{ n∑
i=3

e20(ti)

n∑
i=3

d20(ti)
}1/2

≥ ε0
24g5n

)
≡ I1 + I2. (S.30)

The last inequality in (S.30) is true, when n is large enough, such that n4/g5n > 96C2/ε0,
which implies n−1

∑n
i=3 d

2
0(ti) < ε0/(24g5n).

For term I2 in (S.30), when n is large enough,

I2 = P
( 2

n

{ n∑
i=3

e20(ti)

n∑
i=3

d20(ti)
}1/2

≥ ε0
24g5n

)
= P

( n∑
i=3

e20(ti)

n∑
i=3

d20(ti) ≥
ε20n

2

2304g10n

)
≤ P

( n∑
i=3

e20(ti) ≥
ε20n

5

9216C2g10n

)
≤ P

(∣∣∣ 1
n

n∑
i=3

e20(ti)− γe(0)
∣∣∣ ≥ ε20n

4

18432C2g10n

)
≤ P

(∣∣∣ 1
n

n∑
i=3

e20(ti)− γe(0)
∣∣∣ ≥ ε0

4g5n

)
. (S.31)

The last two inequalities in (S.31) are true, when n is large enough for the following
inequalities to hold, n4/g10n > 18432C2γe(0)/ε20 and n4/g5n > 4608C2/ε0, which imply
γe(0) < ε20n

4/(18432C2g10n ) and ε0/(4g
5
n) < ε20n

4/(18432C2g10n ) respectively.

From the assumptions that ε0n/g
11
n →∞ and ε20n

2/g11n →∞, we can always choose
a constant L1, such that, for any n > L1, the following inequalities hold: n4/g5n >
96C2/ε0, n4/g10n > 18432C2γe(0)/ε20 and n4/g5n > 4608C2/ε0, which imply that (S.30)
and (S.31) hold. Therefore, for n > L1, from (S.30), (S.31), by choosing τ0;n = ε0/(4g

5
n)

in Lemma 2,

I ≤ P
(∣∣∣ 1
n

n−k∑
i=3

{e0(ti)e0(ti+k)} − γe(k)
∣∣∣ ≥ ε0

4g5n

)
+ P

(∣∣∣ 1
n

n∑
i=3

e20(ti)− γe(0)
∣∣∣ ≥ ε0

4g5n

)
= O(g13n /(nε

2
0)). (S.32)

For term II,

II = P
( 1

n

{ 1

n

n∑
i=3

e2(ti)− γe(0) + γe(0)
} n∑
i=3

δ2(ti) ≥
ε20

36g10n

)
≤ P

( 1

n

∣∣∣ 1
n

n∑
i=3

e2(ti)− γe(0)
∣∣∣ n∑
i=3

δ2(ti) ≥
ε20

72g10n

)
+P
( 1

n
γe(0)

n∑
i=3

δ2(ti) ≥
ε20

72g10n

)
≤ P

(∣∣∣ 1
n

n∑
i=3

e2(ti)− γe(0)
∣∣∣ ≥ ε0

3g5n

)
+ P

( 1

n

n∑
i=3

δ2(ti) ≥
ε0

24g5n

)
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+P
( 1

n
γe(0)

n∑
i=3

δ2(ti) ≥
ε20

72g10n

)
≡ II1 + II2 + II3. (S.33)

From the assumption 0 < ε0 = O(g6n), we can first choose τ3;n = ε20/{72γe(0)g10n } in
Lemma 7 and get II3 = O(g13n /(nε

2
0)) + O(1/n) = O(g13n /(nε

2
0)). Then, from Lemma 7,

by taking τ3;n = ε0/(24g5n), II2 = O(g7n/(nε0)) + O(1/n) = O(g7n/(nε0)). Based on the
proof for term I, II1 = O(g13n /(nε

2
0)). By (S.33) and the assumption that ε0 = O(g6n),

II = O(g13n /(nε
2
0)) +O(g7n/(nε0)) +O(g13n /(nε

2
0)) = O(g13n /(nε

2
0)).

It’s easy to see that

III ≤ II2 = O(g7n/(nε0)) = O(g13n /(nε
2
0)). (S.34)

From (S.29) and (S.32)–(S.34), we complete the proof for n > L1. The result for n ≤ L1

is straightforward. �

Lemma 9 Assume Conditions A2–A5 and that there exists ε ≡ εn > 0 such that ε =
O(1), ε1/2n/g11n →∞, εn2/g11n →∞. Under either of the following two assumptions:

• Condition A1 holds and (gn + 2)3−αn = o(ε1/2),

• Condition B1 holds,

we have

P(‖R̂−Mgn(R)‖2∞ ≥ ε) ≤ Cg14n /(εn).

Proof : The proof is the same under either Condition A1 or B1.

Since R and R̂ are Toeplitz matrices,

P(‖R̂−Mgn(R)‖2∞ ≥ ε) ≤ P
({

2

gn∑
k=1

|ρ̂(k)− ρ(k)|
}2

≥ ε
)

= P
( gn∑
k=1

|ρ̂(k)− ρ(k)| ≥ ε1/2/2
)

= P
(∥∥∥ γ̂

γ̂(0)
− γ

γ(0)

∥∥∥
1
≥ ε1/2/2

)
≤ P

(∥∥∥ γ̂

γ̂(0)
− γ

γ(0)

∥∥∥
1
≥ ε1/2/2, |γ̂(0)− γ(0)| < γ(0)/2

)
+ P(|γ̂(0)− γ(0)| ≥ γ(0)/2)

≡ I + II. (S.35)

Since

γ̂

γ̂(0)
− γ

γ(0)
= (γ̂ − γ)

( 1

γ̂(0)
− 1

γ(0)

)
+ γ

( 1

γ̂(0)
− 1

γ(0)

)
+ (γ̂ − γ)

1

γ(0)
,
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then,∥∥∥ γ̂

γ̂(0)
− γ

γ(0)

∥∥∥
1
≤ ‖γ̂ − γ‖1

∣∣∣ 1

γ̂(0)
− 1

γ(0)

∣∣∣+ ‖γ‖1
∣∣∣ 1

γ̂(0)
− 1

γ(0)

∣∣∣+ ‖γ̂ − γ‖1
1

γ(0)
,

which implies that

I ≤ P
(
‖γ̂ − γ‖1

∣∣∣ 1

γ̂(0)
− 1

γ(0)

∣∣∣ ≥ ε1/2/6, |γ̂(0)− γ(0)| < γ(0)/2
)

+P
(
‖γ‖1

∣∣∣ 1

γ̂(0)
− 1

γ(0)

∣∣∣ ≥ ε1/2/6, |γ̂(0)− γ(0)| < γ(0)/2
)

+P
(
‖γ̂ − γ‖1

1

γ(0)
≥ ε1/2/6, |γ̂(0)− γ(0)| < γ(0)/2

)
≡ III + IV + V. (S.36)

Let ε0 = ε1/2γ(0)/96. By Lemma 1, Remark 1 and the assumption that (gn + 2)3−αn =
o(ε1/2), we have ‖A−1gn Bgn‖1{|γ(gn + 1)|+ |γ(gn + 2)|} = O(g2n(gn + 2)1−αn) = O((gn +
2)3−αn) = o(ε0). There exists a constant L1 > 0, such that for n > L1, ‖A−1gn Bgn‖1{|γ(gn+
1)|+ |γ(gn + 2)|} ≤ 2ε0. For n > L1, from Lemma 1,

V ≤ P(‖γ̂ − γ‖1 ≥ ε1/2γ(0)/6)
≤ P(‖A−1gn (γ̂e − γe)‖1 + ‖A−1gn Bgn‖1{|γ(gn + 1)|+ |γ(gn + 2)|} ≥ 4ε0)

≤ P(‖A−1gn ‖1‖γ̂e − γe‖1 ≥ 2ε0) ≤ P(‖γ̂e − γe‖1 ≥ 2ε0/(Cg
4
n)). (S.37)

Similarly, we can show that, for n > L1,

III ≤ P(‖γ̂ − γ‖1 ≥ ε1/2γ(0)/6).

By Lemma 1, Remark 1 and the assumption that (gn + 2)3−αn = o(ε1/2), there exists a
constant L2 > 0, such that, for n > L2,

‖zT1,gn+1A
−1
gn Bgn‖∞{|γ(gn + 1)|+ |γ(gn + 2)|} ≤ ε1/2γ(0)/{24(gn + 1)}.

For n > L2, from Lemma 1,

IV ≤ P
(∣∣∣ 1

γ̂(0)
− 1

γ(0)

∣∣∣ ≥ ε1/2/{6γ(0)(gn + 1)}, |γ̂(0)− γ(0)| < γ(0)/2
)

≤ P(|γ̂(0)− γ(0)| ≥ ε1/2γ(0)/{12(gn + 1)})
≤ P(|zT1,gn+1A

−1
gn (γ̂e − γe)|+ ‖zT1,gn+1A

−1
gn Bgn‖∞{|γ(gn + 1)|+ |γ(gn + 2)|}

≥ ε1/2γ(0)/{12(gn + 1)})
≤ P(‖zT1,gn+1A

−1
gn ‖∞‖γ̂e − γe‖1 ≥ ε

1/2γ(0)/{24(gn + 1)})
≤ P(‖γ̂e − γe‖1 ≥ 2ε0/(Cg

4
n)).

By (S.36) and Lemma 8, for n > max{L1, L2},

I ≤ 3

gn∑
k=0

P(|γ̂e(k)− γe(k)| ≥ ε0/(Cg5n)) = O(g14n /(ε
2
0n)) = O(g14n /(εn)).



Error Autocorrelation Matrix Estimation for fMRI S19

From the assumption that ε = O(1), we have Cε0 ≤ γ(0)/2 for some positive
constant C. Following basically the same procedure in (S.37), there exists a constant
L3 > 0, such that, for n > L3,

II ≤ P(‖γ̂ − γ‖1 ≥ γ(0)/2) ≤ P(‖γ̂ − γ‖1 ≥ Cε0) = O(g14n /(εn)).

Now by (S.35), we complete the proof for n > max{L1, L2, L3}. The result for
n ≤ max{L1, L2, L3} could be easily derived. �

Proof of Theorem 1. It is easy to see that

‖R̂−R‖2∞ ≤ 2‖R̂−Mgn(R)‖2∞ + 2‖Mgn(R)−R‖2∞ ≡ I + II.

For term II, from Remark 1, under Condition A1,

‖Mgn(R)−R‖∞ ≤ 2

n−1∑
k=gn+1

|γ(k)|/|γ(0)| = O
( n−1∑
k=gn+1

(2k − gn)1−αn

)
= O((gn + 2)2−αn).

Therefore,

II = OP ((gn + 2)4−2αn).

From (gn + 2)8+2αn/n → ∞ and g14n /n = o(1), (gn + 2)4−2αn = o(g14n /n), and hence,
II = oP (g14n /n). Under Condition B1, II = 0.

Take εn = C∗g14n /n, where C∗ > 0 is a constant. From Lemma 9, under either

Condition A1 or B1, P(‖R̂−Mgn(R)‖2∞ ≥ C∗g14n /n) ≤ C/C∗. Thus,

I = OP (g14n /n).

We complete the proof. �

Proof of Proposition 1. From the proof of Theorem 1, ‖R̂−R‖2∞ ≤ 2‖R̂−Mgn(R)‖2∞+
2‖Mgn(R)−R‖2∞, and ‖Mgn(R)−R‖∞ = o(1). From Lemma 9, for any constant ε > 0
and n large enough such that 2‖Mgn(R)−R‖2∞ < ε/2,

P(‖R̂−R‖2∞ ≥ ε) ≤ P(2‖R̂−Mgn(R)‖2∞ ≥ ε/2) ≤ Cg14n /n = o(1), (S.38)

because αngn →∞ implies that (gn + 2)3−αn = o(1). So, we complete the proof. �

Proof of Proposition 2. The proof is the same under either Condition A1 or B1. We
can show that

λmin(R̂) ≥ λmin(R) + λmin(R̂−R) ≥ λmin(R)− ‖R̂−R‖ ≥ λmin(R)− ‖R̂−R‖∞.

From Condition A6 and Proposition 1, we can show that with probability tending to
one, λmin(R̂) > 0. Thus, we complete the proof. �
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Proof of Proposition 3. The proof is the same under either Condition A1 or B1. The
proof is similar for R̂Z and R̂∗. In the following, we will only give the proof for R̂∗. Since
R̂∗−R = (R̂−R) I(R̂ � 0, ‖R̂−1‖∞ ≤ Dnω)+(In−R){1− I(R̂ � 0, ‖R̂−1‖∞ ≤ Dnω)},
‖R̂∗ − R‖∞ ≤ ‖R̂ − R‖∞ + ‖In − R‖∞{1 − I(R̂ � 0, ‖R̂−1‖∞ ≤ Dnω)}. From the

result of Theorem 1, it suffices to show limn→∞ P(R̂ � 0, ‖R̂−1‖∞ ≤ Dnω) = 1.

By Condition A6, we can verify that there is a constant M1 > 0, such that
‖R−1‖∞ < M1. Define the eventQ = {‖R̂−R‖∞ ≤ ξ}, for some 0 < ξ < min{1/M1, c, 1/C},
where c and C are constants in Condition A6. From Theorem 1, limn→∞ P(Q) = 1. Fol-

lowing the proof of Theorem 6 in Cai and Zhou (2012), ‖R̂−1‖∞ is bounded on Q.

Hence, limn→∞ P(‖R̂−1‖∞ ≤ Dnω) ≥ limn→∞ P(‖R̂−1‖∞ ≤ Dnω, Q) = 1. Togeth-

er with limn→∞ P(R̂ � 0) = 1 from Proposition 2, we can conclude limn→∞ P(R̂ �
0, ‖R̂−1‖∞ ≤ Dnω) = 1. �

Proof of Theorem 2. The proof is the same under either Condition A1 or B1. By
Condition A6, we can verify that there is a constant M1 > 0, such that ‖R−1‖∞ < M1.

Define the event Q = {‖R̂−R‖∞ ≤ ξ}, for some 0 < ξ < min{1/M1, c, 1/C}. Following
the proof of Theorem 6 in Cai and Zhou (2012), we can show that, for n large enough,

‖R̂−1∗ −R−1‖∞ ≤ C0‖R̂−R‖∞ on Q and ‖R̂−1∗ −R−1‖∞ ≤ C0n
ω on Qc, where C0 > 0

is a constant. Thus, from similar arguments in (S.38), for n large enough,

E(‖R̂−1∗ −R−1‖2∞) = E{‖R̂−1∗ −R−1‖2∞ I(Q)}+ E{‖R̂−1∗ −R−1‖2∞ I(Qc)}
≤ C2

0E{‖R̂−R‖2∞ I(Q)}+ C2
0n

2ωP(Qc)

= C2
0E{‖R̂−R‖2∞ I(Q)}+O(g14n /n

1−2ω). (S.39)

Since by (S.38), for any constant ε > 0, P(‖R̂ − R‖2∞ ≥ ε) = O(g14n /n) → 0, we

have ‖R̂−R‖2∞
P→ 0, which implies ‖R̂−R‖2∞ I(Q)

P→ 0. Then,

E{‖R̂−R‖2∞ I(Q) I(‖R̂−R‖2∞ I(Q) ≥ ε)}
≤ [E{‖R̂−R‖4∞ I(Q)}P(‖R̂−R‖2∞ ≥ ε)]1/2

≤ {ξ4P(‖R̂−R‖2∞ ≥ ε)}1/2 = O(g7n/n
1/2)→ 0.

By asymptotically uniform integrability, we have E{‖R̂−R‖2∞ I(Q)} → 0, which together

with (S.39) implies E(‖R̂−1∗ −R−1‖2∞)→ 0. �

Proof of Proposition 4. The proof is the same under either Condition A1 or B1.
Following the proof in Proposition 3, ‖R−1‖∞ is bounded, and ‖R̂−1‖∞ is bounded on

Q (defined in Proposition 3). Since R̂−1 −R−1 = R̂−1(R− R̂)R−1, ‖R̂−1 −R−1‖∞ ≤
‖R̂−1‖∞‖R − R̂‖∞‖R−1‖∞ on Q, and hence, ‖R̂−1 − R−1‖∞ ≤ C‖R − R̂‖∞. From

the result in Theorem 1 and P(Qc) = o(1), ‖R̂−1 −R−1‖∞ = OP (g7n/n
1/2).

From the result in Proposition 2 that limn→∞ P(R̂ � 0) = 1, it is easy to prove

that ‖R̂−1Z −R−1‖∞ = OP (g7n/n
1/2).
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From limn→∞ P(R̂ � 0) = 1 and that ‖R̂−1‖∞ is bounded on Q, it’s easy to show

‖R̂−1∗ −R−1‖∞ = OP (g7n/n
1/2). �
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