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Abstract: The generalized likelihood ratio (GLR) statistic (Fan, Zhang, and Zhang

(2001)) offered a generally applicable method for testing nonparametric hypotheses

about nonparametric functions, but its efficiency is adversely affected by outly-

ing observations and heavy-tailed distributions. Here a robust testing procedure

is developed under the framework of the GLR by incorporating a Wilcoxon-type

artificial likelihood function, and adopting the associated local smoothers. Under

some useful hypotheses, the proposed test statistic is asymptotically normal and

free of nuisance parameters and covariate designs. Its asymptotic relative efficiency

with respect to the least squares-based GLR method is closely related to that of

the signed-rank Wilcoxon test in comparison with the t-test. Simulation results are

consistent with the asymptotic analysis.
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1. Introduction

Over the last two decades, nonparametric modeling techniques have devel-

oped rapidly due to the reduction of modeling biases of traditional parametric

methods. This raises such important inference questions as whether a parametric

family adequately fits a given data set. Here we choose the varying coefficient

model for our investigation because it arises in many statistical problems. Sup-

pose {(Yi,Xi, Ui)}ni=1 is a random sample from the varying-coefficient model,

Y = α(U) +A(U)TX + ε (1.1)

with X = (X1, X2, . . . , Xp)
T and A(U) = (a1(U), . . . , ap(U))T . Such nonpara-

metric inferences or testings, as the problem of parametric null against nonpara-

metric alternative hypothesis, or model checking for partial linear models, are

included as a special cases of hypothesis testing problems under this model. A

widely used null hypothesis testing problem is

H0a : (α,AT ) = (α0,A
T
0 ) versus H1a : (α,AT ) ̸= (α0,A

T
0 ), (1.2)
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where α0 and A0 are two known functions. An intuitive approach is based

on generalizations of the Kolmogorov-Smirnov or Cramer-von Mises statistics

to measure the distance between the estimators under the null and alternative

models; see Härdle and Mammen (1993), Neumeyer and Van Keilegom (2010),

and the references therein. However, it is difficult to find an optimal measure

for such type of statistics. Zheng (1996) proposed a consistent test of functional

nonlinear regression models by combining the methodology of the conditional

moment test (Bierens (1990)) and nonparametric estimation techniques. See

Zhang and Dette (2004) for a power comparison of some types of nonparametric

regression tests.

In an important work, Fan, Zhang, and Zhang (2001) proposed the general-

ized likelihood ratio (GLR) test statistic

λGLR
n (α0,A0) = lGLR

n (H1a)− lGLR
n (H0a) =

n

2
log

RSS0
RSS1

≈ n

2

RSS0 − RSS1
RSS1

,

(1.3)

where RSS0 =
∑n

k=1(Yk − α0(Uk)−A0(Uk)
TXk)

2, RSS1 =
∑n

k=1(Yk − α̂(Uk)−
Â(Uk)

TXk)
2, and (α̂(·), Â(·)) are the local linear estimators under the alter-

native model. This test is shown to possess the Wilks phenomenon and to be

asymptotically optimal in certain sense; it has become a commonly used method-

ology for constructing nonparametric testing in regression models. See Fan and

Jiang (2007) for an overview of the idea of GLR inference in different nonpara-

metric models. Although the GLR test is asymptotically distribution-free, the

normal likelihood function and the corresponding local least-squares polynomial

estimators (Fan and Gijbels (1996)) are employed. Accordingly, its statistical

properties could potentially be (highly) affected when the errors are far from

normal or the data contain some outliers.

We develop a robust test under the framework of the GLR. It relaxes the

usually strong distributional assumption associated with the least-squares-based

GLR by adopting a Wilcoxon-type dispersion function (Hettmansperger and

McKean (2010)) and the corresponding local smoothers. We establish that the

Wilcoxon-type GLR preserves the Wilks phenomenon without the need to assume

a normal likelihood. Under the null hypothesis the test statistic is asymptotically

normal and free of nuisance parameters. Under certain conditions, its Pitman

asymptotic relative efficiency (ARE) with respect to the GLR test is established.

This ARE is closely related to that of the signed-rank Wilcoxon test in com-

parison with the t-test. Thus, it outperforms the least-squares-based GLR with

heavier-tailed data in the sense that asymptotically it can yield substantially

larger power. A simulation study was conducted to compare it with some other

available procedures in the literature. When the errors deviate from normality,
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our tests are more powerful than the least-square-based or moment-based meth-
ods. Even when the errors are normally distributed, our procedure does not lose
much.

Considerable efforts have been devoted to construct some robust nonpara-
metric polynomial smoothers. See Fan, Hu, and Truong (1994), Welsh (1996),
Kai, Li, and Zou (2010) and Feng, Zou, and Wang (2012). However, there is very
few work on robust inference. Wang and Qu (2007) robustified Zheng’s (1996)
test based on the centered asymptotic rank transformation of the residuals from
a robust fit under the null hypothesis. To our best knowledge in the literature
of nonparametric model checking, there is no corresponding test in which robust
local smoothers are considered.

2. Methodology

2.1. Test statistic and its null limiting distribution

Our development is based on a new artificial likelihood function. The
weighted rank-based L1 norm is often used in the development of robust statis-
tical procedures (Hettmansperger and McKean (2010)). ∥ε∥W = (

√
12/(n+ 1))∑n

i=1 ri|εi|, where ri denotes the rank of |εi| among |ε1|, . . . , |εn|. It is equivalent
to

√
12

n+ 1

∑∑
i<j

∣∣∣∣εi − εj
2

∣∣∣∣+ √
12

n+ 1

∑∑
i≤j

∣∣∣∣εi + εj
2

∣∣∣∣ ≡Wn(ε) +Rn(ε).

In particular, in the univariate location problem, given a sample of observa-
tions x = {x1, . . . , xn}, the famous Hodges-Lehmann estimate is the solution to
the minimization problem argminθ ∥x− θ∥W , which can be further reduced to
argminθ Rn(x− θ). Hence, we define an artificial likelihood function

LR(x; θ) ∝ exp

{
−Rn(x− θ)

τ

}
, (2.1)

where τ = {
√
12
∫
g2(x)dx}−1 is the so-called Wilcoxon parameter with g(x)

being the density function of ε. The motivation for using (2.1) as an artificial-
likelihood is two-fold: it can be shown that under the null hypothesis θ = θ0, the
test statistic 2[log{LR(x; θ)} − log{LR(x; θ0)}] is asymptotically χ2 distributed,
as for the likelihood ratio test; the loss function Rn(x − θ) is analogous to that
in the least-squares procedure except that the Euclidean norm is substituted by
the rank-based L1 norm.

Remark 1. To testH0 : β = β0 in the linear regression model Yi = Xiβ+εi, i =
1, 2, . . . , n, McKean and Hettmansperger (1976) considered a counterpart of (2.1),

LW (β) ∝ exp

{
−Wn(β)

τ

}
. (2.2)
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They demonstrated that the LW (β)-based test methods are powerful and ef-

ficient when the error distribution has heavier tails and possesses satisfactory

robustness in general. However, (2.2) is not applicable in the estimation of non-

parametric regression functions because the intercept term does not affect the

value of LW (β). If we assume that the error distribution possesses certain sym-

metric properties (see Condition (A4′)), using (2.1) instead would yield robust

estimation as illustrated later; see Feng, Zou, and Wang (2012), Shang, Zou, and

Wang (2012) for more details.

We consider a more general case than the symmetric assumption. We assume

P (ε1 + ε2 ≥ 0) = 1/2, and re-define τ = φ1/2
(∫
g(−t)g(t)dt

)−1
, where φ =∫

(1/2 − G(−t))2dG(t). We can show that (2.1) is also an artificial likelihood

function under this general case. Thus, according to (2.1), the Wilcoxon-type

generalized likelihood under H0a is

ln(H0a) = −φ
−1/2τ−1

n+ 1

∑∑
i≤j

|ε̂ai + ε̂aj |,

where the residual under the null hypothesis is ε̂ai = Yi − α0(Ui) −A0(Ui)
TXi.

Similarly, the likelihood under H1a is

ln(H1a) = −φ
−1/2τ−1

n+ 1

∑∑
i≤j

|ε̂i + ε̂j |,

where ε̂i is the residual under the alternative hypothesis. Thus, in order to

construct a GLR test, we need to use nonparametric smoothing estimators under

the alternative hypothesis since (1.2) is fully nonparametric.

Let ei = Yi − βTV i(u0) − γTZi(u0), V i(u0) = (1, (Ui − u0)/h)
T , Zi(u0) =

(XT
i , (Ui − u0)/hX

T
i )

T , β = (a, hb)T , and γ = (A∗, hBT )T , where a, b ∈ R,
A∗ and B are vectors of p-dimensions. For each given u0, (2.1) leads to a local

log-likelihood objective function at the given point u0,

l(β,γ) = −φ
−1/2τ−1

n+ 1

∑∑
i≤j

|ei + ej |Kh(Ui − u0)Kh(Uj − u0), (2.3)

where Kh(·) = K(·/h)/h with K a symmetric kernel function and h a bandwidth.

Take β(u0) = (α(u0), hα
′(u0))

T and γ(u0) = (A(u0)
T , hA′(u0)

T )T . Then, the

local maximum likelihood estimator, denoted by (β̂(u0), γ̂(u0)), is defined as

argmax l(β,γ) and the corresponding estimator of (α(u0),A(u0)) is denoted by

(α̂(u0), Â(u0)); it is termed the local Walsh average estimator by Feng, Zou, and

Wang (2012) and Shang, Zou, and Wang (2012). Consequently, the residuals

under H1a are given by ε̂i = Yi − α̂(Ui)− Â(Ui)
TXi.
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The Wilcoxon-type GLR test statistic (WGLR) can be defined by

λna = ln(H1a)− ln(H0a) =
φ−1/2τ−1

n+ 1

∑∑
i≤j

(|ε̂ai + ε̂aj | − |ε̂i + ε̂j |). (2.4)

To establish the asymptotic distribution of λna under H0a, we need some

conditions.

(A1) The marginal density f(u) of U is Lipschitz continuous and bounded away

from 0. U has a bounded support Ω.

(A2) α(u) and A(u) have continuous second derivatives.

(A3) The function K(t) is symmetric and bounded. The functions t3K(t) and

t3K ′(t) are bounded and
∫
t4K(t)dt <∞.

(A4) The random error ε has a distribution G(·) and finite Fisher information,∫
g−1(x)[g′(x)]2dx <∞, where g(·) is the density function of ε.

(A4′) P (ε1 + ε2 ≥ 0) = 1/2.

(A5) X is bounded and E(Xi|Ui = u) = 0. The p× p matrix Σ(u) =(
1 0

0 E(XXT |U = u)

)
is invertible for each u ∈ Ω. Σ(u)−1 and Σ(u) are

both Lipschitz continuous.

(A6) The bandwidth h→ 0, nh3/2 → ∞ and nh9/2 → 0.

These conditions are similar to those in Fan, Zhang, and Zhang (2001). In

particular, (A5) can be relaxed by using the method in Lemma 7 in Zhang and

Gijbels (2003). Thus, the assumption that X is bounded can be replaced by

E{exp(c0||X||) <∞} for some positive constant c0. Condition (A4′) is imposed

for identifying the intercept term. This is analogous to assuming that E(ε) = 0

and Median(ε) = 0 for least-squares and least-absolute-deviations, respectively,

in simple linear regression. Condition (A4′) is a more general than symmetric

assumption. For a continuous variable ε which is asymmetric, there always exists

a constant η so that ε + η satisfies (A4
′
). Assuming E(α0(U)) = 0 or α0(U) is

not of interest in the hypotheses (as the cases given later), so it is not required.

Otherwise, we may use either local Walsh average estimator along with (A4′)

or least-squares or least-absolute-deviation estimators to identify the intercept

term.

Theorem 1. Suppose (A1)−(A6) and (A4′) hold. Then, under H0a, σ
−1
na (λna −

µna)
d→N(0, 1), where
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µna =
(p+ 1)|Ω|

h

{
K(0)− 1

2

∫
K2(t)dt

}
,

σ2na =
2(p+ 1)|Ω|

h

∫ {
K(t)− 1

2
K ∗K(t)

}2
dt,

and K ∗K denotes the convolution of K.

Remark 2. By using a scale constant

rK =
K(0)− (1/2)

∫
K2(t)dt∫

(K(t)− (1/2)K ∗K(t))2dt
,

we can see rKλna ∼ χ2
rKµna

, where ∼ means approximation in a generalized sense

(see Fan, Zhang, and Zhang (2001)). Hence, for the simple null hypothesis (1.2),

the asymptotic distribution of λn1 under H0 is free of nuisance parameters and

the Wilks phenomenon holds.

Remark 3. For simplicity, we use local smoothing techniques for estimating

smooth functions. We believe any appropriate smoother would also work well.

Zhang (2004) shows the equivalence of GLR-type regression tests based on spline

and local polynomial smoothers. We expect that the asymptotic normality would

be valid if spline smoothers were used in the construction of WGLR. We make no

attempt to provide formal analysis but we think that such studies deserve future

research.

2.2. Asymptotic power study

The power of the proposed test under contiguous alternatives of the form,

H ′
1a : (α(u),A(u)T )T = (α0(u),A0(u)

T )T + (nh)−1/2G(u)

can be approximated by using the next theorem, where G(u) = (g1(u), . . .,

g(p+1)(u))
T is a bounded function that has bounded second derivative. Take

W i = (1,XT
i )

T and W = (W 1, . . . ,W n).

Theorem 2. Suppose (A1)−(A6) and (A4′) hold. Under H
′
1a, (λna − µna −

d2na)/σ
∗
na

d→N(0, 1), where d2na = (2h)−1E{τ−2G(U)TWWTG(U)}, and σ∗na =

(σ2na + h−1E{τ−2G(U)TWWTG(U)})1/2.

Given a false alarm rate α under the contiguous alternative specified in

Theorem 2, the power of WGLR can be expressed as

βWGLR =Φ

− 1√
1 + nσ−2

na τ−2B(G)
zα +

0.5nτ−2B(G)√
σ2na + nτ−2B(G)

 ,
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where Φ is the distribution function of N(0, 1), zα is the upper α quantile of

N(0, 1) and B(G) = (nh)−1E(G(U)TWWTG(U)).

According to Theorem 6 in Fan, Zhang, and Zhang (2001), we can show that

the power of GLR, with the bandwidth h′ under the same contiguous alternative,

is

βGLR =Φ

(
− 1√

1 + nh′/hσ−2
na σ−2B(G)

zα +
0.5nσ−2B(G)√

hσ2na/h
′ + nσ−2B(G)

)
.

Comparing WGLR and GLR under general settings turns out to be difficult, and

we consider three representative cases.

(1) If nB(G) ≫ σ2na, then

βWGLR ≈ Φ
(
0.5
√
nτ−2B(G)

)
and βGLR ≈ Φ

(
0.5
√
nσ−2B(G)

)
.

Thus, the Pitman asymptotic relative efficiency of WGLR with respect to

the GLR test is approximately σ2/τ2, ARE(WGLR,GLR) ≈ σ2/τ2.

(2) If nB(G) ≪ σ2na, then

βWGLR ≈ Φ
(
−zα + 0.5nσ−1

na τ
−2B(G)

)
,

βGLR ≈ Φ

(
− zα + 0.5

√
h′

h
nσ−1

na σ
−2B(G)

)
.

Accordingly, ARE(WGLR,GLR) ≈ τ−2σ2
√
h/h′. Different bandwidth

choices yield different AREs, and if h′/h = σ4/τ4, ARE(WGLR,GLR) ≈ 1.

(3) If h′ = h, then

βGLR =Φ

(
− 1√

1 + nσ−2
na σ−2B(G)

zα +
0.5nσ−2B(G)√
σ2na + nσ−2B(G)

)
.

And ARE(WGLR,GLR) = σ2/τ2.

The ARE σ2/τ2 is essentially the same as the ARE of the signed-rank

Wilcoxon test in comparison with the t-test under symmetric error and it has

a lower bound 0.864 (Hodges and Lehmann (1963)). The ARE is as high as

0.955 for the normal error distribution, and can be significantly higher than

one for many heavier-tailed distributions (Hettmansperger and McKean (2010)).

For instance, it is 1.5 for the double exponential distribution, and 1.9 for the

t-distribution with three degrees of freedom.

2.3. Composite null hypothesis

We consider the case where null hypotheses depend on nuisance functions.

We show that the asymptotic null distribution of our proposed WGLR test statis-

tic is independent of nuisance functions. Write
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A0(u) =

(
A10(u)

A20(u)

)
, A(u) =

(
A1(u)

A2(u)

)
, Xk =

(
X

(1)
k

X
(2)
k

)
,

where A10(u),A1(u), and X
(1)
k are p1(< p)-dimensional. First, we test the hy-

pothesis

H0b : α = α0,A1 = A10 versus H1b : α ̸= α0 or A1 ̸= A10, (2.5)

with A2(·) completely unknown. Following the same derivation, the logarithm
of the generalized likelihood ratio statistic is

λnb = ln(H1b)− ln(H0b) =
φ−1/2τ−1

n+ 1

∑∑
i≤j

(|ε̂bi + ε̂bj | − |ε̂i + ε̂j |), (2.6)

where ε̂bk = Yk−α0(Uk)−A10(Uk)
TX

(1)
k − Â

b

2(Uk)
TX

(2)
k and Â

b

2(Uk) is the local
linear Walsh-average estimator at Uk when (α0,A10) is given. Let µnb and σnb
be the same as µna and σna, except replacing p by p1.

Theorem 3. Suppose (A1)−(A6) and (A4′) hold. Then, under H0b, σ
−1
nb (λnb −

µnb)
d→N(0, 1).

Next, we consider the hypothesis

H0c : A2 = A20 versus H1c : A2 ̸= A20, (2.7)

when both α(·) and A1(·) are unknown. We show that the assumption of the
symmetric error distribution is not required in this situation. We define an
“asymmetric” constant c which satisfies P (εi − c + εj − c ≥ 0) = 1/2, and
δ =

∫
g(2c − t)g(t)dt, ψ =

∫
{1/2 − G(2c − ε)}2dG(ε). Here c = 0, φ = ψ and

τ2 = ψδ−2 if the error is symmetrically distributed. When not symmetric, the
artificial likelihood function (2.1) is modified to

LR(x; θ) ∝ exp{−ψ−1/2δRn(x− θ)}. (2.8)

Then, the generalized artificial log-likelihood under H0c and H1c is

ln(H0c) = −ψ−1δ

n+ 1

∑∑
i≤j

|ε̂ci + ε̂cj |, ln(H1c) = −ψ−1δ

n+ 1

∑∑
i≤j

|ε̂i + ε̂j |,

respectively, where ε̂ci = Yi−α̂c(Ui)−Â
c

1(Ui)
TX

(1)
i −A20(Ui)

TX
(2)
i and (α̂c(Ui),

Â
c

1(Ui)
T )T is the local linear Walsh-average estimator at Ui when A20 is given.

Now, the WGLR statistic is

λnc = ln(H1c)− ln(H0c) =
ψ−1δ

n+ 1

∑∑
i≤j

(|ε̂ci + ε̂cj | − |ε̂i + ε̂j |). (2.9)

Let µnc and σnc be the same as µna and σna, except replacing (p+1) by p2.
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Theorem 4. Suppose (A1)−(A6) hold. Then, under H0u, σ
−1
nc (λnc−µnc)

d→
N(0, 1).

Since Â(·) is consistent even without the symmetric assumption, (A4′) is
not needed; see Shang, Zou, and Wang (2012). It seems that ψ−1/2δ is neces-
sary for constructing λnc, however, using the implementation suggested in the
next subsection can circumvent this difficulty. Moreover, based on this theorem,
we can readily extend our WGLR to model diagnostics under a wide range of
distributions. See more details in Section 2.5.

2.4. Implementation

In specification testing problem the rate of convergence of the distribution
of the test statistic is usually rather slow; see, e.g., Hall and Hart (1990), Zhang
(2003), and Fan and Zhang (2004). For this reason, we propose the application
of a resampling procedure based on the bootstrap (see Härdle and Mammen
(1993)). The finite sample properties of the resulting tests are then investigated
by means of a simulation study. For the hypothesis (1.2) for example, we obtain
the bootstrap sample

Y ∗
i = α0(Ui) +A0(Ui)

TXi + ε∗i ,

where {ε∗i }ni=1 is a sample drawn from {ε̂i}ni=1. A bootstrap test statistic λ∗na
is built from the bootstrap sample {(Xi, Ui, Y

∗
i )}ni=1, as was the original test

statistic in (2.4). When this procedure is repeated many times, the bootstrap
critical value z∗α is the empirical 1 − α quantile of the bootstrap test statistic.
Then the null hypothesis H0a is rejected if λna ≥ z∗α.

Theorem 5. If (A1)−(A6) and (A4′) hold, then

sup
z∈R

|P (T ∗
h ≤ z|{Xi, Ui, Yi, i = 1, . . . , n})− P (N(0, 1) ≤ z)| p→ 0,

where T ∗
h = σ−1

na (λ
∗
na − µna).

Here the Wilcoxon parameter τ and the constant φ do not matter in the
bootstrap procedure because both λ∗na and λna are using the same τ and φ. Thus,
in practice, we do not need to estimate them in calculating the test statistics if we
use the bootstrap method to compute p-values rather than using the asymptotic
distribution.

Similarly, for the hypothesis (2.5) or (2.7), the bootstrap sample can be
generated by

Y ∗
i =α0(Ui) +A10(Ui)

TX
(1)
i + Â

b

2(Ui)
TX

(2)
i + ε∗i ,

Y ∗
i =α̂c(Ui) + Â

c

1(Ui)
TX

(1)
i +A20(Ui)

TX
(2)
i + ε∗i ,

respectively. The effectiveness of this bootstrap method is studied by simulation
in Section 3.1.
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2.5. Model diagnostics

Consider the composite null hypothesis testing problem

H0d : (α,AT ) ∈ A0 versus H1d : (α,AT ) ̸∈ A0, (2.10)

where A0 is a set of functions. The WGLR test statistic can be constructed as

(2.9) and as in the proof of Theorem 4, its asymptotic representation can be

accordingly derived.

2.5.1. Testing linearity

Consider the nonparametric regression model y = m(x) + ε, and the testing

linearity problem (Zheng (1996); Wang and Qu (2007))

H0g : m(x) = α0 + α1x versus H1g : m(x) ̸= α0 + α1x, (2.11)

where α0, α1 are unknown parameters. The WGLR test statistic of (2.11) is

λng =
ψ−1δ

n+ 1

∑∑
i≤j

(|ε̂gi + ε̂gj | − |ε̂i + ε̂j |),

where ε̂gi = Yi−α̂0−α̂1Xi, ε̂i = Yi−m̂(Xi), m̂(·) is the local linear Walsh-average

estimator for m(·) (Feng, Zou, and Wang (2012)), and

(α̂0, α̂1) = argmin
2

n(n+ 1)

∑∑
i≤j

|Yi + Yj − 2α0 − α1(Xi +Xj)|.

Corollary 1. Suppose (A1)−(A6) hold. Then, under H0g, σ
−1
ng (λng −µng)

d→
N(0, 1), where µng and σng are the same as µna, and σna, except p = 0.

When the parametric function mθ(x) in the null hypothesis in (2.11) is not

linear/polynomial (with parameter θ), a local linear/polynomial fit results in a

biased estimate under the null hypothesis. This bias problem can be significantly

attenuated by the bias-correction advocated by Fan and Zhang (2004) and Fan

and Jiang (2005). We reparameterize the unknown functions as m∗(x) = m(x)−
m

θ̂
(x) and then change the null hypothesis into H ′

0g : m∗(x) = 0. This also

applies as well to the proposed procedure.

2.5.2. Testing homogeneity

A natural question in applying (1.1) is whether the coefficient functions are

really varying (Fan, Zhang, and Zhang (2001)). This amounts to testing

H0h : α(U) = β0, ai(U) = βi, i = 1, . . . , p versus

H1h : α(U) ̸= β0 or a1(U) ̸= β1 or a2(U) ̸= β2 . . . or ap(U) ̸= βp,
(2.12)
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where βi, i = 0, . . . , p are some unknown parameters. We define the residuals

ε̂hi = Yi − β̂0 −Xi(β̂1, . . . , β̂p)
T , where (β̂0, β̂1, . . . , β̂p) are the solutions of

argmin
2

n(n+ 1)

∑∑
i≤j

|Yi + Yj − 2β0 − (Xi +Xj)(β1, . . . , βp)
T |.

The WGLR test statistic for (2.12) is

λnh =
ψ−1δ

n+ 1

∑∑
i≤j

(|ε̂hi + ε̂hj | − |ε̂i + ε̂j |),

where ε̂i is exactly the same as that defined in (2.4).

Corollary 2. Suppose (A1)−(A6) hold. Then, under H0h, σ
−1
na (λnh − µna)

d→
N(0, 1).

Corollaries 1 and 2 do not need (A4′) is not needed because in them the

intercept term is a nuisance parameter and would be “profiled” out, as in the

construction of λnc. Due to the slow convergence rate of the distribution of

test statistic, we also adopt the bootstrap method in Section 2.4 to control the

empirical size. For hypotheses (2.11) and (2.12), we generate the bootstrap

sample by

Y ∗
i = α̂0 + α̂1Xi + ε̂∗i ,

Y ∗
i = β̂0 +Xi(β̂1, . . . , β̂p)

T + ε̂∗i ,

respectively, where ε̂∗i is a bootstrap sample drawn from the corresponding non-

parametric residuals {ε̂i}ni=1. As Theorem 5, we can establish the convergence of

these bootstrap approximations.

2.6. Heteroscedasticity case

We extend our WGLR test to the heteroscedasticity case. Here we only

consider the problem (1.2) with the varying-coefficient model

Y = α(U) +A(U)TX + ϱ(U)ε,

where ϱ(U) is a positive continuous function and
∫
u∈Ω ϱ

2(u)du = 1. Let ρ(u) =

ϱ(u)τ and then

Yi − α(Ui)−A(Ui)
TXi

ρ(Ui)
=
ϱ(Ui)εi
ρ(Ui)

= τ−1εi.

Thus, the WGLR test statistic in the heteroscedasticity case can be defined as

λna = ln(H1a)− ln(H0a) =
φ−1/2

n+ 1

∑∑
i≤j

(∣∣∣∣ ε̂ai
ρ̂(Ui)

+
ε̂aj

ρ̂(Uj)

∣∣∣∣− ∣∣∣∣ ε̂i
ρ̂(Ui)

+
ε̂j

ρ̂(Uj)

∣∣∣∣) ,
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where ρ̂(u) is a ratio-consistent estimator of ρ(u). We suggest the use of

ρ̂−1(u) =
φ−1/2

2n2tnf̂2(u)

n∑
i=1

n∑
j=1

I(|ε̂i + ε̂j | ≤ tn)Kh(Ui − u)Kh(Uj − u), (2.13)

where f̂(u) = n−1
∑n

i=1Kh(Ui − u). To establish the asymptotic distribution of

λna, we need additional assumptions.

(A7) The conditional variance function ϱ(u) is continuous for all u ∈ Ω.

(A8) The bandwidth tn satisfies tn → 0 and nh2tn → ∞.

Proposition 1. If (A1)−(A8) and (A4′) hold, we have ρ̂(u)
p→ ρ(u), u ∈ Ω.

Re-define d2na, σ
∗
na in Theorem 2 by replacing τ2 by ρ2(Ui).

Theorem 6. If (A1)−(A8) and (A4′) hold,

(i) under H0a, we have (λna − µna)/σna
d→N(0, 1);

(ii) under H1a, we have (λna − µna − d2na)/σ
∗
na

d→N(0, 1).

Theorem 6 shows that the Wilks phenomenon still holds for λna in the het-

eroscedasticity case. The null distribution of λna is also independent of the

variance function ϱ(u). Here we also adopt the bootstrap method to determine

the critical values. In this case, the bootstrap sample is generated by

Y ∗
i = α̂(Ui) + Â(Ui)

TXi + ρ̂(Ui)ε
∗
i ,

where {ε∗i }ni=1 is a bootstrap sample drawn from {êi}ni=1, êi = (Yi − α̂(Ui) −
Â(Ui)

TXi)/ρ̂(Ui).

3. Simulation Study

Throughout this section, for each experiment we run 1,000 replications with

bootstrap resampling number set to 400. We take nominal level 5% in each case.

Some results are provided in an on-line supplemental file.

3.1. Testing a simple hypothesis

Consider the simple nonparametric regression model Yi = m(Xi) + ε, where

Xi are uniformly distributed with the testing problem

H0 : m(x) = 0 versus H1 : m(x) ̸= 0. (3.1)

Three symmetric distributions of errors are considered: (a) εi ∼ N(0, 1); (b)

εi ∼ t(3); (c) εi ∼ T (0.05, 10). Here t(3) and T (0.05; 10) denote the standardized
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Student-t distribution with four degrees of freedom and the standardized Tukey’s

contaminated normal model, respectively. The empirical sizes of our WGLR

test are summarized in Table 1 for sample sizes, n = 25, 50, and 100, with the

smoothing parameters h = 0.12, 0.15, 0.18, and 0.21. From Table 1, we observe

that all the sample sizes are close to the specified nominal level in most cases.

Next, we compare the power of WGLR with that of other tests. The GLR

test suggested by Fan, Zhang, and Zhang (2001) is a natural benchmark. In

addition, Zheng’s (1996) and Wang and Qu’s (2007) tests are included in this

comparison. Hong and Lee (2013) proposed a test based on loss functions, which

measure discrepancies between the null and nonparametric alternative models.

Their test, abbreviated as LOSS, is asymptotically more powerful than the GLR

test in terms of Pitman’s efficiency criterion. Pitman’s AREs of LOSS with

respect to GLR are reported in Table A.1. The bandwidth h is of the order of

n−2/9 as in Hong and Lee (2013). The ARE values in this table are different

from those in Table 1 of Hong and Lee (2013); there are some errors in their

calculations. We observe that the WGLR is asymptotically more powerful than

LOSS for the heavy-tailed distributions. To gain more insight, we include LOSS

in this finite-sample comparison. The two parameters in the linex function are

chosen as 1 because Hong and Lee (2013) demonstrated that the power of LOSS

is not sensitive to the choice of parameters.

For a fair comparison, we performed a size-corrected power comparison in

the sense that the actual critical values are found through simulations so that all

the five tests had accurate sizes in each case. In order to study the power of each

test, we considered different function forms

(I) m(x) = 0.3; (II) m(x) = 0.7x; (III) m(x) = 0.7 cos(3πx);

(IV) m(x) = 0.7 sin(2πx); (V) m(x) =
(sin(3πx) + x)

2
; (VI) m(x) =

exp(x)

4
.

We chose the Gaussian kernel and fixed the bandwidth h = 0.15 for all the tests.

To avoid the effect of degrees of local polynomial fit, the local linear smoother was

employed in both GLR and LOSS. The simulated power with different errors and

sample sizes n = 25, 50 is displayed in Table 2. We observe that the WGLR test

generally performs better than the least square-based methods, the GLR, LOSS

and Zheng’s methods, when the error deviates from the normal. Even in the

normal cases, the WGLR has similar performance to those tests. The WQ test

cannot detect the constant shift of the function, as we have mentioned before

(the results for Scenario I). Under Scenarios (II), (V) and (VI), the WQ test

is generally outperformed by the other three tests; the others have asymptotic

power depending on E[m(x)]2, where the asymptotic power of WQ test is a

function of E{m(x)−E[m(x)]}2 (Theorem 3 in Wang and Qu (2007)).
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Table 1. Simulated level (%) of test on testing (3.1) with homoscedastic
error.

n = 25 n = 50 n = 100
h (a) (b) (c) (a) (b) (c) (a) (b) (c)

0.12 8.2 7.8 6.0 7.4 6.5 5.3 4.3 5.1 4.7
0.15 7.9 6.2 5.3 6.3 7.0 6.8 5.2 6.1 4.7
0.18 5.3 5.3 4.3 6.0 5.3 5.7 4.9 5.8 4.8
0.21 6.0 5.7 4.0 5.5 5.8 6.2 5.3 4.6 5.7

Table 2. Empirical power (%) of tests on testing (3.1) with homoscedastic
error. WQ, Zheng and LOSS stand for the tests of Wang and Qu (2007),
Zheng (1996), and Hong and Lee (2013), respectively.

n = 25 n = 50
Models WGLR GLR WQ Zheng LOSS WGLR GLR WQ Zheng LOSS

N(0, 1) (I) 24 19 5.6 25 28 46 35 4.9 45 47
(II) 38 28 14 35 45 67 58 23 65 68
(III) 27 28 26 15 20 52 58 53 33 34
(IV) 34 36 53 41 31 67 76 87 77 65
(V) 45 37 23 38 52 78 71 44 70 77
(VI) 47 36 8.9 43 54 79 68 11 75 80

t(3) (I) 45 25 6.3 34 32 74 42 7.2 53 50
(II) 60 41 20 45 52 92 61 43 73 75
(III) 48 40 35 23 24 87 69 83 47 46
(IV) 58 51 67 59 47 92 78 98 84 76
(V) 71 47 35 52 59 96 79 73 78 80
(VI) 75 47 09 60 60 98 73 20 83 84

T (0.05, 10) (I) 82 40 6.3 60 53 100 55 7.1 68 60
(II) 95 54 45 71 66 100 67 75 80 73
(III) 88 53 74 46 44 100 70 98 69 52
(IV) 96 62 97 74 65 100 76 100 85 74
(V) 97 60 68 70 71 100 76 97 83 82
(VI) 98 60 20 78 73 100 72 37 84 84

In Appendix D of the supplemental file, we report on a simulation study un-

der the same settings for the heteroscedasticity case. The comparison conclusions

are similar to the findings above.

3.2. Testing linearity

Consider the linear model

Yi = 1 + 2Xi + εi, i = 1, . . . , n,

where the covariate Xi’s are uniformly distributed on (0, 1). Four distributions

of errors were considered: (a) N(0, 1); (b) t(3); (c) LN(0, 1); (d) T (0.05, 10),
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where LN(0, 1) denotes the standardized log-normal distribution. The empirical

sizes of the WGLR test are summarized in Table A.4 for n = 60, and 100, and

smoothing parameters h = 0.06, 0.09, 0.12, and 0.15. The empirical sizes are

slightly larger than the nominal level when the bandwidth h is small, but are

quite close to the nominal level when the bandwidth h gets larger. In general,

we observe a reasonable approximation of the level by the bootstrap procedure

in all cases. The levels of test are insensitive to the distribution of errors.

Consider the alternative hypotheses

(I) Logarithm Alternative. Yi = 1−Xi + θ log(Xi) + εi;

(II) Square Alternative. Yi = 1−Xi + θ
√
Xi + εi.

The size-corrected power curves against θ for these alternative models with

n = 60 and h = 0.09 are displayed in Figure 1 and Figure A.1 in Appendix

E, respectively. Our proposed test generally has better efficiency than the GLR,

LOSS, and Zheng’s tests for the non-normal cases. The WQ test has some ad-

vantage oven WGLR for the asymmetric error (lognormal), while the WGLR

performs better in the three symmetric cases.

3.3. Testing homogeneity

Consider the varying-coefficient model:

Yi = X1iβ1(Ui) +X2iβ2(Ui) +X3iβ3(Ui) + εi,

where Ui is uniform, the Xi = (X1i, X2i, X3i) are the multivariate normal distri-

bution N(0,Σ), Σ = (0.5|i−j|)1≤i,j≤3, and

β1(Ui) = 1 + θU2
i , β2(Ui) = 1.5, β3(Ui) = −0.5 + θ

√
Ui.

Table A.5 reports the empirical sizes (θ = 0) of WGLR with the same settings as

in Table A.4. Figures 2 and Figure A.2 report the simulated size-corrected power

curves of the WGLR and GLR tests for different errors with n = 60, and 100,

respectively. The performance of bootstrap procedure in testing homogeneity is

similar to that in testing linearity. The actual level can approximately attain the

nominal level in most cases; there is some deviation when the bandwidth is very

small. The simulated level is insensitive to the distribution of errors, which again

demonstrates the robustness of the proposed procedure. Regarding power, the

WGLR test performs better than the GLR test for the non-normal distributions,

as expected.

These results suggest that the WGLR test is quite robust and efficient in

nonparametric testing.
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Figure 1. Simulated power curves of logarithm alternative on testing linear-
ity. The legend in the first plot is applicable for all the others.

Figure 2. Simulated power curves on testing homogeneity with n = 60, h =
0.09.
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Table 3. Test results for plasma beta-carotene level data.

Covariate GLR WGLR
dietary beta-carotene 0.000 (+) 0.000 (+)
Sex 0.265 (−) 0.048 (+)
Quetelet index 0.001 (+) 0.000 (+)
Calories 0.649 (−) 0.000 (+)
Fat 0.053 (−) 0.017 (+)
Fiber 0.037 (+) 0.000 (+)
Alcohol 0.593 (−) 0.689 (−)
Cholesterol 0.507 (−) 0.002 (+)
Smoking status (1=never) 0.261 (−) 0.000 (+)
Smoking status (2=former) 0.148 (−) 0.016 (+)
Vitamin use (1=yes, fairly often) 0.001 (+) 0.000 (+)
Vitamin use (2=yes, not often) 0.346 (−) 0.078 (−)

Note: “+” means rejection and“–” means acceptance at %5 level.

4. A Data Application

We applied the proposed methodology to the plasma beta-carotene level

data set collected by a cross-sectional study (Nierenberg et al. (1989)). The

data is available from the StatLib database via the link lib.stat.cmu.edu/

datasets/Plasma_Retinol. Of interest are the relationships between the plasma

beta-carotene level (Y ) and the covariates (X) listed in Table 3. We fit the

data by using the varying coefficient model with U being “Age”. The covariates

“smoking status” and “vitamin use” are categorical and are thus replaced with

dummy variables. The covariates, Y and U are standardized. Figure A.3 shows

the normal QQ-plot of residuals obtained by using local linear Walsh-average

estimation (Shang, Zou, and Wang (2012)). This figure clearly indicates that the

errros are not normal. Then, we applied GLR and our WGLR to test whether

each varying coefficient function is zero, respectively.

We adopted the Epanechnikov kernel and the bandwidth was h = 2.38 ×
sd(U) × n−2/9. Table 3 reports the test results at the significant level 0.05.

Both tests found that the varying coefficient functions of dietary beta-carotene,

Quetelet index, Fiber, Vitamin use (1=yes, fairly often) are not zero. However,

our WGLR test also suggests that Sex, Calories, Fat, Cholesterol and Smoking

status are important variables. To confirm whether the selected covariates are

truly relevant, we plotted the estimators of each function and their 95% pointwise

confidence intervals in Figure A.4. We found that the confidence intervals of those

covariates selected by WGLR do not completely cover 0. This result may reflect,

to a degree, that our WGLR would be more powerful and robust than GLR for

the heavy-tailed distributions.

lib.stat.cmu.edu/datasets/Plasma_Retinol
lib.stat.cmu.edu/datasets/Plasma_Retinol
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5. Discussion

The data-driven bandwidth methods that are well suited for producing visu-

ally smooth estimates of the underlying curves may not in general be appropriate

for the testing problem. Some efforts have been devoted to construct “semi-data-

driven” nonparametric methods, such as Horowitz and Spokoiny (2001). An on-

going effort of the authors is to develop a method integrating a “data-driven”

adaptive smoothing parameter selection method to make the test nearly opti-

mal in a certain sense. We can extend the WGLR test to some other popular

nonparametric models, such as additive and single-index models.
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Appendix

Appendix A: Some discussions on two modifications of WGLR tests

In constructing λna, both the “likelihood” function and local smoother are of Wilcoxon-
type and come from (2.2). If we replace the local linear estimators in (1.3) by the local
linear Walsh-average estimators and denote the resulting test statistic as ωna, i.e.,

ωna =
n

2

(
log

n∑
i=1

ε̂a2i − log
n∑

i=1

ε̂2i

)
(A.1)

Similar to Theorems 1-2, we can establish the asymptotic normality of ωna.

Theorem 7 (i) Suppose the conditions in Theorem 2 hold. Under H0, we have

(ωna − µωna)/σωna
d→N(0, 1),

where

µωna =
1

h
(p+ 1)|Ω|

(
K(0)σ−2ζ2 − 1

2

∫
K2(t)dt

)
, ζ2 = φ−1/2τ

∫
xG(−x)dG(x),

σ2
ωna =2h−1σ−2τ2(p+ 1)|Ω|

(∫
K2(t)dt− σ−2ζ2

∫
K(t)K ∗K(t)dt

+
1

4
σ−2τ2

∫
(K ∗K)2(t)dt

)
;

(ii) Suppose the conditions in Theorem 2 hold. under H
′

na, we have

[ωna − µωna − σ−2τ2d2na]/σ
∗
ωna

d→N(0, 1),

where σ∗2
ωna = σ2

ωna + σ−2h−1E[G(U)TWWTG(U)].

This theorem implies that the power of ωna is

βωna = Φ

(
− σωna√

σ2
ωna + nσ−2B(G)

zα +
2−1nσ−2B(G)√
σ2
ωna + nσ−2B(G)

)
.

It is difficult to calculate the ARE of ωna with respect to the GLR test under the general
cases. For convenience, we choose the same bandwidth for ωna and GLR and then

ARE(ωna,GLR)

=
στ−1

(∫ {
K(t)− 1

2K ∗K(t)
}2
dt
)1/2

(∫
K2(t)dt− σ−2ζ2

∫
K(t)K ∗K(t)dt+ 1

4σ
−2τ2

∫
(K ∗K)2(t)dt

)1/2 .
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Table A.1 shows the ARE of ωna, LOSS (Hong and Lee 2013) and WGLR with
respect to GLR for a number of distributions and kernel functions. We observe that
ARE(ωna,GLR)’s are similar for different kernels and generally much smaller than
ARE(WGLR,GLR) for heavy-tailed distribution. To a certain extent, ωna can be viewed
as some compromise between the GLR and WGLR tests. Moreover, if the local linear
Walsh-average estimators in (2.4) are replaced by the local linear estimators, similar
results to those in Table A.1 can be obtained.

Table A.1: The asymptotic efficiency comparisons of ωna and WGLR. t(d): student’s
t-distribution with d degrees of freedom. T (ρ, σ):Tukey contaminated normal with CDF
F (x) = (1− ρ)Φ(x) + ρΦ(x/σ) where ρ ∈ [0, 1] is the contamination proportion.

Epanechnikov Biweight Triweight Gaussian
ARE(LOSS,GLR)

1.46 1.46 1.46 1.49
Errors ARE(ωna,GLR) ARE(WGLR,GLR)
N(0, 1) 0.99 0.99 0.99 0.99 0.96
t(3) 1.16 1.16 1.16 1.16 1.90
t(4) 1.07 1.07 1.07 1.07 1.40
T (0.05, 10) 1.59 1.58 1.58 1.59 4.77
T (0.10, 10) 1.88 1.87 1.87 1.89 7.19
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Appendix B: Proof of Theorem 6

Here we only provide the proof of Theorem 6. Obviously, Theorem 1 and 2 are the
special cases of Theorem 6 with ϱ2(x) = 1. Let rn = 1/

√
nh. For ease of illustration, we

need some notations:

ξi = φ−1/2ρ(Ui){G(−εi)− 1/2}, w0 =

∫ ∫
t2(s+ t)2K(t)K(s+ t)dtds,

Rn10 =
1√
n

n∑
i=1

ξi(α
′′
0(Ui) +A′′

0(Ui)
TXi)

∫
t2K(t)dt(1 +O(h) +O(n−1/2)),

Rn20 =
1

2

1√
n

n∑
i=1

ξiα
′′
0(Ui)w0.

Rn30 =
1

8
E[α′′

0(Ui)
2 +A′′

0(Ui)
TXXTA′′

0(Ui)]w0(1 +O(n−1/2)),

αn(u0) = r2nΓ(u0)
−1

n∑
i=1

ηiW iK((Ui − u0)/h), c = (c,01×p)
T ,Γ(u) = Σ(u)f(u),

Rn(u0) = r2n

n∑
i=1

Γ(u0)
−1

(
α(Ui)− β(u0)

TV i(u0) +A(Ui)
TXi − γ(u0)

TZi(u0)

)
W iK((Ui − u0)/h),

R1n =

n∑
k=1

ξkRn(Uk)
TWk/ρ

2(Uk), R2n =

n∑
k=1

αn(Uk)
TWkW

T
k Rn(Uk)/ρ

2(Uk),

R3n =
1

2

n∑
k=1

Rn(Uk)
TWkW

T
k Rn(Uk)/ρ

2(Uk).

Lemma 1 Let Â be the local linear Walsh-average estimator. Then, under conditions
(A1)-(A5), uniformly for u0 ∈ Ω,

(α̂(u0), Â(u0)
T )T − (α(u0),A(u0)

T )T = c+ (αn(u0) +Rn(u0))(1 + op(1)),

and under condition (A4′), c = 0 and ηi = ξi, i = 1, . . . , n.

Proof. From Shang et al. (2012), we can easily obtain the result. �

Proof of Theorem 6 By Proposition 1, the estimators ρ̂k(x) is consistent. Note that
under H0a, ε̂

a
i = εi. Thus, by Slutsky’s theorem, we only need to consider the asymptotic

property of

λna =
φ−1/2

n+ 1

∑∑
i≤j

(|τ−1εi + τ−1εj | − |ρ−1(Ui)ε̂i + ρ−1(Uj)ε̂j |)

=
φ−1/2

n+ 1

∑∑
i≤j

(
|τ−1εi + τ−1εj | − |τ−1εi + τ−1εj + ϕij)|

)
,
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where ϕij = ρ−1(Ui)(α(Ui)−α̂(Ui)+A(Ui)
TXi−Â(Ui)

TXi)+ρ
−1(Uj)(α(Uj)−α̂(Uj)+

A(Uj)
TXj − Â(Uj)

TXj). By using the identity

|z| − |z − y| = ysgn(z) + 2(z − y){I(0 < z < y)− I(y < z < 0)}

which holds for z ̸= 0, we have

λna =

(
− φ−1/2

n+ 1

∑∑
i≤j

ϕijsgn(εi + εj) +
2φ−1/2τ−1

n+ 1

∑∑
i≤j

(τ−1(εi + εj) + ϕij)

×
{
I(0 < τ−1(εi + εj) < −ϕij))− I(−ϕij < τ−1(εi + εj) < 0)

})
.
=Ah −Bh.

Firstly, we consider Ah. By Lemma 1, we have

Ah =

(
− φ−1/2

n+ 1

∑∑
i≤j

(
Rn(Ui)

TW i/ρ(Ui) +Rn(Uj)
TW j/ρ(Uj)

)
sgn(εi + εj)

− φ−1/2

n+ 1

∑∑
i≤j

(
αn(Ui)

TW i/ρ(Ui) +αn(Uj)
TW j/ρ(Uj)

)
sgn(εi + εj)

)
(1 + op(1))

.
=(Ch +Dh)(1 + op(1)).

Firstly, note that Dh

φ−1/2

n+ 1

∑∑
i≤j

(
αn(Ui)

TW i/ρ(Ui) +αn(Uj)
TW j/ρ(Uj)

)
sgn(εi + εj)

=

n∑
i=1

αn(Ui)
TW i/ρ(Ui)

∑∑
j ̸=i

φ−1/2

n+ 1
sgn(εi + εj)

+
φ−1/2

n+ 1

n∑
i=1

αn(Ui)
TW isgn(εi)/ρ(Ui)

=

n∑
i=1

αn(Ui)
TW iξi/ρ

2(Ui) + op(h
−1/2),

where the last equality holds because of the facts that

∑∑
j ̸=i

φ−1/2

n+ 1
sgn(εi + εj) = φ−1/2(G(εi − 0.5)) + op(n

−1/2),

E

(
φ−1/2

n+ 1

n∑
i=1

αn(Ui)
TW isgn(εi)/ρ(Ui)

)
= O

(
1

nh

)
= o(h−1/2),

var

(
φ−1/2

n+ 1

n∑
i=1

αn(Ui)
TW isgn(εi)/ρ(Ui)

)
= O

(
1

n
+

1

n2h

)
= o(h−1).
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Similarly, we can prove that

φ−1/2

n+ 1

∑∑
i≤j

(
Rn(Ui)

TW i/ρ(Ui) +Rn(Uj)
TW j/ρ(Uj))

)
sgn(εi + εj)

=
n∑

i=1

Rn(Ui)
TW iξi/ρ

2(Ui) + op(h
−1/2).

Thus,

Ah =

n∑
i=1

αn(Ui)
TW iξi/ρ

2(Ui) +

n∑
i=1

Rn(Ui)
TW iξi/ρ

2(Ui) + op(h
−1/2).

Next, we consider Bh which can be written as

Bh =− 2φ−1/2

n+ 1

∑∑
i≤j

(τ−1(εi + εj) + ϕij)I(0 < τ−1(εi + εj) < −ϕij))

+
2φ−1/2

n+ 1

∑∑
i≤j

(τ−1(εi + εj) + ϕij)I(−ϕij < τ−1(εi + εj) < 0)

.
=Eh + Fh.

On the set {ϕij < 0} and conditional on {Xi, Ui},

E(Eh) = −2φ−1/2

n+ 1

∑∑
i≤j

∫ ∫ −ϕij−y

−y

(τ−1(x+ y) + ϕij)g(x)g(y)dxdy

=
2φ−1/2

n+ 1

∑∑
i≤j

∫
1

2
τ2ϕ2ijg

2(y)dy +O(n−1/2h−3/2)

=
1

n+ 1

∑∑
i≤j

ϕ2ij + o(h−1/2)
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and var(Eh) = O(n−1h−2) = o(h−1). Similarly, on the set {ϕij > 0}, E(Fh) =
1

n+1

∑∑
i≤j

ϕ2ij + o(h−1/2) and var(Eh) = O(n−1h−2) = o(h−1). Thus,

Bh =
1

n+ 1

∑∑
i≤j

((
(αn(Ui) +Rn(Ui))

TW i

)
/ρ(Ui)

+ ((αn(Uj) +Rn(Uj))
TW j)/ρ(Uj)

)2

+ op(h
−1/2)

=
1

2

n∑
i=1

(αn(Ui)
TW i)

2/ρ2(Ui) +
1

2

n∑
i=1

(Rn(Ui)
TW i)

2/ρ2(Ui)

+
n∑

i=1

Rn(Ui)
TW iW

T
i αn(Ui)/ρ

2(Ui)

+
1

n+ 1

∑∑
j ̸=i

αn(Ui)
TW iαn(Uj)

TW j/ρ(Ui)/ρ(Uj)

+
1

n+ 1

∑∑
j ̸=i

Rn(Ui)
TWiRn(Uj)

TW j/ρ(Ui)/ρ(Uj)

+
1

n+ 1

∑∑
j ̸=i

αn(Ui)
TW iRn(Uj)

TW j/ρ(Ui)/ρ(Uj) + op(h
−1/2).

After calculating the expectation and variance of the last three sums, we can prove that

1

n+ 1

∑∑
j ̸=i

αn(Ui)
TW iαn(Uj)

TW j/ρ(Ui)/ρ(Uj) = Op(1 + (nh)−1/2 + (nh)−1),

1

n+ 1

∑∑
j ̸=i

Rn(Ui)
TWiRn(Uj)

TW j/ρ(Ui)/ρ(Uj) = Op(h
4 + n−1/2h7/2 + n−1h3),

1

n+ 1

∑∑
j ̸=i

αn(Ui)
TW iRn(Uj)

TW j/ρ(Ui)/ρ(Uj) = Op(h
2 + n−1/2h3/2 + n−1h),

and accordingly,

Bh =
1

2

n∑
i=1

(αn(Ui)
TW i)

2/ρ2(Ui) +
1

2

n∑
i=1

(Rn(Ui)
TW i)

2/ρ2(Ui)

+

n∑
i=1

Rn(Ui)
TW iW

T
i αn(Ui)/ρ

2(Ui) + op(h
−1/2).

This leads to

λna =

n∑
i=1

αn(Ui)
TW iξi/ρ

2(Ui)−
1

2

n∑
i=1

(αn(Ui)
TW i)

2/ρ2(Ui)

+Rn1 −Rn2 −Rn3 + op(h
−1/2).



S8 LONG FENG, ZHAOJUN WANG, CHUNMING ZHANG AND CHANGLIANG ZOU

Taking the same procedure as Lemma 7.2 in Fan et al. (2001), we can show that

Rn1 = n1/2h2Rn10 +O(n−1/2h),

Rn2 = n1/2h2Rn20 +O(n−1/2h),

Rn3 = nh4Rn30 +O(h3).

Also, similar to Lemma 7.4 in Fan et al. (2001), it can be verified that

n∑
i=1

αn(Ui)
TW iξi/ρ

2(Ui) =
1

h
(p+ 1)K(0)Ef(U)−1

+
1

n

∑∑
j ̸=i

ρ−1(Ui)ρ
−1(Uj)ξiξjW

T
i Γ(Uj)

−1W jKn(Ui − Uj) + op(h
−1/2),

n∑
i=1

(αn(Ui)W
T
i )

2/ρ2(Ui) =
1

h
(p+ 1)Ef(U)−1

∫
K2(t)dt

+
2

nh

∑∑
i<j

ρ−1(Ui)ρ
−1(Uj)ξiξjW

T
i Γ

−1(Ui)K ∗K((Ui − Uj)/h)W j + op(h
−1/2).

Thus, λna = µna − d1na + W (n)h−1/2/2 + op(h
−1/2), where d1na = τ−2[nh4R30 −

n1/2h2(Rn10 −Rn20)] = Op(nh
4 + n1/2h2) = op(h

−1/2) and

W (n) =

√
h

n

∑∑
j ̸=i

ρ−1(Ui)ρ
−1(Uj)ξiξj [2Kh(Ui − Uj)−Kh ∗Kh(Ui − Uj)]W

T
i Γ(Uj)

−1W j

=

√
h

n

∑∑
j ̸=i

ζiζj [2Kh(Ui − Uj)−Kh ∗Kh(Ui − Uj)]W
T
i Γ(Uj)

−1W j

where ζi = ρ−1(Ui)ξi = φ−1/2τ(G(εi)− 0.5). It remains to show that

W (n)
d→N(0, v)

with v = 2||2K − K ∗ K||22(p + 1)Ef(U)−1. Similar to Fan et al. (2001), by applying
Theorem 2 in De Jong (1987), we can easily obtain the result.

Under H ′
1a and by similar arguments as above, it can be checked that

λna =µna + d2na −W (n)h−1/2/2

−
n∑

i=1

h−1/2GT (Ui)W iξi/ρ
2(Ui) + op(h

−1/2),

Then we can obtain the assertion. �
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Appendix C: Proofs of other theorems

Proof of Proposition 1 By Fan and Gijbels (1996), we can easily show that f̂(u) =
f(u)(1 + op(1)). Thus, we only need to show that

ρ̃−1(u) =
φ−1/2

2n(n− 1)tnf2(u)

n∑
i=1

n∑
j=1

I(|ε̂i + ε̂j | ≤ tn)Kh(Ui − u)Kh(Uj − u)

is a ratio-consistent estimator of ρ−1(u).

ρ̃−1(u) =
φ−1/2

2n2tnf2(u)

n∑
i=1

n∑
j=1

I(|ϱ(Ui)εi + ϱ(Uj)εj | ≤ tn)Kh(Ui − u)Kh(Uj − u)

+
φ−1/2

2n2tnf2(u)

n∑
i=1

n∑
j=1

(I(|ε̂i + ε̂j | ≤ tn)− I(|ϱ(Ui)εi − ϱ(Uj)εj | ≤ tn))

×Kh(Ui − u)Kh(Uj − u)
.
= Un1 + Un2

Clearly, Un1 = 1
n2

∑n
i=1

∑n
j=1Wn(i, j) is of the form of U -statistic since Un1 is symmetric

in this arguments. Note that

E(W 2
n(i, j)) =

3

t2nf
4(u)

E(I(|ϱ(Ui)εi + ϱ(Uj)εj | ≤ tn)K
2
h(Ui − u)K2

h(Uj − u))

=
3

t2nh
4f4(u)

E

(∫ (
G

(
tn

ϱ(Ui)
− ϱ(Uj)

ϱ(Ui)
ϵ

)
−G

(
− tn
ϱ(Ui)

− ϱ(Uj)

ϱ(Ui)
ϵ

))

× g(ϵ)dϵK2

(
Ui − u

h

)
K2

(
Uj − u

h

))

=

√
3v20

tnτϱ(u)h2f2(u)
(1 + o(1)) = O(t−1

n h−2) = o(n)

where the antepenultimate equality is followed by a simple calculation similar to Parzen
(1962). Thus, Un1 = E(Wn(i, j)) + op(1). Similarly,

E(Wn(i, j)) =
φ−1/2

2tnf2(u)
E(I(|ϱ(Ui)εi + ϱ(Uj)εj | ≤ tn)Kh(Ui − u)Kh(Uj − u))

=
φ−1/2

2tnh2f2(u)
E

(∫ (
G

(
tn

ϱ(Ui)
− ϱ(Uj)

ϱ(Ui)
ϵ

)
−G

(
− tn
ϱ(Ui)

− ϱ(Uj)

ϱ(Ui)
ϵ

))

× g(ϵ)dϵK

(
Ui − u

h

)
K

(
Uj − u

h

))

=
1

ϱ(u)τ
(1 + o(1))



S10 LONG FENG, ZHAOJUN WANG, CHUNMING ZHANG AND CHANGLIANG ZOU

Thus, Un1 = ρ−1(u)+op(1). Similarly, we can show that Un2 = O(h2+(nh)−1/2) = o(1)
by Lemma 1. Thus, ρ̂−1(u) is a ratio-consistent estimator of ρ−1(u).

Proof of Theorem 7 Taking the same procedure as Fan et al. (2001), under H0, we
have

ωna =
n∑

i=1

αn(Ui)
TW iεi/σ

2 − 1

2

n∑
i=1

(αn(Ui)
TW i)

2/σ2

+

n∑
i=1

Rn(Ui)
TW iεi/σ

2 −Rn2/σ
2 −Rn3/σ

2 + op(h
−1/2).

Also, we can verify that

n∑
i=1

αn(Ui)
TW iεi =

1

h
(p+ 1)K(0)ζ2Ef(U)−1

+
1

n

∑∑
j ̸=i

εiξjW
T
i Γ(Uj)

−1W jKn(Ui − Uj) + op(h
−1/2),

n∑
i=1

Rn(Ui)
TW i =n

1/2h2Rωn10 +O(n−1/2h).

Thus,

ωna = µωna +Wω(n)h
−1/2/2 + op(h

−1/2),

where

Wω(n) =
2h1/2

n

∑∑
j ̸=i

σ−2εiξjW
T
i Γ(Uj)

−1W jKn(Ui − Uj)

− 1

nh1/2

∑∑
j ̸=i

σ−2ξiξjW
T
i Γ

−1(Ui)K ∗K((Ui − Uj)/h)W j .

Applying the martingale central limit theorem (Hall and Heyde 1980), we can verify that

Wω(n)
d→N(0, ς),

where

ς =2(p+ 1)Ef(U)−1

(
4σ−2τ2

∫
K2(t)dt− 4σ−4ζ2τ2

∫
K(t)K ∗K(t)dt

+ σ−4τ4
∫

(K ∗K)2(t)dt

)
.

Under H
′

1a and by the similar arguments as above, it can be verified that

ωna =µωna + σ−2τ2d2na −Wω(n)h
−1/2/2

−
n∑

i=1

√
nGT

n (Ui)W iεi/σ
2 + op(h

−1/2),
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from which the assertion follows immediately.

Proof of Theorem 3 Denote

Γ =

(
Γ11 Γ12

Γ21 Γ22,

)
, Γ1,2 = Γ11 − Γ12Γ

−1
22 Γ21,

where Γ11,Γ12,Γ21,Γ22 are (p1+1)×(p1+1), (p1+1)×p2, p2×(p1+1), p2×p2 matrices

and p2 = p− p1. Taking the same procedure as for Â, we have

Â
b

2(u0)−A2(u0) =r
2
nΓ

−1
22 (u0)

n∑
i=1

(
ξi +A2(Ui)

TX
(2)
i − η̄2(u0,X

(2)
i , Ui)

)
×X

(2)
i K((Ui − u0)/h)(1 + op(1)),

where η̄2(u0,X
(2)
i , Ui) = A2(u0)

TX
(2)
i +A′

2(u0)
TX

(2)
i (Ui − u0). Note that λnb = λna −

λ′nb where

λ′nb =
φ−1/2τ−1

n+ 1

∑∑
i≤j

(
|ε̂ai + ε̂aj | − |ε̂bi + ε̂bj |

)
.

Similar to the proof of Theorem 6, under H0b, we have

λ′nbτ
2 =r2n

n∑
i=1

n∑
j=1

ξiξjX
(2)
i

T
Γ−1
22 (Ui)X

(2)
j K((Ui − Uj)/h)

− 1

2
r4n

n∑
i=1

 n∑
j=1

ξjK((Ui − Uj)/h)X
(2)
i

T

Γ−1
22 (Ui)X

(2)
i X

(2)
i

T
Γ−1
22 (Ui)

×

 n∑
j=1

ξjK((Ui − Uj)/h)X
(2)
i

+ op(h
−1/2),

Consequently,

−λnbτ2

= −r2n
n∑

i=1

n∑
j=1

ξiξj

(
W

(1)
j − Γ12(Ui)Γ

−1
22 (Ui)X

(2)
j

)T
Γ−1
1,2(Ui)

×
(
W

(1)
i − Γ12(Ui)Γ

−1
22 (Ui)X

(2)
j

)
K((Ui − Uj)/h)

+
r4n
2

n∑
i=1

n∑
j=1

ξiξj

n∑
k=1

(W
(1)
i − Γ12(Uk)Γ

−1
22 (Uk)X

(2)
i )TΓ−1

1,2(Uk)

× (W
(1)
k − Γ12(Uk)Γ

−1
22 (Uk)X

(2)
k )(W

(1)
k − Γ12(Uk)Γ

−1
22 (Uk)X

(2)
k )T

× Γ−1
1,2(Uk)(W

(1)
j − Γ12(Uk)Γ

−1
22 (Uk)X

(2)
j )

+Rn4 +Rn5 + op(h
−1/2),
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where W
(1)
i = (1,X

(1)
i

T
)T and

Rn4 =
r4n
2

n∑
i=1

n∑
j=1

ξiξj

n∑
k=1

(W
(1)
i − Γ12(Uk)Γ

−1
22 (Uk)X

(2)
i )TΓ−1

1,2(Uk)

× (W
(1)
k − Γ12(Uk)Γ

−1
22 (Uk)X

(2)
k )X

(2)
k

T
Γ−1
22 (Uk)X

(2)
j

×K((Ui − Uk)/h)K((Uj − Uk)/h),

Rn5 =
r4n
2

n∑
i=1

n∑
j=1

ξiξj

n∑
k=1

(W
(1)
j − Γ12(Uk)Γ

−1
22 (Uk)X

(2)
j )TΓ−1

1,2(Uk)

× (W
(1)
k − Γ12(Uk)Γ

−1
22 (Uk)X

(2)
k )X

(2)
k

T
Γ−1
22 (Uk)X

(2)
j

×K((Ui − Uk)/h)K((Uj − Uk)/h).

After some tedious calculation, as nh3/2 → ∞, E(R2
n4) = O(n−2h−4) = o(h−1) and thus

Rn4 = op(h
−1/2). Similarly, we can show Rn5 = op(h

−1/2). As a consequence,

−λnbτ2

= −r2n
n∑

i=1

n∑
j=1

ξiξj(W
(1)
j − Γ12(Ui)Γ

−1
22 (Ui)X

(2)
j )TΓ−1

1,2(Ui)

× (W
(1)
i − Γ12(Ui)Γ

−1
22 (Ui)X

(2)
j )K((Ui − Uj)/h)

+
r4n
2

n∑
i=1

n∑
j=1

ξiξj

n∑
k=1

(W
(1)
i − Γ12(Uk)Γ

−1
22 (Uk)X

(2)
i )TΓ−1

1,2(Uk)

× (W
(1)
k − Γ12(Uk)Γ

−1
22 (Uk)X

(2)
k )(W

(1)
k − Γ12(Uk)Γ

−1
22 (Uk)X

(2)
k )T

× Γ−1
1,2(Uk)(W

(1)
j − Γ12(Uk)Γ

−1
22 (Uk)X

(2)
j ) + op(h

−1/2)

The remaining proof follows the same lines as those in the proof of Theorem 6. �

Proof of Theorem 4 Let ηi = δ−1(G(2c − εi) − 1/2) and Γ2,1 = Γ22 − Γ21Γ
−1
11 Γ12.

Analogously to the arguments for Â, we get

(α̂c(u0), Â
c

1(u0)
T )T − (α(u0),A1(u0)

T )T = (c,01×p1)
T + (α̃n(u0) + R̃n(u0))(1 + op(1)),

where

α̃n(u0) = r2n

(
1 0
0 Γ11

)−1 n∑
i=1

ηi(1,X
(1)
i

T
)TKh((Ui − u0)/h),

R̃n(u0) = r2n

(
1 0
0 Γ11

)−1 n∑
i=1

(
α(Ui)− β(u0)

TV i(u0) +A1(Ui)
TX

(1)
i

−A1(u0)
TX

(1)
i −A′′

1(u0)
TX

(1)
i

)
(1,X

(1)
i

T
)TK((Ui − u0)/h).
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Define ϕ̄ij = α(Ui)− α̂c(Ui)+A(Ui)
TXi− Â

c
(Ui)

TXi+α(Uj)− α̂c(Uj)+A(Uj)
TXj −

Â
c
(Uj)

TXj and W
(1)
i = (1,X

(1)
i

T
)T . Thus,

λn2u =
ψ−1δ

n+ 1

∑∑
i≤j

(|ε̂ci + ε̂cj | − |ε̂i + ε̂j |)

=
ψ−1δ

n+ 1

∑∑
i≤j

(|εi + εj − 2c+ ϕ̄ij | − |εi + εj − 2c+ ϕij |)

=
ψ−1δ

n+ 1

∑∑
i≤j

(|εi + εj − 2c+ ϕ̄ij | − |εi + εj − 2c|)

− ψ−1δ

n+ 1

∑∑
i≤j

(|εi + εj − 2c+ ϕij | − |εi + εj − 2c|)

.
=Gh −Hh.

Taking the same procedure as in the proof of Theorem 6, we can show that

Gh =ψ−1δ2
n∑

i=1

(α̃n(Ui) + R̃n(Ui))
TW

(1)
i ηi + ((α̃n(Ui) + R̃n(Ui))

TW
(1)
i )2 + op(h

−1/2),

Hh =ψ−1δ2
n∑

i=1

(αn(Ui) +Rn(Ui))
TW iηi + ((αn(Ui) +Rn(Ui))

TW i)
2 + op(h

−1/2).

Finally, similar to the proof of Theorem 3, we can obtain the result. �

Proof of Theorem 5 Denote ξ∗i =
∑∑
j ̸=i

φ−1/2τ
2(n+1) sgn(ε

∗
i +ε

∗
j ). We will show that E∗(ξ∗i ) =

op(1) and E
∗(ξ∗i

2) = τ2(1 + op(1)) where E
∗ denotes the conditional expectation given

{Xi, Ui, Yi}ni=1.

E∗(ξ∗i ) =E
∗

∑∑
j ̸=i

φ−1/2τ

2(n+ 1)
sgn(ε∗i + ε∗j )

 =
φ−1/2nτ

2(n+ 1)
E∗(sgn(ε∗i + ε∗j ))

=
φ−1/2τ

2n(n+ 1)

n∑
i=1

n∑
j=1

sgn(ε̂i + ε̂j) =
φ−1/2τ

2n(n+ 1)

∑
1≤i,j≤n

sgn(εi + εj + ϕij)

=
φ−1/2τ

2n(n+ 1)

n∑
i=1

n∑
j=1

[sgn(εi + εj + ϕij)− sgn(εi + εj)]

+
φ−1/2τ

2n(n+ 1)

n∑
i=1

n∑
j=1

sgn(εi + εj)

.
=I1h + I2h,

where ϕij is defined in the proof of Theorem 6. Taking the similar procedure as for
dealing with Bh, we obtain that E(I21h) = O((nh)−1) and E(I22h) = O(n−1). Thus,



S14 LONG FENG, ZHAOJUN WANG, CHUNMING ZHANG AND CHANGLIANG ZOU

E∗(ξ∗i ) = op((nh)
−1/2 + n−1/2) = op(1). Next, we consider the second moment.

E∗(ξ∗i
2) = E∗

∑∑
j ̸=i

φ−1/2τ

2(n+ 1)
sgn(ε∗i + ε∗j )

2

=
φ−1τ2

4n(n+ 1)2

n∑
i=1

n∑
j=1

(sgn(εi + εj + ϕij)sgn(εi + εl + ϕil))

=
φ−1τ2

4n(n+ 1)2

n∑
i=1

n∑
j=1

(sgn(εi + εj)sgn(εi + εl))

+
φ−1τ2

4n(n+ 1)2

n∑
i=1

n∑
j=1

n∑
l=1

([sgn(εi + εj + ϕij)− sgn(εi + εj)]sgn(εi + εl + ϕil))

+
φ−1τ2

4n(n+ 1)2

n∑
i=1

n∑
j=1

n∑
l=1

(sgn(εi + εj)[sgn(εi + εl + ϕil)− sgn(εi + εl)])

.
=J1h + J2h + J3h.

Using the similar arguments as for Bh, it can be verified that E(J1h) = τ2, var(J1h) =
O(n−1), E(J2

2h) = O((nh)−1) and E(J2
3h) = O((nh)−1). Hence, E∗(ξ∗i

2) = τ2 +
Op((nh)

−1/2 + n−1/2). With these results, Theorem 5 can be established by mimick-
ing the proof of Theorem 6. �

Proof of Corollaries 1-2 The proof of these two results are similar and thus we only
elaborate on the first one. We decompose this problem as the following two simple null
hypothesis

H0g1 : (α0, α1) = (β0 + c, β1) versus H1g1 : m(x) = α0 + α1x (A.2)

and

H0g2 : (α0, α1) = (β0 + c, β1) versus H1g2 : m(x) ̸= α0 + α1x, (A.3)

where β0, β1 are the true value of parameters. The WGLR test statistics for the hypothe-
ses (A.2) and (A.3) are denoted as λng2 and λng2, respectively. It can be easily seen

that λng = λng2 − λng1. According to Theorem 3, we have σ−1
ng (λng2 − µng)

d→N(0, 1).
Furthermore, by Theorem 3.6.1 in Hettmansperger and McKean (2010), we have λng1 =
Op(1) = op(h

−1/2), from which the result immediately follows. �
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Appendix D: Simulation results in heteroscedasticity cases

In this subsection, we conduct a simulation study in the heteroscedasticity case. All the
settings are the same as the above subsection except that the variance function is

ϱ2(u) =
eu∫ 1

0
etdt

.

Similar to Koul et al.(1987), we choose the bandwidth tn in (2.14) as tn = hγα where
γα is the α-th quantile of the empirical distribution function of {|ε̂i − ε̂j |}1≤i<j≤n. Here
we choose α = 0.8.

Tables A.2 and A.3 report the simulated level of our test and power comparison
with other tests, respectively. The simulated results are similar to the homoscedasticity
case. We can control the empirical sizes in most cases. Under the normal cases, WGLR
performs a litter worse than GLR, Zheng and LOSS tests. However, under the non-
normal cases, WGLR is significantly powerful than the other tests. And WGLR still
performs better than WQ in the model (I) and (VI). Thus, our WGLR procedure is also
robust in the heteroscedasticity case.

Table A.2: Simulated level (%) of test on testing (3.1) with heteroscedastic error

n = 25 n = 50 n = 100
h (a) (b) (c) (a) (b) (c) (a) (b) (c)

0.12 7.5 7.0 7.1 5.4 4.5 5.8 5.6 5.9 4.8
0.15 7.2 6.7 7.3 5.7 4.9 4.8 5.3 5.2 4.9
0.18 6.3 5.1 5.3 4.3 4.0 4.7 4.1 5.4 5.3
0.21 4.5 5.0 4.2 5.5 4.4 3.8 4.2 4.1 5.7
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Table A.3: Empirical power (%) of tests on testing (3.1) with heteroscedastic error.

n = 25 n = 50
Models WGLR GLR WQ Zheng LOSS WGLR GLR WQ Zheng LOSS

N(0, 1) (I) 13 13 4.8 25 23 37 27 4.0 43 39
(II) 17 22 13 33 37 45 46 19 66 61
(III) 11 24 20 17 14 40 51 47 41 26
(IV) 16 32 48 46 21 50 65 82 77 49
(V) 22 30 18 40 41 58 62 37 74 70
(VI) 28 28 5.8 45 42 62 57 09 76 71

t(3) (I) 40 16 5.5 37 27 75 39 4.6 50 56
(II) 49 33 19 50 46 84 64 39 68 75
(III) 43 32 35 23 20 87 68 83 41 47
(IV) 55 43 71 57 35 90 77 97 79 68
(V) 61 42 35 51 56 92 77 70 77 80
(VI) 65 41 09 62 53 96 72 18 79 81

T (0.05, 10) (I) 66 35 5.6 57 44 96 54 5.5 65 56
(II) 78 50 44 72 60 99 70 71 77 73
(III) 69 48 72 38 31 99 69 99 67 53
(IV) 81 57 96 71 52 99 74 100 87 65
(V) 86 60 69 69 66 100 74 95 80 79
(VI) 89 58 19 74 65 100 76 32 83 80

Appendix E: Some additional simulation results in Section 3

Table A.4: Simulated level (%) of test on testing linearity

n = 60 n = 100
h (a) (b) (c) (d) (a) (b) (c) (d)

0.06 7.2 6.8 7.0 7.3 6.2 6.4 6.5 6.6
0.09 6.4 6.0 6.3 6.6 6.1 5.8 6.2 5.6
0.12 5.3 5.2 4.7 4.6 5.8 5.5 4.4 4.9
0.15 5.0 5.4 4.5 5.3 5.1 4.7 5.3 5.0



S18 LONG FENG, ZHAOJUN WANG, CHUNMING ZHANG AND CHANGLIANG ZOU

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

theta

po
we

r

WQ
WGLR
Zheng
GLR
LOSS

normal

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

theta

po
we

r

t(3)

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

theta

po
we

r

lognormal

1 2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

theta

po
we

r

mixnormal

Figure A.1: Simulated power curves of square alternative on testing linearity.
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Figure A.2: Simulated power curves on testing homogeneity with n = 100, h = 0.09.
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Table A.5: Simulated level (%) of test on testing homogeneity

n = 60 n = 100
h (a) (b) (c) (d) (a) (b) (c) (d)

0.06 6.9 7.3 7.2 7.3 6.2 6.3 6.0 6.9
0.09 5.9 6.2 5.5 6.8 6.3 5.7 6.2 5.9
0.12 5.3 5.8 5.7 4.4 5.8 5.8 4.7 5.7
0.15 4.4 5.7 4.9 5.9 5.0 4.2 5.6 5.2

Appendix F: Some additional figures in Section 4
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Figure A.3: The normal QQ-plot for the residuals
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Figure A.4: Fitted coefficient functions and corresponding pointwise 95% confidence interval.
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