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Abstract: In longitudinal studies, it is common that the response and the covariate

are not measured at the same time, which complicates the subsequent analysis.

In this study, we consider the estimation of a generalized varying coefficient

model with such asynchronous observations. We construct a penalized kernel-

weighted estimating equation using the kernel technique in a functional data analysis

framework. Moreover, we consider local sparsity in the estimating equation to

improve the interpretability of the estimate. We extend the iteratively reweighted

least squares algorithm in our computation, and establish the theoretical properties

of the proposed method, including the consistency, sparsistency, and asymptotic

distribution. Lastly, we use simulation studies to verify the performance of our

method, and demonstrate the method by applying it to data from a study on

women’s health.
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1. Introduction

A generalized varying coefficient model (Hastie and Tibshirani (1993); Cai,

Fan and Li. (2000)) allows the coefficients to vary over time, significantly widening

the application of regression models. Specifically, the model can be expressed as

E{Y (t)|X(t)} = g{β0(t) + β1(t)X(t)}, t ∈ T , (1.1)

where Y (t) is the response, X(t) is the covariate, g(·) is a known strictly increasing

and continuously twice-differentiable link function, β0(t) is the intercept function,

β1(t) is the varying coefficient function, and T is a bounded and closed interval.

Here, we propose a new estimating method for a generalized varying coefficient

model with longitudinal measurements, from the perspective of functional data.

In practice, it often happens that the covariate and the response are not

measured at the same time for each subject in longitudinal observations. Such

asynchronous observations make the subsequent analysis more complicated. Two

main types of approaches have been proposed to solve this problem. The first
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comprises two steps, and is based on synchronizing the measurements of the

covariate and the response. For example, Xiong and Dubin (2010) propose

a binning method to align the measurement times in order to use traditional

longitudinal modeling, and Şentürk et al. (2013) use a functional principal

component analysis (FPCA) method to synchronize the data. However, because

the data used for modeling is obtained from estimations, errors from each step

accumulate. The second approach imposes a kernel weight based on the time

difference between the observations of the covariate and the response. These

methods are more appealing, because they use all available data. Cao, Zeng and

Fine (2015) construct a kernel-weighted estimating equation for a generalized

linear model and a generalized varying coefficient model. Cao, Li and Fine

(2016) develop a weighted last observation carried forward (LOCF) method, and

Chen and Cao (2017) apply the kernel weighting technique to partially linear

models. Li et al. (2022) consider models with longitudinal functional covariates,

and Sun, Zhao and Sun (2021) examine cases in which the observation times are

informative. Most of the above kernel methods work only with models with time

invariant coefficients, and only Cao, Zeng and Fine (2015) consider a generalized

varying coefficient model. However, their varying coefficients are estimated point

by point, which can be time consuming and lacks integrity. Therefore, a new

estimating method is required.

Interpreting the varying coefficient function β1(t) is a vital part of a regression

analysis. These interpretability can be improved by introducing local sparsity,

which means the curve can be strictly equal to zero in some subintervals. Some

prior works have achieved local sparsity by imposing a sparseness penalty for

various models. For example, James, Wang and Zhu (2009), Zhou, Wang and

Wang (2013), and Lin et al. (2017) develop locally sparse estimators for a scalar-

on-function regression model, and Tu, Park and Wang (2020) use a group bridge

approach to obtain locally sparse estimates for a varying coefficient model. Fang

et al. (2020) generalize the method of Lin et al. (2017) to cases in which the

response is multivariate, and a function-on-function regression model and a

function-on-scalar regression model are considered by Centofanti et al. (2020)

and Wang et al. (2020), respectively. However, to the best of our knowledge,

local sparsity has not been considered for generalized varying coefficient models.

We use a functional data analysis (FDA) approach, because longitudinal data

can be viewed as functional data in a sparse design, and an FDA is more effective

than using pointwise methods. Our goal is to propose a novel method that

can be applied to asynchronous data, and that can produce estimates that are

more interpretable. Specifically, we construct a new kernel-weighted estimating

equation with penalties on both the roughness and the sparseness. To solve the

estimating equation, we extend the iteratively reweighted least squares (IRLS)

method, and design an innovative algorithm for the computation. We also

consider the selection of the tuning parameters. We generalize the extended
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Bayesian information criterion (EBIC) in Chen and Chen (2008, 2012), to adapt

it to asynchronous data, such that the roughness parameter and the sparseness

parameter can be chosen accordingly. Moreover, we select the number of basis

functions using cross-validation (CV). The proposed method for a generalized

varying coefficient model is called LocKer, because we can use it to obtain a

locally sparse estimator of β1(t), and we use the kernel technique in the procedure.

We also explore the theoretical properties of the proposed approach.

Our work contributes to the literature in three ways. First, we study

generalized varying coefficient models in an FDA framework, considering both

asynchronous data and local sparsity. Solving this problem will improve the

accuracy, utility, and interpretability of the results. Second, the proposed

algorithm can be implemented using the R package LocKer, available at https:

//CRAN.R-project.org/package=LocKer. Third, we explore the consistency,

sparsistency, and asymptotic distribution of our proposed method.

The remainder of the paper proceeds as follows. In Section 2, we construct

the penalized kernel-weighted estimating equation, and develop a computation

algorithm for the proposed LocKer method. We discuss the theoretical properties

of the proposed method in Section 3. In Section 4, we use simulation studies to

explore the accuracy of the proposed method and its ability to identify zero-valued

subintervals. We apply our method to data from a study on women’s health in

Section 5, and conclude the paper in Section 6.

2. Methodology

2.1. Estimating equation

Suppose there are n independent subjects in the study. For the ith

subject, let Yi(t) and Xi(t) be realizations of the response process Y (t) and the

covariate process X(t), respectively. However, only longitudinal measurements

are obtained. Specifically, for i = 1, . . . , n, we observe

Yi(Tij), j = 1, . . . , Li, Xi(Sik), k = 1, . . . ,Mi,

where Tij is the jth observation time of the response, Sik is the kth observation

time of the covariate, Li is the observation size of the response, and Mi is the

observation size of the covariate. Following Cao, Zeng and Fine (2015), the

observation times can be viewed as being generated from a bivariate counting

process

Ni(t, s) =
Li∑
j=1

Mi∑
k=1

I(Tij ≤ t, Sik ≤ s),

where I(·) is the indicator function.

https://CRAN.R-project.org/package=LocKer
https://CRAN.R-project.org/package=LocKer
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To estimate β0(t) and β1(t) in (1.1), we employ the following basis approxi-

mation:

β0(t) ≈
L∑

l=1

Bl(t)γ
(0)
l = B(t)⊤γ(0), β1(t) ≈

L∑
l=1

Bl(t)γ
(1)
l = B(t)⊤γ(1),

where {Bl(t), l = 1, . . . , L} are B-spline basis functions with degree d and M

interior knots, γ
(0)
l and γ

(1)
l are the corresponding coefficients of β0(t) and β1(t),

B(t) = (B1(t), . . . , BL(t))
⊤, γ(0) = (γ

(0)
1 , . . . , γ

(0)
L )⊤, γ(1) = (γ

(1)
1 , . . . , γ

(1)
L )⊤, and

L = M + d + 1 is the number of basis functions. Here, we apply B-spline basis

functions; Zhong et al. (2021) explain the reasons for the wide use of B-spline basis

functions in local sparse estimation. Let γ = (γ(0)⊤,γ(1)⊤)⊤, X̃l(t) = X(t)Bl(t),

and X̃(t) = (X̃1(t), . . . , X̃L(t))
⊤. Then, the generalized varying coefficient model

(1.1) can be approximated by

E{Y (t)|X(t)} = g

{
L∑

l=1

Bl(t)γ
(0)
l +

L∑
l=1

X̃l(t)γ
(1)
l

}
= g

{
X̃

⋆
(t)⊤γ

}
,

where X̃
⋆
(t) = (B(t)⊤, X̃(t)⊤)⊤. Following previous works, such as Lin

et al. (2017) and Li et al. (2022), we use an equal sign above to denote the

approximation. We can obtain estimates of β0(t) and β1(t) using the estimation

of γ. To this end, we construct the following penalized kernel-weighted estimating

equation:

Un(γ) =
1

N0

n∑
i=1

Li∑
j=1

Mi∑
k=1

Kh(Tij − Sik)X̃
⋆

i (Sik)
[
Yi(Tij)− g

{
X̃

⋆

i (Sik)
⊤γ
}]

−Vρ0,ρ1
γ − ∂PENλ(γ)

∂γ
= 0, (2.1)

where N0 =
∑n

i=1 LiMi, Vρ0,ρ1
= diag(ρ0V, ρ1V), V =

∫
T B(2)(t)B(t)(2)⊤dt,

B(2)(t) is the second derivative of B(t), ρ0 and ρ1 are the roughness parameters

for β0(t) and β1(t), respectively, Kh(t) = K(t/h)/h, K(t) is a symmetric kernel

function, h is the bandwidth, PENλ(γ) is the sparseness penalty for β1(t), λ is

the sparseness parameter, and 0 is a zero-valued vector with length 2L. Here,

we use h = max(τ0.95, 0.01) as the bandwidth, where τ0.95 is the 0.95-quantile

of minj,k |Tij − Sik|. For the first term in (2.1), define the kernel-weighted log-

likelihood function as

n∑
i=1

Li∑
j=1

Mi∑
k=1

{
Yi(Tij)θik − b(θik)

a(ϕ)
+ c(Yi(Tij), ϕ)

}
Kh(Tij − Sik),

where θik = X̃
⋆

i (Sik)
⊤γ, b′(·) = g(·), a(ϕ) and c(Yi(Tij), ϕ) are both constants.

Then, the first term can be viewed as the derivative of the kernel-weighted log-
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likelihood function by neglecting a constant multiplier. Here, we consider all

possible pairs of response and covariate measurements, using the kernel weights to

control the effects of various pairs, such that measurements with close observation

times are emphasized. The second term is the derivative of the roughness penalty,

which is defined as

ρ0
2

∫
T
{β(2)

0 (t)}2dt+ ρ1
2

∫
T
{β(2)

1 (t)}2dt

=
ρ0
2
γ(0)⊤Vγ(0) +

ρ1
2
γ(1)⊤Vγ(1) =

1

2
γ⊤Vρ0,ρ1

γ,

where β
(2)
0 (t) and β

(2)
1 (t) are the second derivatives of β0(t) and β1(t), respectively.

The third term is the derivative of the sparseness penalty PENλ(γ), the expression

of which is provided in Section 2.2. Note that the roughness penalty and the

sparseness penalty are imposed on the estimating equation by their derivatives.

Using (2.1), we can obtain a locally sparse estimator for model (1.1) with

asynchronous observations. Though we consider a generalized varying coefficient

model with one covariate here, this can be extended easily to cases with more

covariates.

2.2. Sparseness penalty

In this section, we introduce the sparseness penalty used in (2.1). We

generalize the functional SCAD penalty in (Lin et al. (2017)) to achieve local

sparsity of β1(t). Specifically, the sparseness penalty imposed on β1(t) is defined

as

L(β1) =
M + 1

2T

∫
T
pλ(|β1(t)|)dt ≈

1

2

M+1∑
m=1

pλ

(√
M + 1

T

∫ τm

τm−1

β2
1(t)dt

)
, (2.2)

where T is the length of T , τm is the knot of the used B-spline basis, and pλ(·) is
the SCAD function suggested in (Fan and Li (2001)). We then transform (2.2) to

the penalty of γ for the sake of computation. Let ∥β1[m]∥22 =
∫ τm
τm−1

β2
1(t)dt. By the

local quadratic approximation pλ(|v|) ≈ pλ(|v0|)+(1/2){p′

λ(|v0|)/|v0|}(v2−v20) in
(Fan and Li (2001)), we have

M+1∑
m=1

pλ

(√
M + 1

T
∥β1[m]∥2

)

≈
M+1∑
m=1

{
pλ

(√
M + 1

T
∥β(0)

1[m]∥2

)

+
1

2

p′λ

(√
(M + 1)/T∥β(0)

1[m]∥2
)

√
(M + 1)/T∥β(0)

1[m]∥2

(
M + 1

T
∥β1[m]∥22 −

M + 1

T
∥β(0)

1[m]∥
2
2

)}
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=
1

2

M+1∑
m=1

√
M + 1

T
p′λ

(√
M + 1

T
∥β(0)

1[m]∥2

)
∥β1[m]∥2

∥β(0)
1[m]∥2

+ C

=
M+1∑
m=1

γ(0)⊤Umγ
(0) + C

= γ⊤Uγ + C,

where

Um =

√
M + 1

T

p′λ

(√
(M + 1)/T∥β(0)

1[m]∥2
)

2∥β(0)
1[m]∥2

Tm,

Tm =

∫ τm

τm−1

B(t)B(t)⊤dt, U = diag
(
O,

M+1∑
m=1

Um

)
, (2.3)

C =
M+1∑
m=1

pλ

(√
M + 1

T
∥β(0)

1[m]∥2

)

−1

2

M+1∑
m=1

√
M + 1

T
p′λ

(√
M + 1

T
∥β(0)

1[m]∥2

)
∥β(0)

1[m]∥2,

and O is an L × L matrix with all elements being zero. Here, ∥β(0)
1[m]∥2 is

obtained from the initial value or the estimate in the previous iteration. Then,

the sparseness penalty in (2.1) can be expressed as

PENλ(γ) =
1

2
γ⊤Uγ.

Here, the value of U depends on the value of ∥β(0)
1[m]∥2, so it varies in the iteration

process introduced in Section 2.3.

2.3. Algorithm

We generalize the IRLS algorithm to solve our estimating equation proposed

in Section 2.1. To this end, we first rewrite (2.1) in matrix form, and introduce

some additional notation. Let X̃
⋆

i = (X̃
⋆

i (Si1), . . . , X̃
⋆

i (SiMi
))⊤, X̃

⋆
= (1⊤

L1
⊗

X̃
⋆⊤
1 , . . . ,1⊤

Ln
⊗ X̃

⋆⊤
n )⊤, Yi = (Yi(Ti1), . . . , Yi(TiLi

))⊤, Y = (Y⊤
1 ⊗ 1⊤

M1
, . . . ,Y⊤

n ⊗
1⊤
Mn

)⊤, η = X̃
⋆
γ, Z = η + {Y− g(η)} · f ′{g(η)}, W = diag{Kh(T11 − S11), . . . ,

Kh(T11−S1M1
),Kh(T12−S11), . . . ,Kh(TnLn

−SnMn
)}, and H = diag[1/f ′{g(η)}],

where ⊗ is the Kronecker product, 1Li
and 1Mi

are vectors of length Li and

Mi, respectively, with all elements being one, and f ′(·) is the first derivative of

f(·), which is the inverse function of g(·). Then, the penalized kernel-weighted
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estimating equation (2.1) becomes

Un(γ) =
1

N0

X̃
⋆⊤
WH(Z− η)−Vρ0,ρ1

γ −Uγ = 0, (2.4)

where H, Z, η, and U are computed using the initial value of γ or its estimate

in the previous iteration. From (2.4), we obtain the new estimate as

γ̂ = (X̃
⋆⊤
WHX̃

⋆
+N0Vρ1,ρ2

+N0U)−1X̃
⋆⊤
WHZ. (2.5)

Moreover, following (Lin et al. (2017)) and (Zhong et al. (2021)), the small

elements of γ̂ are shrunk to zero in the iteration such that X̃
⋆⊤
WHX̃

⋆
+

N0Vρ1,ρ2
+ N0U is not singular. Then, the estimates of β0(t) and β1(t) are

given by

β̂0(t) = B(t)⊤γ̂(0) and β̂1(t) = B(t)⊤γ̂(1), (2.6)

respectively, where γ̂(0) and γ̂(1) are obtained from the final estimate of γ using

the definition γ = (γ(0)⊤,γ(1)⊤)⊤.

The whole algorithm is summarized as follows:

Step 1: Give the initial value of γ, which we denote as γ [0]. Here, we use a least

squares estimate with a kernel weight, and consider the roughness penalty

in the initial estimate, that is, γ [0] = (X̃
⋆⊤
WX̃

⋆
+N0Vρ1,ρ2

)−1X̃
⋆⊤
WY.

Step 2: Start with q = 1. For the qth iteration,

(1) η[q] = X̃
⋆
γ [q−1].

(2) Z[q] = η[q] + {Y− g(η[q])} · f ′{g(η[q])} and H[q] = diag[1/f ′{g(η[q])}].
(3) Compute U[q] from (2.3).

(4) γ [q] = (X̃
⋆⊤
WH[q]X̃

⋆
+ N0Vρ1,ρ2

+ N0U
[q])−1X̃

⋆⊤
WH[q]Z[q] from

(2.5).

(5) Repeat Step 2(1)–(4) until convergence.

Step 3: Let γ̂ = γ [q]. Then, compute β̂0(t) and β̂1(t) using (2.6).

2.4. Selection of tuning parameters

Recall that the bandwidth is chosen as h = max(τ0.95, 0.01), where τ0.95
is the 0.95-quantile of minj,k |Tij − Sik|. In this section, we discuss selecting

the other tuning parameters in the computation, including the roughness

parameters, sparseness parameter, and number of B-spline basis functions, with

the bandwidth determined already. For clarity, let ρ0 = ρ1 ≜ ρ̃, which means

β0(t) and β1(t) share the same roughness parameter. However, our selection

criterion can be extended easily to the case ρ0 ̸= ρ1.
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The roughness parameter ρ̃ and the sparseness parameter λ are considered

jointly. We generalize the EBIC in (Chen and Chen (2008, 2012)) to adapt it to

the asynchronous observations. More specifically, define

EBIC(ρ̃, λ) = log(Dev) + df · log(n0)

n0

+ ν · df · log(2L)
n0

, (2.7)

where Dev represents the deviance of the estimate, df is the degrees of freedom,

n0 = #{Kh(Tij − Sik) ̸= 0, i = 1, . . . , n; j = 1, . . . Li; k = 1, . . . ,Mi}, and 0 ≤ ν ≤
1. We use ν = 0.5, as suggested by Huang, Horowitz and Wei (2010). Moreover,

Dev is given by

Dev = −2
n∑

i=1

Li∑
j=1

Mi∑
k=1

{Yi(Tij)θ̂ik − b(θ̂ik)}Kh(Tij − Sik),

where θ̂ik = g(Ŷi(Sik)). Then by ignoring some constant, we have

Dev =
n∑

i=1

Li∑
j=1

Mi∑
k=1

{Yi(Tij)− Ŷi(Sik)}2Kh(Tij − Sik)

for a Gaussian response,

Dev

= 2
n∑

i=1

Li∑
j=1

Mi∑
k=1

[
Yi(Tij) log

Yi(Tij)

Ŷi(Sik)
+ {1− Yi(Tij)} log

1− Yi(Tij)

1− Ŷi(Sik)

]
Kh(Tij − Sik)

for a Bernoulli response, and,

Dev = 2
n∑

i=1

Li∑
j=1

Mi∑
k=1

[Ŷi(Sik)− Yi(Tij) log{Ŷi(Sik)}]Kh(Tij − Sik)

for a Poisson response. Furthermore, df is computed by

df = tr{X̃
⋆

A(X̃
⋆⊤
A WAX̃

⋆

A +N0Vρ1,ρ2A)
−1X̃

⋆⊤
A WA},

where A is a set indexing the nonzero elements in γ̂. For the third term in (2.7),

2L is the length of γ, and if more covariates are considered, it should be varied

accordingly.

We choose the number of B-spline basis functions using CV. For a given L,

we first select the best ρ̃ and λ using the EBIC, and then calculate the CV score

using the same method as Dev when facing responses with various distributions.

The effect of L is discussed in our simulation study in Section 4.2.
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3. Theoretical results

We study the asymptotic properties of our method in this section. Let

η(t,β) = β0(t) + X(t)β1(t), where β(t) = (β0(t), β1(t))
⊤. Let β0(t) be the true

value of β(t). Define X⋆(t) = (1, X(t))⊤. Let var{Y (t)|X(t)} = σ{t,X(t)}2 and

cov{Y (s), Y (t)|X(s), X(t)} = r{s, t,X(s), X(t)}. Moreover, denote NULL(f) =

{t ∈ T : f(t) = 0} and SUPP(f) = {t ∈ T : f(t) ̸= 0}, for any function f(t).

Denote ρ = max(ρ0, ρ1). The needed assumptions are listed as follows:

Assumption 1. There exists some constant c > 0 such that |β(p′)
0 (t1) −

β
(p′)
0 (t2)| ≤ c|t1 − t2|ν and |β(p′)

1 (t1) − β
(p′)
1 (t2)| ≤ c|t1 − t2|ν, for ν ∈ [0, 1]. Let

r = p′ + ν, and assume that 3/2 < r ≤ d, where d is the degree of the B-spline

basis.

Assumption 2. The counting process Ni(t, s) is independent of (Yi, Xi) and

E{dNi(t, s)} = λ(t, s)dtds, where λ(t, s) is a bounded twice-continuous differen-

tiable function for any t, s ∈ T . The Borel measure for G = {λ(t, t) > 0, t ∈ T }
is strictly positive. Moreover, P{dN(t1, t2) = 1|N(s1, s2) −N(s1−, s2−) = 1} =

f(t1, t2, s1, s2)dt1dt2, for t1 ̸= s1 and t2 ̸= s2, where f(t1, t2, s1, s2) is continuous

and f(t1±, t2±, s1±, s2±) exists.

Assumption 3. The tuning parameter λ → 0 as n → ∞. Assume that√∫
SUPP(β1)

p′λ(|β1(t)|)2dt = O(n−1/2M−3/2),
√∫

SUPP(β1)
p′′λ(|β1(t)|)2dt =

o(M−3/2).

Assumption 4. For any β in a neighborhood of β0, we assume that E[X⋆(s)

g{η(t,β)}] and E[X⋆(s)g′{η(t,β)}Xb(t)] are twice-continuous differentiable for

any (t, s) ∈ T 2, where b = 0, 1. Moreover, we assume that E[X⋆(s1)X
⋆(s2)

⊤

g{η(t1,β)}g{η(t2,β)}] and E[X⋆(s1)X
⋆(s2)

⊤r{t1, t2, X(t1), X(t2)}] are twice-

continuous differentiable for any (t1, t2, s1, s2) ∈ T 4.

Assumption 5. For any β in a neighborhood of β0, we assume that E[X⋆
2(s)

X⋆
2(s)

⊤g′{η(s,β)}2] and E[X⋆(s)σ{s,X(s)}2] are uniformly bounded in s, where

X⋆
2(s) = (1, X2(t))⊤.

Assumption 6. If ψ0 and ψ1 satisfy ψ0(s) + ψ1(s)X(s) = 0, for ∀s ∈ G, with
probability one, then ψ0 = 0 and ψ1 = 0.

Assumption 7. The kernel function K(·) is a symmetric density function.

Assume that
∫
z2K(z)dz <∞ and

∫
K(z)2dz <∞.

Assumption 1 is similar to (C2) in (Lin et al. (2017)), and is used to justify the

B-spline approximation. The requirement for the counting process is presented

in Assumption 2, and is the same as Condition 1 in (Cao, Zeng and Fine (2015))

and Assumption 3 in (Li et al. (2022)). Assumption 3 is analogous to (C3)

in (Lin et al. (2017)), and Assumptions 4–6 are parallel to assumptions in
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(Li et al. (2022)). Furthermore, Assumption 7 is a common assumption for a

kernel function.

Theorem 1. Under Assumptions 1–7, if M1/2h2 → 0, n−1/2M3/2h−1/2 → 0,

ρ→ 0, and M−r → 0, then we have

sup
t∈T

|β̂0(t)− β0(t)| = Op(M
1/2h2 + n−1/2M1/2h−1/2 + ρM−1/2 +M−r),

sup
t∈T

|β̂1(t)− β1(t)| = Op(M
1/2h2 + n−1/2M1/2h−1/2 + ρM−1/2 +M−r).

The above theorem states the consistency of both β0(t) and β1(t), and

the convergence rates are also given. To achieve the best convergence rate

in Theorem 1, we can set h = O(n−1/5), M = O(n4/(5(1+2r))), and ρ =

O(n(−4r+2)/(5(1+2r))). Then, we have supt∈T |β̂0(t) − β0(t)| = Op(n
−4r/(5(1+2r)))

and supt∈T |β̂1(t) − β1(t)| = Op(n
−4r/(5(1+2r))). We discuss the sparsistency of

β1(t) in the following theorem.

Theorem 2. Suppose that the conditions of Theorem 1 are satisfied. If nh5 =

O(1), nhM−2r = o(1), ρ = o(n−1/2), and λn1/2M−1/2h1/2 → ∞, then we have

NULL(β̂1) → NULL(β1) and SUPP(β̂1) → SUPP(β1) in probability, as n→ ∞.

According to Theorem 2, the zero-valued subintervals of our estimate β̂1(t)

are consistent with the true zero-valued subintervals. That means we have β̂1(t) =

0 for any t ∈ NULL(β1), and β̂1(t) ̸= 0 for any t ∈ SUPP(β1) in probability. Next,

we discuss the asymptotic distribution of γ̂. Let γ0 = (γ
(0)⊤
0 ,γ

(1)⊤
0 )⊤ be the

coefficient vector that satisfies ∥γ(0)⊤
0 B−β0∥∞ = O(M−r) and ∥γ(1)⊤

0 B−β1∥∞ =

O(M−r) (de Boor (2001); Zhong et al. (2021)).

Theorem 3. Suppose that the conditions of Theorem 1 are satisfied. If nh5M =

o(1), nhM−2r = O(1), n−1M2 = o(1), and ρ = o(n−1/2), then

nh(γ̂ − γ0)
⊤Ω2

n(γ̂ − γ0)− tr(Σ0)√
2tr(Σ2

0)

d−→ N(0, 1),

where

Ωn = n−1
n∑

i=1

∫ ∫
Kh(t− s)X̃

⋆

i (s)g
′{ηi(s,β0)}X̃

⋆

i (s)
⊤dNi(t, s),

Σ0 = var

(
h1/2

∫ ∫
Kh(t− s)X̃

⋆
(s)[Y (t)− g{η(s,β0)}]dN(t, s)

)
.

The asymptotic distribution of γ̂ is examined further using simulated data

in the Supplementary Material, where we also explore the pointwise asymptotic

distributions of β̂0(t) and β̂1(t), and provide proofs of all theorems.
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4. Simulation Studies

4.1. Numerical performance

In this section, we discuss the performance of the proposed method by

simulation studies. The simulated data sets are generated from model (1.1),

and Gaussian response, Bernoulli response and Poisson response are all in

consideration. Moreover, for each distribution, both nonsparse coefficient

function and coefficient function with local sparsity are taken into account. The

detailed settings are as follows:

• Gaussian cases: The intercept function is set as β0(t) = cos(2πt), for

t ∈ [0, 1]. For the nonsparse setting, the coefficient function β1(t) = sin(2πt),

and for the sparse setting, β1(t) = 2 · {B6(t)+B7(t)}, where Bl(t) is the lth

B-spline basis on [0, 1], with degree three and nine equally spaced interior

knots. We generate the covariate functions in the same way as in Lin

et al. (2017), that is, Xi(t) =
∑

l=1 ailB
X
l (t), where aij is obtained from the

standard normal distribution, and BX
l (t) is the lth B-spline basis on [0, 1],

with degree four and 69 equally spaced interior knots. The sample size is

set as n = 200. Then, Yi(t) is generated from Gaussian distribution with

mean β0(t) + β1(t)Xi(t) and standard error one. To obtain asynchronous

data, we generate the observation sizes of the response and the covariate

independently from a Poisson distribution, with one additional observation

to avoid cases with no measurement. Here, the response and the covariate

share the same intensity rate m, and m is set as 15 and 20. Then, the

observation times are uniformly selected on [0, 1].

• Bernoulli cases: The settings are the same as those in the Gaussian cases,

except that Yi(t) is generated from a Bernoulli distribution with mean

β0(t) + β1(t)Xi(t).

• Poisson cases: The settings are the same as those in the Gaussian cases,

except that Yi(t) is generated from a Poisson distribution with mean β0(t)+

β1(t)Xi(t).

The proposed LocKer method is compared with other four approaches in

the simulation. The first is a reconstruction method that synchronizes the

response and the covariate using PACE (Yao, Müller and Wang (2005)), as in

Şentürk et al. (2013), and then employs the traditional IRLS algorithm. We

also consider the moment method of (Şentürk et al. (2013)), the approach in

Cao, Zeng and Fine (2015), and the penalized least squares estimating (PLSE)

method investigated by Tu, Park and Wang (2020). Note that Tu, Park and

Wang (2020) investigated a local sparse estimator for a varying coefficient

model with synchronous observations. Therefore, to implement their method

for asynchronous cases, we first synchronize the data using smoothing, and then
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apply the PLSE to the synchronized data. These four methods are denoted as

Recon, Moment, Cao, and PLSE, respectively. Note that the Cao method is

available for regression models with Bernoulli and Poisson responses, but is quite

slow for these non-Gaussian cases, because it is a pointwise method. Hence, we

use an identity link for the Cao method in all considered cases. Moreover, the

PLSE is only applicable to a regression model with a Gaussian response; thus,

we view the responses as Gaussian for the PLSE in all cases.

We evaluate the integrated square error (ISE) of the estimated intercept

function and coefficient function for each method. Specifically,

ISE0 =

∫
T
{β̂0(t)− β0(t)}2dt,

ISE1 =

∫
T
{β̂1(t)− β1(t)}2dt.

In the simulation, 100 runs are conducted for each case. The average ISE and

the standard deviation are compared between the methods.

Table 1 reports the average ISE0 and ISE1 of the Gaussian cases. With

various settings for the coefficient function β1(t) and the observation rate m,

the simulation results show similar trends. For the estimation of the intercept

function β0(t), all five methods give promising results, with minor differences

in ISE0. On the other hand, it is evident that our LocKer method exhibits

significant advantages for the estimation of β1(t), regardless of whether or not

the true β1(t) is sparse. These results demonstrate that synchronizing and

pointwise approaches are not adequate, further indicating the importance of using

the observed data directly and taking sufficient account of the smoothness in

the estimation. Moreover, the estimating results become more precise for each

method as the observation rate increases.

Simulation results for the Bernoulli cases are presented in Table 2. The ISE0

and ISE1 are higher than the errors in the Gaussian cases, which implies that

a Bernoulli response is more difficult to handle. However, the proposed LocKer

method still outperforms the other four methods in terms of estimating β1(t) for

both nonsparse and sparse settings, though the Recon and Moment methods are

slightly better in terms of estimating β0(t). The reason for the invalid behavior

of the Cao and PLSE methods is that they simply treat the Bernoulli response as

a Gaussian response here. Table 3 displays the simulation results for the Poisson

cases. We find that the proposed LocKer method achieves the most accurate

estimates for both β0(t) and β1(t) in each considered setting.

In summary, our LocKer method yields encouraging estimation results for

each case compared with those of the other methods. We conjecture that the

superiority of our method is because we use an FDA approach and a kernel

technique, as well as considering local sparsity.



ESTIMATOR FOR ASYNCHRONOUS LONGITUDINAL DATA 1915

Table 1. The average ISE0 and ISE1 across 100 runs for five methods in Gaussian cases,
with the standard deviation in parentheses.

n = 200,m = 15 n = 200,m = 20

ISE0 ISE1 ISE0 ISE1

Nonsparse

Recon 0.0050 (0.0022) 0.2768 (0.0505) 0.0044 (0.0019) 0.1889 (0.0455)

Moment 0.0045 (0.0022) 0.4154 (0.1826) 0.0033 (0.0017) 0.4001 (0.0581)

Cao 0.0072 (0.0031) 0.3000 (0.0326) 0.0059 (0.0028) 0.2841 (0.0344)

PLSE 0.0244 (0.0106) 0.3994 (0.0839) 0.0145 (0.0066) 0.2966 (0.0998)

LocKer 0.0170 (0.0081) 0.0385 (0.0255) 0.0094 (0.0062) 0.0217 (0.0148)

Sparse

Recon 0.0049 (0.0025) 0.2329 (0.0713) 0.0045 (0.0023) 0.1578 (0.0516)

Moment 0.0052 (0.0059) 0.5350 (0.2588) 0.0033 (0.0016) 0.4972 (0.0648)

Cao 0.0071 (0.0035) 0.3176 (0.0627) 0.0057 (0.0033) 0.3124 (0.0514)

PLSE 0.0216 (0.0081) 0.3025 (0.0992) 0.0153 (0.0057) 0.2147 (0.0780)

LocKer 0.0131 (0.0075) 0.0515 (0.0303) 0.0087 (0.0043) 0.0302 (0.0173)

Table 2. The average ISE0 and ISE1 across 100 runs for five methods in Bernoulli cases,
with the standard deviation in parentheses.

n = 200,m = 15 n = 200,m = 20

ISE0 ISE1 ISE0 ISE1

Nonsparse

Recon 0.0128 (0.0061) 0.3123 (0.0824) 0.0106 (0.0057) 0.2264 (0.0791)

Moment 0.0171 (0.0085) 0.6108 (0.3848) 0.0131 (0.0064) 0.4744 (0.2760)

Cao 0.5600 (0.0139) 0.4530 (0.0133) 0.5590 (0.0135) 0.4480 (0.0142)

PLSE 0.5132 (0.0170) 0.4856 (0.0195) 0.5163 (0.0150) 0.4721 (0.0255)

LocKer 0.0531 (0.0267) 0.1777 (0.0973) 0.0332 (0.0155) 0.1074 (0.0578)

Sparse

Recon 0.0182 (0.0075) 0.2898 (0.0966) 0.0172 (0.0067) 0.2444 (0.0892)

Moment 0.0230 (0.0113) 0.6906 (0.3372) 0.0193 (0.0074) 0.5646 (0.1204)

Cao 0.5751 (0.0150) 0.5259 (0.0148) 0.5753 (0.0113) 0.5239 (0.0140)

PLSE 0.5272 (0.0175) 0.5490 (0.0301) 0.5311 (0.0119) 0.5381 (0.0331)

LocKer 0.0426 (0.0235) 0.2600 (0.1094) 0.0291 (0.0147) 0.1773 (0.0805)

4.2. The effect of L

In Section 4.1, we focused on the accuracy of the estimation. In this section,

we explore how the number of B-spline basis functions influences the estimation,

especially the ability of the model to identify zero-valued subintervals of β1(t).

Because local sparsity is also considered for the PLSE method, we include the

PLSE in the comparison in this section. The settings are the same as those in

Section 4.1, except that the response and the covariate are set to be observed

at the same time to make the comparison with the PLSE more meaningful. To

quantify the identifying ability, we compute the values of β1(t) and β̂1(t) at a

sequence of dense grids on [0, 1], and calculate the rates of the grids that correctly

identified being zero and falsely estimated being zero, which are denoted by TP

and FN, respectively. Moreover, the closer TP is to one and the closer FN is to
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Table 3. The average ISE0 and ISE1 across 100 runs for five methods in Poisson cases,
with the standard deviation in parentheses.

n = 200,m = 15 n = 200,m = 20

ISE0 ISE1 ISE0 ISE1

Nonsparse

Recon 0.0257 (0.0078) 0.2789 (0.0573) 0.0234 (0.0064) 0.1929 (0.0437)

Moment 0.0285 (0.0083) 0.3335 (0.1157) 0.0253 (0.0067) 0.3597 (0.0489)

Cao 1.9949 (0.1056) 0.2645 (0.0378) 1.9772 (0.0794) 0.2496 (0.0371)

PLSE 1.6426 (0.1044) 0.3555 (0.0909) 1.7170 (0.0942) 0.2408 (0.0773)

LocKer 0.0163 (0.0103) 0.0345 (0.0186) 0.0096 (0.0069) 0.0192 (0.0128)

Sparse

Recon 0.0660 (0.0166) 0.2462 (0.0940) 0.0660 (0.0146) 0.1670 (0.0903)

Moment 0.0730 (0.0234) 0.4579 (0.0962) 0.0745 (0.0175) 0.4791 (0.0647)

Cao 1.8242 (0.0954) 0.4116 (0.0511) 1.8220 (0.0752) 0.3991 (0.0496)

PLSE 1.4866 (0.0916) 0.4303 (0.1172) 1.5611 (0.0819) 0.3346 (0.1184)

LocKer 0.0268 (0.0128) 0.0912 (0.0604) 0.0185 (0.0097) 0.0465 (0.0225)

zero, the better the identifying ability is.

Tables 4–5 list the simulation results with different values of L in the Gaussian

cases. For the nonsparse settings, ISE0 and ISE1 of the proposed LocKer

method decrease with an increase in L, and are better than those of the PLSE.

Moreover, TP does not exist for nonsparse settings, so only FN is reported. Here,

both methods achieve zero-valued FN, which means no grid is falsely identified,

indicating that subintervals can be identified effectively for a coefficient function

without local sparsity by both methods.

For the sparse settings, the estimation of β0(t) becomes better as L increases.

However, both methods give the best estimation of β1(t) when L = 13. The reason

is related to the setting of β1(t). Recall that to ensure local sparsity of β1(t), we

use the B-spline basis with degree three and nine equally spaced interior knots

in the setup. Therefore, the B-spline basis used in the setup is coincided with

the B-spline basis applied in the estimation, yielding good performance of our

method for L = 13. Except when L = 13, a larger value of L can yield a better

estimation in terms of both accuracy and identifying ability. Compared with the

PLSE, our method produces estimates that are more precise for β0(t), but ISE1

is slightly higher than that of PLSE. However, for the identifying ability, the

proposed LocKer method is much better than the PLSE in terms of both TP and

FN, showing the advantage of our method in identifying zero-valued subintervals.

To sum up, although a larger value of L is beneficial for the identification

in some general cases, more B-spline basis functions mean more parameters in

the estimation, thus increasing the difficulty of the estimation. We discuss the

results for the Bernoulli and Poisson cases in the Supplementary Material.
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Table 4. The average ISE0, ISE1, TP, and FN across 100 runs for PLSE and LocKer
using various values of L when n = 200 and m = 15 in Gaussian cases, with standard
deviations in parentheses.

ISE0 ISE1 TP FN

L = 10

Nonsparse
PLSE 0.0120 (0.0054) 0.0196 (0.0064) – 0 (0)

LocKer 0.0115 (0.0039) 0.0139 (0.0048) – 0 (0)

Sparse
PLSE 0.0209 (0.0079) 0.0159 (0.0062) 0.1740 (0.2254) 0 (0)

LocKer 0.0099 (0.0036) 0.0169 (0.0060) 0.5564 (0.1486) 0 (0)

L = 13

Nonsparse
PLSE 0.0123 (0.0049) 0.0189 (0.0060) – 0 (0)

LocKer 0.0077 (0.0029) 0.0115 (0.0054) – 0 (0)

Sparse
PLSE 0.0209 (0.0075) 0.0070 (0.0049) 0.6109 (0.3012) 0 (0)

LocKer 0.0065 (0.0031) 0.0056 (0.0041) 0.9777 (0.0625) 0 (0)

L = 15

Nonsparse
PLSE 0.0093 (0.0038) 0.0186 (0.0064) – 0 (0)

LocKer 0.0063 (0.0025) 0.0095 (0.0054) – 0 (0)

Sparse
PLSE 0.0152 (0.0059) 0.0081 (0.0039) 0.3925 (0.2461) 0.0230 (0.0365)

LocKer 0.0053 (0.0022) 0.0161 (0.0072) 0.8619 (0.0461) 0.0195 (0.0359)

L = 20

Nonsparse
PLSE 0.0093 (0.0039) 0.0204 (0.0062) – 0 (0)

LocKer 0.0047 (0.0021) 0.0076 (0.0055) – 0 (0)

Sparse
PLSE 0.0179 (0.0065) 0.0098 (0.0049) 0.5022 (0.2323) 0.0786 (0.0619)

LocKer 0.0043 (0.0018) 0.0135 (0.0092) 0.9086 (0.0631) 0.0042 (0.0167)

Table 5. The average ISE0, ISE1, TP, and FN across 100 runs for PLSE and LocKer
using various values of L when n = 200 and m = 20 in Gaussian cases, with standard
deviations in parentheses.

ISE0 ISE1 TP FN

L = 10

Nonsparse
PLSE 0.0065 (0.0031) 0.0128 (0.0049) – 0 (0)

LocKer 0.0071 (0.0027) 0.0089 (0.0044) – 0 (0)

Sparse
PLSE 0.0128 (0.0057) 0.0136 (0.0051) 0.1621 (0.2108) 0 (0)

LocKer 0.0061 (0.0027) 0.0159 (0.0045) 0.5587 (0.1517) 0 (0)

L = 13

Nonsparse
PLSE 0.0066 (0.0029) 0.0131 (0.0045) – 0 (0)

LocKer 0.0045 (0.0020) 0.0075 (0.0046) – 0 (0)

Sparse
PLSE 0.0143 (0.0046) 0.0050 (0.0033) 0.6009 (0.2522) 0 (0)

LocKer 0.0038 (0.0016) 0.0049 (0.0034) 0.9838 (0.0542) 0 (0)

L = 15

Nonsparse
PLSE 0.0056 (0.0023) 0.0134 (0.0044) – 0 (0)

LocKer 0.0041 (0.0018) 0.0075 (0.0043) – 0 (0)

Sparse
PLSE 0.0092 (0.0035) 0.0064 (0.0035) 0.3104 (0.2266) 0.0126 (0.0261)

LocKer 0.0033 (0.0014) 0.0096 (0.0038) 0.8654 (0.0613) 0.0241 (0.0345)

L = 20

Nonsparse
PLSE 0.0065 (0.0024) 0.0150 (0.0047) – 0 (0)

LocKer 0.0035 (0.0018) 0.0057 (0.0039) – 0 (0)

Sparse
PLSE 0.0128 (0.0049) 0.0078 (0.0033) 0.5393 (0.1997) 0.0748 (0.0582)

LocKer 0.0028 (0.0015) 0.0073 (0.0033) 0.9484 (0.0242) 0.0116 (0.0268)

5. Real Data Analysis

Menopause in women is often accompanied by several physical changes.

For example, follicle stimulating hormone (FSH) begins to increase in the
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Figure 1. Observation times of FSH and TG for 100 randomly selected women.

perimenopausal stage (Wang et al. (2020)). Some studies showed that FSH has

an influence on cardiovascular disease (CVD) risk (El Khoudary et al. (2016);

Wang et al. (2017)). Serviente et al. (2019) propose that the association between

FSH and CVD risk may be related to the effect of FSH on lipid levels. In this

section, we aim to explore the relationship between FSH and triglycerides (TG),

one of the lipid variables, using the proposed LocKer method.

The Study of Womens Health Across the Nation (SWAN) focuses on the

health of women during their middle years. Between 1996 and 1997, 3302

women enrolled in this study, and 10 visits were conducted from 1997 to 2008.

Moreover, both FSH and TG were recorded in this study and the data can be

download from https://www.swanstudy.org/. Since TG was not measured in

the last two visits, only the baseline and the first eight visits are taken into

account in our analysis. Furthermore, we exclusively consider women who were

early perimenopause or pre-menopausal at the baseline. Then, after removing

individuals with no FSH or TG data, we have n = 3224 women in the study.

Figure 1 displays the observation times of FSH and TG for 100 randomly selected

women; note that the observation times are transformed to take values in [0, 1].

The figure shows that although some of the observation times for FSH and TG

are the same, the asynchronous problem remains, particularly on [0.2, 0.3] and

[0.8, 1], owing to the absence of TG records in the second and eighth visits.

We apply the LocKer method by treating FSH as the covariate and treating

TG as the response. Both FSH and TG are centralized after being log-

transformed. The roughness parameter and sparseness parameter are selected as

introduced in Section 2.4. Figure 2 shows the estimated coefficient function using

LocKer. Our results show a negative association between FSH and TG, which

is consistent with the findings of Wang et al. (2020). Furthermore, additional

https://www.swanstudy.org/
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Figure 2. Estimate of the coefficient function obtained using the proposed LocKer method
for the relationship between FSH and TG in women enrolled in the SWAN study.

findings can be achieved by local sparsity of our estimate. The estimate is zero-

valued in the early stage, indicating that FSH has a minor effect on TG at the

start of the menopausal transition. This effect begins to increase at about t = 0.5,

and reaches a maximum at around t = 0.8, which implies a stronger relationship

between FSH and TG in the later stage.

6. Conclusion

In this paper, we employ FDA method in the estimation of generalized

varying coefficient model. Moreover, we use the kernel technique to solve the

asynchronous problem, and impose a sparseness penalty to improve the accuracy

and interpretability of the estimates. Our theoretical study verifies both the

consistency and the sparsistency of the proposed LocKer method, and provides

an asymptotic distribution of the estimator. The results of extensive simulation

experiments and a practical application suggest that the LocKer method performs

well.

However, we focus on the generalized varying coefficient model, which means

only response and covariate values recorded at the same time are relevant. A

more general model can be expressed as

E{Y (t)|X(s), s ∈ T } = g

{
β0(t) +

∫
T
X(s)β1(s, t)ds

}
, t ∈ T .

In the above model, the response is related to the value of the covariate on the

whole interval T , rather than at one exact time point, which is more practical

in real-world data sets. In future research, we will consider the asynchronous

problem and local sparsity in this model in greater detail.
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Supplementary Material

The online Supplementary Material contains proofs of Theorems 1–3, and

some additional theoretical and simulation results.
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Supplementary Material

In the Supplementary Material, we first provide the proofs of Theorems 1–3. Then, the point-

wise asymptotic distributions of β̂0(t) and β̂1(t) are studied. Finally, some additional simulation

results are presented.

S1 Proof of Theorem 1

Proof of Theorem 1. The estimating equations are equivalent to

Un(γ) = n−1

n∑
i=1

Li∑
j=1

Mi∑
k=1

Kh(Tij − Sik)X̃
?

i (Sik)
[
Yi(Tij)− g

{
X̃
?

i (Sik)
>γ
}]
− N̄P̃1(γ)− N̄P̃2(γ) = 0,
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where N̄ = n−1
∑n

i=1 LiMi, P̃1(γ) = Vρ0,ρ1γ and P̃2(γ) = ∂PENλ(γ)
∂γ

. By

using counting process Ni(t, s), we can rewrite the estimating equations as

ψn(γ) = n−1

n∑
i=1

∫ ∫
Kh(t− s)X̃

?

i (s)[Yi(t)− g{X̃
?

i (s)
>γ}]dNi(t, s)− N̄P̃1(γ)− N̄P̃2(γ) = 0,

where Ni(t, s) =
∑Li

j=1

∑Mi

k=1 I(Tij < t, Sik < s) and I(·) is the indicator

function. Let αn = M1/2h2 + n−1/2M1/2h−1/2 + ρM−1/2 + M−r. We then

want to show that ∀γ ∈ {γ : γ0 + αnw, ‖w‖2 = C1},∀ε > 0, we have

P{ inf
‖w‖2=C1

ψn(γ)>ψn(γ) > ψn(γ0)>ψn(γ0)} ≥ 1− ε, (S1.1)

when constant C1 is large enough. It implies that there exists a local min-

imizer γ̂ in the ball {γ : γ0 + αnw, ‖w‖2 ≤ C1}, with probability at least

1− ε. That means ‖γ̂ − γ0‖2 = Op(αn).

Let

Uni(γ) =

∫ ∫
Kh(t− s)X̃

?

i (s)[Yi(t)− g{X̃
?

i (s)
>γ}]dNi(t, s)− N̄P̃1(γ)− N̄P̃2(γ).

Then ψn(γ) = n−1
∑n

i=1 Uni(γ). For Uni(γ), we have

Uni(γ) = Uni(γ0)−[ ∫ ∫
Kh(t− s)X̃

?

i (s)g
′{X̃

?

i (s)
>γ0}X̃

?

i (s)
>dNi(t, s) + N̄

∂P̃1(γ0)

∂γ0

+ N̄ · ∂P̃2(γ0)

∂γ0

]
αnw{1 + o(1)}

, Uni(γ0)− U (1)
ni (w).
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Therefore,

ψn(γ) =
1

n

n∑
i=1

{Uni(γ0)− U (1)
ni (w)} = ψn(γ0)− U (1)

n (w),

where U
(1)
n (w) = 1

n

∑n
i=1 U

(1)
ni (w). Then we have

ψn(γ)>ψn(γ)− ψn(γ0)>ψn(γ0) = U (1)
n (w)>U (1)

n (w)− 2ψn(γ0)>U (1)
n (w) , S1 − S2.

Let

A1 =
1

n

n∑
i=1

∫ ∫
Kh(t− s)X̃

?

i (s)g
′{X̃

?

i (s)
>γ0}X̃

?

i (s)
>dNi(t, s) + N̄

∂P̃1(γ0)

∂γ0

+ N̄ · ∂P̃2(γ0)

∂γ0

,

We have

S1 = ‖A1αnw‖2 ≥ O(M)λmin(A>1 A1)α2
n‖w‖2

2 = O(M)λmin(A1)2α2
n‖w‖2

2,

|S2| ≤ 2‖ψn(γ0)‖2S
1/2
1 ≤ 2‖ψn(γ0)‖2O(M1/2)λmax(A1)αn‖w‖2.

By Lemma 1 and Lemma 2, there exists constants C2 > 0, C3 > 0, such

that

S1 ≥ C2Mα2
n‖w‖2

2

|S2| ≤ C3M
1/2α2

n‖w‖2.

Then

S1 − S2 ≥ C2Mα2
n‖w‖2

2 − C3M
1/2α2

n‖w‖2.

Thus, when C1 is large enough, we have S1 − S2 > 0. Then (S1.1) is

obtained. So ‖γ̂(0) − γ
(0)
0 ‖2 = Op(αn) and ‖γ̂(1) − γ

(1)
0 ‖2 = Op(αn).
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Since ‖γ(0)>
0 B−β0‖∞ = O(M−r) by Assumption 1 (Zhong et al., 2021),

we have

‖β̂0 − β0‖∞ ≤ ‖β̂0 − γ
(0)>
0 B‖∞ + ‖γ(0)>

0 B− β0‖∞

= ‖(γ̂(0) − γ
(0)
0 )>B‖∞ + ‖γ(0)>

0 B− β0‖∞

≤ ‖γ̂(0) − γ
(0)
0 ‖∞

( L∑
j=1

Bj

)
+ ‖γ(0)>

0 B− β0‖∞

= ‖γ̂(0) − γ
(0)
0 ‖∞ + ‖γ(0)>

0 B− β0‖∞

= Op(αn) +Op(M
−r)

= Op(αn).

We can get ‖β̂1−β1‖∞ = Op(αn) in the same way. The proof is completed.

Lemma 1. Suppose that the conditions of Theorem 1 are satisfied, there

exists constants c1 > 0 and c2 > 0, such that c1 ≤ λmin(A1) ≤ λmax(A1) ≤

c2.

Proof. Let

B1 =
1

n

n∑
i=1

∫ ∫
Kh(t− s)X̃

?

i (s)g
′{X̃

?

i (s)
>γ0}X̃

?

i (s)
>dNi(t, s).
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Then

EB1 =

∫ ∫
Kh(t− s)E[X̃

?
(s)g′{X̃

?
(s)>γ0}X̃

?
(s)>]λ(t, s)dtds

=

∫ ∫
K(z)E[X̃

?
(s)g′{X̃

?
(s)>γ0}X̃

?
(s)>]λ(s+ hz, s)dzds

= {1 +O(h2)}
∫
E[X̃

?
(s)g′{X̃

?
(s)>γ0}X̃

?
(s)>]λ(s, s)ds.

First, EB1 is positive definite. In specific, if there exists a vector a,

such that

a>
∫
E[X̃

?
(s)g′{X̃

?
(s)>γ0}X̃

?
(s)>]λ(s, s)dsa = 0.

Then a>X̃
?
(s) = 0 for any s ∈ G with probability 1, which means a>1 B(s)+

a>2 B(s)X(s) = 0, where a1, a2 are the first and second L elements of a. By

Assumption 6, we have a = 0. That means all eigenvalues of EB1 are

positive.

Then, eigenvalues of EB1 are finite. Specifically, ∀b ∈ R2L satisfying
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‖b‖2 = 1, we have

b>
∫
E[X̃

?
(s)g′{X̃

?
(s)>γ0}X̃

?
(s)>]λ(s, s)dsb

=

∫
E[b>X̃

?
(s)X̃

?
(s)>bg′{X̃

?
(s)>γ0}]λ(s, s)ds

≤
∫
E[X̃

?
(s)>X̃

?
(s)g′{X̃

?
(s)>γ0}]λ(s, s)ds

=

∫
T

B(s)>B(s)E
[
g′{X̃

?
(s)>γ0}+X2(s)g′{X̃

?
(s)>γ0}

]
λ(s, s)ds

≤
∫
T

B(s)>B(s)E1/2
[
g′{X̃

?
(s)>γ0}2]λ(s, s)ds

+

∫
T

B(s)>B(s)E1/2
[
X4(s)g′{X̃

?
(s)>γ0}2]λ(s, s)ds <∞

The first inequality is derived by

b>X̃
?
(s)X̃

?
(s)>b =

{ 2L∑
j=1

bjX̃
?
j (s)

}2

≤
2L∑
j=1

b2
j

2L∑
j=1

X̃?2
j (s) = X̃

?
(s)>X̃

?
(s),

where X̃?
j (s) is the j-th element of X̃

?
(s). The last inequality can be ob-

tained by Assumption 2 and Assumption 5. Hence, eigenvalues of EB1 are

finite.

We have ‖A1−EB1‖1 ≤ ‖A1−B1‖1 + ‖B1−EB1‖1, where ‖ · ‖1 is the
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L1 norm for matrix. For ‖A1 −B1‖1,

‖A1 −B1‖1 =
∥∥∥N̄ ∂P̃1(γ0)

∂γ0

+ N̄ · ∂P̃2(γ0)

∂γ0

∥∥∥
1

=
∥∥∥N̄Vρ0,ρ1 +

N̄

2
· M + 1

T

∂2

∂γ2
0

∫
pλ(|B>(t)γ

(1)
0 |)dt

∥∥∥
1

≤N̄‖Vρ0,ρ1‖1 +
N̄

2
· M + 1

T

∥∥∥ ∂2

∂γ2
0

∫
pλ(|B>(t)γ

(1)
0 |)dt

∥∥∥
1

=N̄‖Vρ0,ρ1‖1 +
N̄

2
· M + 1

T

∥∥∥ ∂2

∂γ
(1)2
0

∫
pλ(|B>(t)γ

(1)
0 |)dt

∥∥∥
1

=N̄o(1) +
N̄

2
· M + 1

T
o(M−1) = op(1). (S1.2)

The third equality is derived by Assumption 3 according to Lin et al. (2017).

Moreover,

N̄ =
1

n

n∑
i=1

LiMi = n−1

n∑
i=1

Li∑
j=1

Mi∑
k=1

1 =
1

n

n∑
i=1

∫ ∫
dNi(t, s),

E
∣∣∣ ∫ ∫ dNi(t, s)

∣∣∣ = E
{∫ ∫

dNi(t, s)
}

=

∫ ∫
λ(t, s)dtds <∞.

Then by Markov inequality, we have N̄ = Op(1), which is used in the

derivation of the last equality of (S1.2). For ‖B1 − EB1‖1, let

ηj1j2 =
1

n

n∑
i=1

∫ ∫
Kh(t− s)X̃?

ij1
(s)g′{X̃

?

i (s)
>γ0}X̃?

ij2
(s)dNi(t, s).

Then ‖B1 − EB1‖1 =
∑2L

j1=1

∑2L
j2=1 |ηj1j2 − Eηj1j2|. Similar to the proof of
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Theorem 1 in Cao et al. (2015), we have

var(ηj1j2) =
1

n
var
[ ∫ ∫

Kh(t− s)X̃?
j1

(s)g′{X̃
?
(s)>γ0}X̃?

j2
(s)dN(t, s)

]
≤ 1

n
E
[ ∫ ∫

Kh(t− s)X̃?
j1

(s)g′{X̃
?
(s)>γ0}X̃?

j2
(s)dN(t, s)

]2

=
1

nh

∫ ∫
K2(z)E[X̃?2

j1
(s)g′{X̃

?
(s)>γ0}2X̃?2

j2
(s)]λ(s+ hz, s)dzds+O(n−1M−1)

=
1

nh

∫
K2(z)dz

∫
E[X̃?2

j1
(s)g′{X̃

?
(s)>γ0}2X̃?2

j2
(s)]λ(s, s)ds+O(n−1M−1)

= O(M−1n−1h−1).

The above derivation is obtained by Assumption 5 and
∫
B̃2
j1

(s)B̃2
j2

(s)λ(s, s)ds =

O(M−1), where B̃j(s) is the j-th element of B̃(s) = (B(s)>,B(s)>)>. Then

‖B1 − EB1‖1 = Op(M
3/2n−1/2h−1/2) = op(1). (S1.3)

Thus, by (S1.2) and (S1.3), we have ‖A1 − EB1‖1 = op(1). Since

|λmin(A1)− λmin(EB1)| ≤ ‖A1 − EB1‖1,

|λmax(A1)− λmax(EB1)| ≤ ‖A1 − EB1‖1,

eigenvalues of A1 are bounded away from 0 and infinity as eigenvalues of

EB1. The proof is completed.

Lemma 2. Suppose that the conditions of Theorem 1 are satisfied, ‖ψn(γ0)‖2 =

Op(αn).
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Proof. Let

Qn(γ0) = n−1

n∑
i=1

∫ ∫
Kh(t− s)X̃

?

i (s)[Yi(t)− g{X̃
?

i (s)
>γ0}]dNi(t, s).

Then

‖ψn(γ0)‖2 ≤ ‖Qn(γ0)‖2 + N̄‖P̃1(γ0)‖2 + N̄‖P̃2(γ0)‖2. (S1.4)

First, for Qn(γ0), we have

E‖Qn(γ0)‖2
2 = E{Qn(γ0)>Qn(γ0)} = tr[var{Qn(γ0)}] + E{Qn(γ0)}>E{Qn(γ0)}

=
1

nh
tr[var{h1/2Un1(γ0)}] + E{Qn(γ0)}>E{Qn(γ0)}. (S1.5)
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For E{Qn(γ0)}, we have

E{Qn(γ0)} =E
(∫ ∫

Kh(t− s)X̃
?
(s)[Y (t)− g{X̃

?
(s)>γ0}]dN(t, s)

)
=E
[
E
{∫ ∫

Kh(t− s)X̃
?
(s)Y (t)dN(t, s)

∣∣∣X̃?
}]

−
∫ ∫

Kh(t− s)E[X̃
?
(s)g{X̃

?
(s)>γ0}]λ(t, s)dtds

=

∫ ∫
Kh(t− s)E[X̃

?
(s)g{β0(t) +X(t)β1(t)}]λ(t, s)dtds

−
∫ ∫

Kh(t− s)E[X̃
?
(s)g{X̃

?
(s)>γ0}]λ(t, s)dtds

=

∫ ∫
Kh(t− s)E[X̃

?
(s)g{X̃

?
(t)>γ0 +R(0)

n (t) +X(t)R(1)
n (t)}]λ(t, s)dtds

−
∫ ∫

Kh(t− s)E[X̃
?
(s)g{X̃

?
(s)>γ0}]λ(t, s)dtds

=

∫ ∫
Kh(t− s)E[X̃

?
(s)g{X̃

?
(t)>γ0}]λ(t, s)dtds

−
∫ ∫

Kh(t− s)E[X̃
?
(s)g{X̃

?
(s)>γ0}]λ(t, s)dtds

+

∫ ∫
Kh(t− s)E[X̃

?
(s)g′{X̃

?
(t)>γ0}{R(0)

n (t) +X(t)R(1)
n (t)}]λ(t, s)dtds

+

∫ ∫
Kh(t− s)E[X̃

?
(s)g′{X̃

?
(t)>γ0}op{R(0)

n (t) +X(t)R(1)
n (t)}]λ(t, s)dtds

, I1 + I2 + I3, (S1.6)

where R
(0)
n (t) = β0(t)−B>(t)γ

(0)
0 and R

(1)
n (t) = β1(t)−B>(t)γ

(1)
0 .

Let Fγ0(s, hz) = E[X̃
?
(s)g{X̃

?
(s+hz)>γ0}]. Then by Taylor expansion,

I1 =

∫ ∫
K(z){Fγ0(s, hz)− Fγ0(s, 0)}λ(s+ hz, s)dzds

= Ch2 + o(h2),
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where

C =

∫
z2K(z)dz

∫ {∂Fγ0(s, y)

∂y

∣∣∣
y=0
· ∂λ(x, s)

∂x

∣∣∣
x=s

+
1

2

∂2Fγ0(s, y)

∂y2

∣∣∣
y=0
· λ(s, s)

}
ds.

So we have

I>1 I1 = O(Mh4). (S1.7)

Let

Ĩ2 =

∫ ∫
Kh(t− s)E[X̃

?
(s)g′{X̃

?
(t)>γ0}{1 +X(t)}]λ(t, s)dtds.

Then we have |I2| ≤ WM−r|Ĩ2|, where W is a constant. Further, by Taylor

expansion,

Ĩ2 =

∫ ∫
K(z)E[X̃

?
(s)g′{X̃

?
(s+ hz)>γ0}{1 +X(s+ hz)}]λ(s+ hz, s)dzds

=

∫
E[X̃

?
(s)g′{X̃

?
(s)>γ0}{1 +X(s)}]λ(s, s)ds+O(h2).

Further,∫
E[X̃

?
(s)g′{X̃

?
(s)>γ0}{1 +X(s)}]λ(s, s)ds

=

∫
E[X̃

?
(s)g′{X̃

?
(s)>γ0}]λ(s, s)ds+

∫
E[X̃

?
(s)g′{X̃

?
(s)>γ0}X(s)]λ(s, s)ds.

According to Assumption 5, for j = 1, . . . , L, there exists a constant C4

such that∣∣∣ ∫ E[X̃?
j (s)g′{X̃

?
(s)>γ0}]λ(s, s)ds

∣∣∣ =
∣∣∣ ∫ Bj(s)E[g′{X̃

?
(s)>γ0}]λ(s, s)ds

∣∣∣
≤
∫
Bj(s)E

1/2[g′{X̃
?
(s)>γ0}2]λ(s, s)ds ≤ C4

∫
Bj(s)λ(s, s)ds,
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∣∣∣ ∫ E[X̃?
j (s)g′{X̃

?
(s)>γ0}X(s)]λ(s, s)ds

∣∣∣ =
∣∣∣ ∫ Bj(s)E[X(s)g′{X̃

?
(s)>γ0}]λ(s, s)ds

∣∣∣
≤
∫
Bj(s)E

1/2[X2(s)g′{X̃
?
(s)>γ0}2]λ(s, s)ds ≤ C4

∫
Bj(s)λ(s, s)ds,

Similarly, for j = L+ 1, . . . , 2L, there exists a constant C5 such that∣∣∣ ∫ E[X̃?
j (s)g′{X̃

?
(s)>γ0}]λ(s, s)ds

∣∣∣ ≤ C5

∫
Bj(s)λ(s, s)ds,∣∣∣ ∫ E[X̃?

j (s)g′{X̃
?
(s)>γ0}X(s)]λ(s, s)ds

∣∣∣ ≤ C5

∫
Bj(s)λ(s, s)ds,

Let C6 = 2 max(C4, C5), we have∣∣∣ ∫ E[X̃
?
(s)g′{X̃

?
(s)>γ0}{1 +X(s)}]λ(s, s)ds

∣∣∣ ≤ C6

∫
B̃(s)λ(s, s)ds.

On the other hand, by Assumption 2, there exists a constant C7 such that∥∥∥∫ B̃(s)λ(s, s)ds
∥∥∥2

2
=

2L∑
j=1

{∫
B̃j(s)λ(s, s)ds

}2

≤ C7

2L∑
j=1

{∫
B̃j(s)ds

}2

≤ 2 · C7

L∑
j=1

‖Bj‖2
2 = O(1).

Hence, ∥∥∥∫ E[X̃
?
(s)g′{X̃

?
(s)>γ0}{1 +X(s)}]λ(s, s)ds

∥∥∥2

2
<∞.

Further,

Ĩ>2 Ĩ2 ≤ 2
∥∥∥∫ E[X̃

?
(s)g′{X̃

?
(s)>γ0}{1 +X(s)}]λ(s, s)ds

∥∥∥2

2
+O(Mh4) <∞.

Therefore, I>2 I2 = O(M−2r). Moreover, we have I>3 I3 = o(M−2r). Then by

(S1.6) and (S1.7),

E{Qn(γ0)}>E{Qn(γ0)} = O(Mh4 +M−2r). (S1.8)



S1. PROOF OF THEOREM 1

On the other hand,

var{h1/2Un1(γ0)} = var
(∫ ∫

h1/2Kh(t− s)X̃
?
(s)[Y (t)− g{X̃

?
(s)>γ0}]dN(t, s)

)
=hE

[
var
{∫ ∫

Kh(t− s)X̃
?
(s)Y (t)dN(t, s)|X(s), s ∈ T , N(t, s), (t, s) ∈ T 2

}]
+ hvar

(∫ ∫
Kh(t− s)X̃

?
(s)[g{β0(t) + β1(t)X(t)} − g{X̃

?
(s)>γ0}]dN(t, s)

)
,D1 +D2. (S1.9)

According to the derivation of (19) and (20) in Cao et al. (2015), we have

D1 =

∫
K2(z)dz

∫
E{X̃

?
(s)X̃

?
(s)>}σ{s,X(s)}2λ(s, s)ds+O(h).

(S1.10)

For D2, by Taylor expansion, we have

D2 =hvar
(∫ ∫

Kh(t− s)X̃
?
(s)
[
g{X̃

?
(t)>γ0 +R(0)

n (t) +X(t)R(1)
n (t)} − g{X̃

?
(s)>γ0}

]
dN(t, s)

)
=hvar

(∫ ∫
Kh(t− s)X̃

?
(s)
[
g{X̃

?
(t)>γ0} − g{X̃

?
(s)>γ0}

+ g′{X̃
?
(t)>γ0}{R(0)

n (t) +X(t)R(1)
n (t)}+ o{R(0)

n (t) +X(t)R(1)
n (t)}

]
dN(t, s)

)
,hvar

{∫ ∫
Kh(t− s)X̃

?
(s)G(t, s)dN(t, s)

}
=hE

{∫ ∫ ∫ ∫
Kh(t1 − s1)Kh(t2 − s2)X̃

?
(s1)X̃

?
(s2)>G(t1, s1)G(t2, s2)dN(t1, s1)dN(t2, s2)

}
− h
[ ∫ ∫

Kh(t− s)E{X̃
?
(s)G(t, s)}λ(t, s)dtds

]2

,D21 −D22.
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For D21, we have

D21 =h

∫
t1 6=t2

∫
s1 6=s2

Kh(t1 − s1)Kh(t2 − s2)E{X̃
?
(s1)X̃

?
(s2)>G(t1, s1)G(t2, s2)}

· f(t1, s1, t2, s2)λ(t2, s2)dt1dt2ds1ds2

+ h

∫
t1

∫
s1 6=s2

Kh(t1 − s1)Kh(t1 − s2)E{X̃
?
(s1)X̃

?
(s2)>G(t1, s1)G(t1, s2)}

· f(t1, s1, t1, s2)λ(t1, s2)dt1ds1ds2

+ h

∫
t1 6=t2

∫
s1

Kh(t1 − s1)Kh(t2 − s1)E{X̃
?
(s1)X̃

?
(s1)>G(t1, s1)G(t2, s1)}

· f(t1, s1, t2, s1)λ(t2, s1)dt1dt2ds1

+ h

∫
t1

∫
s1

Kh(t1 − s1)2E{X̃
?
(s1)X̃

?
(s1)>G(t1, s1)2}λ(t1, s1)dt1ds1

Through Taylor expansion, we can get that the first three terms are of order

O(hM−2r + h3) and the last term is of order O(M−2r + h2) element-wise.

Moreover, D22 = O(hM−2r + h3) by Taylor expansion. That means

D2 = O(M−2r + h2). (S1.11)

Similar to the proof of Lemma 1, under Assumption 5, we have that the

eigenvalues of
∫
E{X̃

?
(s)X̃

?
(s)>}σ{s,X(s)}2λ(s, s)ds are bounded away

from 0 and infinity. Thus, according to (S1.9)-(S1.11), we have var{h1/2Un1(γ0)} =

O(1). Then

1

nh
tr[var{h1/2Un1(γ0)}] = O(n−1Mh−1). (S1.12)
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By combining (S1.5), (S1.8) and (S1.12), we can get E‖Qn(γ0)‖2
2 = O(Mh4+

M−2r + n−1Mh−1). Therefore,

‖Qn(γ0)‖2 = Op(M
1/2h2 +M−r + n−1/2M1/2h−1/2). (S1.13)

For N̄‖P̃1(γ0)‖2 and N̄‖P̃2(γ0)‖2, we have

P̃1(γ0)>P̃1(γ0) = γ>0 V>ρ0,ρ1Vρ0,ρ1γ0 = O(ρ2M−1), (S1.14)

P̃2(γ0)>P̃2(γ0) =
∥∥∥M + 1

2T

∂

∂γ
(1)
0

∫
T
pλ(|B(t)>γ

(1)
0 |)dt

∥∥∥2

2
.

Refer to Lin et al. (2017), by Assumption 3,

∣∣∣ ∂

∂γ0j

∫
T
pλ(|B(t)>γ

(1)
0 |)dt

∣∣∣ = O(n−1/2M−2), j = L+ 1, . . . , 2L.

Thus,

P̃2(γ0)>P̃2(γ0) = O(n−1M−1). (S1.15)

As N̄ = Op(1), by (S1.14) and (S1.15), we have

N̄‖P̃1(γ0)‖2 = Op(ρM
−1/2), (S1.16)

N̄‖P̃2(γ0)‖2 = Op(n
−1/2M−1/2). (S1.17)

By combining (S1.4), (S1.13), (S1.16) and (S1.17), we have ‖ψn(γ0)‖2 =

Op(M
1/2h2 + M−r + n−1/2M1/2h−1/2 + ρM−1/2) = Op(αn). The proof is

completed.
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S2 Proof of Theorem 2

Define

T1 = {t ∈ T : |β1(t)| > aC8(λ+M−r)},

T2 = {t ∈ T : β1(t) = 0},

T3 = T − T1 − T2.

We further define Sl = SUPP(Bl), l = 1, . . . , L. Let Aj = {l : Sl ⊂ Tj}, j =

1, 2, and A3 = {1, . . . , L} − A1 −A2.

Proof of Theorem 2. Let U
(l)
n (γ) be the (L + l)-th element of Un(γ) and

Q
(l)
n (γ) be the (L+ l)-th element of Qn(γ). For l ∈ A2,

U (l)
n (γ) =n−1

n∑
i=1

∫ ∫
Kh(t− s)X̃il(s)[Yi(t)− g{X̃

?

i (s)
>γ}]dNi(t, s)

− N̄ · (ρ1Vγ)l −
N̄

2
· M + 1

T

∂

∂γ
(1)
l

∫
pλ(|B(t)>γ(1)|)dt

=Q(l)
n (γ)− N̄(ρ1Vγ)l −

N̄

2
· M + 1

T

∫
p′λ(|B(t)>γ(1)|)Bl(t)sgn(γ

(1)
l )dt.
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Then∣∣∣∣∣λ−1U (l)
n (γ̂) +

N̄

2
· M + 1

T
sgn(γ̂

(1)
l )

∫
λ−1p′λ(|B(t)>γ(1)|)

∣∣∣
γ(1)=γ̂(1)

Bl(t)dt

∣∣∣∣∣
=λ−1

∣∣Q(l)
n (γ̂)− N̄ · (ρ1Vγ̂)l

∣∣ ≤ λ−1
∣∣Q(l)

n (γ̂)
∣∣+ λ−1N̄

∣∣(ρ1Vγ̂)l
∣∣

=λ−1

∣∣∣∣∣Q(l)
n (γ0) +

2L∑
j=1

∂Q
(l)
n (γ)

∂γg

∣∣∣
γ=γ?0

(γ̂g − γ0g)

∣∣∣∣∣+ λ−1Op(ρM
−1)

≤λ−1
∣∣Q(l)

n (γ0)
∣∣+ λ−1

2L∑
j=1

∣∣∣∣∣∂Q(l)
n (γ)

∂γg

∣∣∣
γ=γ?0

∣∣∣∣∣ · |γ̂g − γ0g|+ λ−1Op(ρM
−1),

(S2.18)

where γ?0 lies between γ0 and γ̂. According to the derivation of Lemma

2, we have var{h1/2Un1(γ0)} = O(1). Thus, var{Q(l)
n (γ0)} = O(n−1h−1).

Then

∣∣Q(l)
n (γ0)− EQ(l)

n (γ0)
∣∣ = Op(n

−1/2h−1/2). (S2.19)

Moreover, based on the computation of E{Qn(γ0)} in the proof of Lemma

2,

∣∣EQ(l)
n (γ0)

∣∣ = O(h2). (S2.20)

By combining (S2.19) and (S2.20), we can get

∣∣Q(l)
n (γ0)

∣∣ = Op(n
−1/2h−1/2 + h2) = Op(n

−1/2h−1/2). (S2.21)

On the other hand,

∂Q
(l)
n (γ)

∂γg

∣∣∣
γ=γ?0

= − 1

n

n∑
i=1

∫ ∫
Kh(t− s)X̃il(s)g

′{X̃
?

i (s)
>γ?0}X̃?

ig(s)dNi(t, s).
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Similar to the computation of var(ηj1j2) in the proof of Lemma 1, we have

var
{
∂Q

(l)
n (γ)
∂γg

∣∣∣
γ=γ?0

}
= O(M−1n−1h−1). Then

∣∣∣∣∣∂Q(l)
n (γ)

∂γg

∣∣∣
γ=γ?0

− E
{∂Q(l)

n (γ)

∂γg

∣∣∣
γ=γ?0

}∣∣∣∣∣ = Op(M
−1/2n−1/2h−1/2). (S2.22)

Furthermore, by Taylor expansion and Assumption 5, we have∣∣∣∣∣E{∂Q(l)
n (γ)

∂γg

∣∣∣
γ=γ?0

}∣∣∣∣∣ =

∣∣∣∣∣
∫ ∫

Kh(t− s)E[X̃il(s)g
′{X̃

?

i (s)
>γ?0}X̃?

ig(s)]λ(t, s)dtds

∣∣∣∣∣ = O(M−1).

(S2.23)

By combining (S2.22) and (S2.23), we have∣∣∣∣∣∂Q(l)
n (γ)

∂γg

∣∣∣
γ=γ?0

∣∣∣∣∣ = Op(M
−1/2n−1/2h−1/2 +M−1) = Op(M

−1).

Since |γ̂g − γ0g| = Op(n
−1/2M1/2h−1/2), we have

2L∑
j=1

∣∣∣∣∣∂Q(l)
n (γ)

∂γg

∣∣∣
γ=γ?0

∣∣∣∣∣ · |γ̂g − γ0g| = Op(n
−1/2M1/2h−1/2). (S2.24)

Then by (S2.18), (S2.21) and (S2.24), we have∣∣∣∣∣λ−1U (l)
n (γ̂) +

N̄

2
· M + 1

T
sgn(γ̂

(1)
l )

∫
λ−1p′λ(|B(t)>γ(1)|)

∣∣∣
γ(1)=γ̂(1)

Bl(t)dt

∣∣∣∣∣
=Op(λ

−1n−1/2h−1/2 + λ−1n−1/2M1/2h−1/2 + λ−1ρM−1)→ 0.

Therefore, λ−1U
(l)
n (γ̂) and− N̄

2
·M+1

T
sgn(γ̂

(1)
l )
∫
λ−1p′λ(|B(t)>γ(1)|)

∣∣∣
γ(1)=γ̂(1)

Bl(t)dt

share the same sign. Since U
(l)
n (γ̂) = 0 and lim infn→∞ lim infx→0+ λ

−1p′λ(x) >

0, we have γ̂
(1)
l = 0 in probability for all l ∈ A2.



S2. PROOF OF THEOREM 2

Define Â2 = {l ∈ A2 : γ̂
(1)
l = 0}. Then we have Â2 = A2 in probability.

Based on the compact support property of B-spline basis,
⋃
l∈A2
Sl converges

to NULL(β1) as M →∞. Therefore,

⋃
l∈Â2

Sl → NULL(β1) (S2.25)

in probability. Moreover, by the definition, we have for any ε > 0, there

exists sufficient large n and M , such that

⋃
l∈Â2

Sl ⊂ NULLε(β̂1), (S2.26)

where NULLε(β̂1) is the ε-neighborhood of NULL(β̂1). Here the ε-neighborhood

of a subset G of T is defined by {t ∈ T : infu∈G |u − t| < ε}. According

to Theorem 1, we have ‖β̂1 − β1‖∞ = Op(n
−1/2M1/2h−1/2 + M−r). Since

n−1/2M1/2h−1/2 is dominated by λ, we also have ‖β̂1−β1‖∞ = Op(λ+M−r).

So for t ∈ T1, there exists a constant C9 > 1 such that |β̂1(t) − β1(t)| ≤

aC9(λ + M−r) in probability. Let C8 = 2C9. As |β1(t)| > aC8(λ + M−r),

we have |β̂1(t)| ≥ aC9(λ + M−r) > aλ in probability. Thus, we have

t ∈ SUPP(β̂1) in probability. That means T1 ⊂ SUPP(β̂1) in probability.

So as n→∞ and M →∞,

NULL(β̂1) ⊂ T2 ∪ T3 = NULL(β1) ∪ T3. (S2.27)

Since T3 → ∅ in probability and NULL(β̂1) is closed, we have NULL(β̂1)→
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NULL(β1) and SUPP(β̂1)→ SUPP(β1) in probability by (S2.25) - (S2.27).

The proof is completed.

S3 Proof of Theorem 3

Proof of Theorem 3. By Taylor expansion, we have

Yi(t)− g{X̃
?

i (s)
>γ̂} = Yi(t)− g{ηi(s,β0)} − g′{ηi(s,β0)}[X̃

?

i (s)
>(γ̂ − γ0)− ei(s)]{1 + op(1)},

where ei(s) = R
(0)
n (s) +Xi(t)R

(1)
n (s). Then

ψn(γ̂) =n−1

n∑
i=1

∫ ∫
Kh(t− s)X̃

?

i (s)[Yi(t)− g{X̃
?

i (s)
>γ̂}]dNi(t, s)− N̄P̃1(γ̂)− N̄P̃2(γ̂)

=n−1

n∑
i=1

∫ ∫
Kh(t− s)X̃

?

i (s)[Yi(t)− g{ηi(s,β0)}]dNi(t, s)− N̄P̃1(γ0)− N̄P̃2(γ0)

−
[
n−1

n∑
i=1

∫ ∫
Kh(t− s)X̃

?

i (s)g
′{ηi(s,β0)}X̃

?

i (s)
>dNi(t, s)

]
(γ̂ − γ0){1 + op(1)}

+
[
n−1

n∑
i=1

∫ ∫
Kh(t− s)X̃

?

i (s)g
′{ηi(s,β0)}ei(s)dNi(t, s)

]
{1 + op(1)}

− N̄{P̃1(γ̂)− P̃1(γ0)} − N̄{P̃2(γ̂)− P̃2(γ0)}. (S3.28)
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Moreover,

N̄{P̃1(γ̂)− P̃1(γ0)} = N̄Vρ0,ρ1(γ̂ − γ0),

N̄{P̃2(γ̂)− P̃2(γ0)} = N̄ · M + 1

2T

{
∂

∂γ0

∫
T
pλ(|B(t)>γ

(1)
0 |)dt−

∂

∂γ̂

∫
T
pλ(|B(t)>γ̂(1)|)dt

}

= N̄ · M + 1

2T
·

{
∂2

∂γ2
0

∫
T
pλ(|B(t)>γ

(1)
0 |)dt

}
· (γ̂ − γ0){1 + op(1)}.

Then, (S3.28) can be written as

ψn(γ̂) =n−1

n∑
i=1

∫ ∫
Kh(t− s)X̃

?

i (s)[Yi(t)− g{ηi(s,β0)}]dNi(t, s)

− {Ωn + op(1)}(γ̂ − γ0) + γn,

where

Ωn = n−1

n∑
i=1

∫ ∫
Kh(t− s)X̃

?

i (s)g
′{ηi(s,β0)}X̃

?

i (s)
>dNi(t, s),

γn = −N̄P̃1(γ0)− N̄P̃2(γ0) + n−1

n∑
i=1

∫ ∫
Kh(t− s)X̃

?

i (s)g
′{ηi(s,β0)}ei(s)dNi(t, s).

As ψn(γ̂) = 0, we have

γ̂ − γ0 = {Ωn + op(1)}−1

(
n−1

n∑
i=1

∫ ∫
Kh(t− s)X̃

?

i (s)[Yi(t)− g{ηi(s,β0)}]dNi(t, s) + γn

)
.

(S3.29)

According to the derivation of I>2 I2 = O(M−2r) in the proof of Lemma 2,

we have

∥∥∥n−1

n∑
i=1

∫ ∫
Kh(t− s)X̃

?

i (s)g
′{ηi(s,β0)}ei(s)dNi(t, s)

∥∥∥
2

= Op(M
−r).
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Through (S1.16) and (S1.17),

N̄‖P̃1(γ0)‖2 = Op(ρM
−1/2),

N̄‖P̃2(γ0)‖2 = Op(n
−1/2M−1/2).

Then, it follows that

nh(γ̂ − γ0)>Ω2
n(γ̂ − γ0) +Op(1) = n−1

n∑
i,j

P>i Pj, (S3.30)

where

Pi = h1/2

∫ ∫
Kh(t− s)X̃

?

i (s)[Yi(t)− g{ηi(s,β0)}]dNi(t, s).

Since Op(1/
√

2tr(Σ2
0)) = op(1), we then want to show that

n−1
∑n

i,j P
>
i Pj − tr(Σ0)√

2tr(Σ2
0)

d−→ N(0, 1). (S3.31)

Here Σ0 = var(Pi). Let ∆0 = E(Pi). By using similar technique in the

proof of Lemma 2, we have

∆>0 ∆0 = O(Mh5),

tr(Σl
0) = O(M), l = 1, 2, 4.
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The proof of (S3.31) is analogous to the proof of Theorem 4 in Li et al.

(2020), so we just briefly introduce the idea here. First, we have

n−1

n∑
i,j

P>i Pj − n∆>0 ∆0 − tr(Σ0)

=n−1

n∑
i 6=j

(Pi −∆0)>(Pj −∆0) +
{
n−1

n∑
i=1

(Pi −∆0)>(Pi −∆0)− tr(Σ0)
}

+ n−1

n∑
i,j

(P>i ∆0 + P>j ∆0 − 2∆>0 ∆0) , Q1 +Q2 +Q3. (S3.32)

Then through Corollary 3.1 of Hall and Heyde (1980), it can be shown that

Q1

σn

d−→ N(0, 1),

where σn =
√

2tr(Σ2
0). Furthermore, as

E(Q2) = E(Q3) = 0, var(Q2) ≤ O(n−1tr2(Σ0)), var(Q3) = O(nh5M2),

we have

Q2

σn
≤ Op(n

−1/2M1/2) = op(1),
Q3

σn
= Op(n

1/2h5/2M1/2) = op(1).

Moreover,

n∆>0 ∆0

σn
= Op(nh

5M1/2) = op(1).

Therefore, by (S3.32),

n−1
∑n

i,j P
>
i Pj − tr(Σ0)√

2tr(Σ2
0)

=
Q1

σn
+ op(1)

d−→ N(0, 1).
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Hence, according to (S3.30), we have

nh(γ̂ − γ0)>Ω2
n(γ̂ − γ0)− tr(Σ0)√
2tr(Σ2

0)

d−→ N(0, 1).

The proof is completed.

S4 Point-wise asymptotic distribution

Theorem 4. Suppose that the conditions of Theorem 2 are satisfied, then

for any point t ∈ T , we have

√
nh{β̂0(t)− β0(t)} d−→ N(0, σ2

0(t)),

√
nh{β̂1(t)− β1(t)} d−→ N(0, σ2

1(t)),

where σ2
0(t) = lim

n→∞
B̃0(t)>Ω−1

X ΣXΩ−1
X B̃0(t), σ2

1(t) = lim
n→∞

B̃1(t)>Ω−1
X ΣXΩ−1

X B̃1(t),

B̃0(t) = (B(t)>,0>)>, B̃1(t) = (0>,B(t)>)>, 0 is a zero-valued vector with

length L, and

ΩX =

∫
E{X̃

?
(s)X̃

?
(s)>}g′{ηi(s,β0)}λ(s, s)ds,

ΣX =

∫
K2(z)dz

∫
E{X̃

?
(s)X̃

?
(s)>}σ{s,X(s)}2λ(s, s)ds.

Proof of Theorem 4. For any t ∈ T , we have

√
nh{β̂1(t)− β1(t)} =

√
nhB̃1(t)>(γ̂ − γ0) +

√
nh{B̃1(t)>γ0 − β1(t)}.

(S4.33)
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First, by Assumption 1, we have

sup
t

√
nh|B̃1(t)>γ0 − β1(t)| = Op(n

1/2h1/2M−r) = op(1). (S4.34)

On the other hand, by (S3.29), we have

√
nhB̃1(t)>(γ̂ − γ0)

=
√
nhB̃1(t)>{Ωn + op(1)}−1

(
n−1

n∑
i=1

∫ ∫
Kh(t− s)X̃

?

i (s)[Yi(t)− g{ηi(s,β0)}]dNi(t, s) + γn

)

=F1 + F2, (S4.35)

where

F1 =
√
nhB̃1(t)>{Ωn + op(1)}−1

(
n−1

n∑
i=1

∫ ∫
Kh(t− s)X̃

?

i (s)[Yi(t)− g{ηi(s,β0)}]dNi(t, s)

)
,

F2 =
√
nhB̃1(t)>{Ωn + op(1)}−1γn.

According to the proof of Theorem 3, it can be shown that

‖F2‖2 = op(1). (S4.36)

For F1, let

φi =
√
nhn−1B̃1(t)>{Ωn + op(1)}−1

∫ ∫
Kh(t− s)X̃

?

i (s)[Yi(t)− g{ηi(s,β0)}]dNi(t, s).

Then F1 =
∑n

i=1 φi. Similar to the proof of Theorem 1 in Cao et al. (2015),

we also have

n∑
i=1

E{|φi − Eφi|3} = nO(n3/2h3/2n−3h−2) = O(n−1/2h−1/2),
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which verifies the Lyapunov condition. Hence, we have

n∑
i=1

(φi − Eφi)
d−→ N(0, σ2

1(t)),

where σ2
1(t) can be obtained analogously to the computation of var{h1/2Un1(γ0)}

in (S1.9). Moreover, we have ‖
∑n

i=1Eφi‖2
2 = o(1) by (S1.7). Therefore,

F1
d−→ N(0, σ2

1(t)). (S4.37)

Then combining (S4.33)-(S4.36), we have

√
nh{β̂1(t)− β1(t)} d−→ N(0, σ2

1(t)).

The asymptotic normality of β0(t) can be derived in the same way. The

proof is completed.

S5 Additional simulation studies

S5.1 The effect of L

In this section, we report the simulation results of LocKer and PLSE meth-

ods with the use of various values of L in Bernoulli and Poisson cases. The

settings are the same as settings in Section 4.1, except that the observation

times of response and covariate are set to be synchronous. Tables 1-2 pro-

vide the averaged ISE0, ISE1, TP and FN for Bernoulli cases. Here PLSE
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becomes invalid because it only adapts to regression model with Gaussian

response. For identifying ability of the proposed LocKer method, it also

performs the best when using L = 13 for the sparse setting, which is caused

by the same reason as Gaussian cases. However, we find that large value

of L does not improve the estimation here. We conjecture the reason is

that large value of L can bring more parameters in the estimation, which

is quite adverse for Bernoulli cases. Furthermore, Tables 3-4 present the

simulation results for Poisson cases. It is shown that for Poisson cases, large

value of L can bring helps to the estimation of our method in terms of both

accuracy and identifying ability. But large value of L would complicate the

estimation, which should also be taken into account.
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Table 1: The averaged ISE0, ISE1, TP and FN across 100 runs for PLSE and LocKer

using various values of L when n = 200,m = 15 in Bernoulli cases, with standard

deviation in parentheses.

ISE0 ISE1 TP FN

L = 10

Nonsparse
PLSE 0.5297 (0.0156) 0.3267 (0.0218) – 0 (0)

LocKer 0.0242 (0.0098) 0.0315 (0.0207) – 0 (0)

Sparse
PLSE 0.5337 (0.0147) 0.4211 (0.0181) 0.2287 (0.2756) 0 (0)

LocKer 0.0184 (0.0089) 0.0839 (0.0447) 0.6082 (0.2252) 0 (0)

L = 13

Nonsparse
PLSE 0.5340 (0.0192) 0.3225 (0.0289) – 0 (0)

LocKer 0.0189 (0.0092) 0.0328 (0.0226) – 0 (0)

Sparse
PLSE 0.5320 (0.0126) 0.4195 (0.0167) 0.3110 (0.2518) 0 (0)

LocKer 0.0162 (0.0076) 0.0857 (0.0533) 0.8307 (0.1817) 0 (0)

L = 15

Nonsparse
PLSE 0.5302 (0.0200) 0.3280 (0.0283) – 0 (0)

LocKer 0.0194 (0.0080) 0.0319 (0.0217) – 0 (0)

Sparse
PLSE 0.5304 (0.0126) 0.4214 (0.0149) 0.2232 (0.2158) 0.0339 (0.0474)

LocKer 0.0158 (0.0085) 0.0985 (0.0385) 0.8084 (0.1222) 0.0196 (0.0420)

L = 20

Nonsparse
PLSE 0.5238 (0.0190) 0.3408 (0.0299) – 0.0140 (0.0289)

LocKer 0.0163 (0.0083) 0.0314 (0.0220) – 0 (0)

Sparse
PLSE 0.5259 (0.0122) 0.4224 (0.0114) 0.2918 (0.2206) 0.0646 (0.0646)

LocKer 0.0141 (0.0074) 0.0966 (0.0379) 0.7865 (0.1106) 0.0031 (0.0158)
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Table 2: The averaged ISE0, ISE1, TP and FN across 100 runs for PLSE and LocKer

using various values of L when n = 200,m = 20 in Bernoulli cases, with standard

deviation in parentheses.

ISE0 ISE1 TP FN

L = 10

Nonsparse
PLSE 0.5332 (0.0174) 0.3178 (0.0238) – 0 (0)

LocKer 0.0148 (0.0069) 0.0225 (0.0165) – 0 (0)

Sparse
PLSE 0.5362 (0.0113) 0.4174 (0.0112) 0.1601 (0.1962) 0 (0)

LocKer 0.0130 (0.0067) 0.0597 (0.0265) 0.6826 (0.1948) 0 (0)

L = 13

Nonsparse
PLSE 0.5305 (0.0184) 0.3243 (0.0270) – 0 (0)

LocKer 0.0135 (0.0057) 0.0228 (0.0155) – 0 (0)

Sparse
PLSE 0.5339 (0.0107) 0.4186 (0.0120) 0.2811 (0.2380) 0 (0)

LocKer 0.0117 (0.0070) 0.0607 (0.0327) 0.8926 (0.1584) 0 (0)

L = 15

Nonsparse
PLSE 0.5332 (0.0170) 0.3222 (0.0266) – 0 (0)

LocKer 0.0133 (0.0064) 0.0237 (0.0147) – 0 (0)

Sparse
PLSE 0.5318 (0.0116) 0.4184 (0.0126) 0.3171 (0.2334) 0.0401 (0.0520)

LocKer 0.0112 (0.0060) 0.0716 (0.0365) 0.8462 (0.0844) 0.0252 (0.0389)

L = 20

Nonsparse
PLSE 0.5252 (0.0202) 0.3338 (0.0284) – 0.0105 (0.0254)

LocKer 0.0115 (0.0054) 0.0228 (0.0149) – 0 (0)

Sparse
PLSE 0.5268 (0.0120) 0.4247 (0.0136) 0.3450 (0.2281) 0.0875 (0.0595)

LocKer 0.0116 (0.0065) 0.0741 (0.0382) 0.8549 (0.1199) 0.0035 (0.0154)
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Table 3: The averaged ISE0, ISE1, TP and FN across 100 runs for PLSE and LocKer

using various values of L when n = 200,m = 15 in Poisson cases, with standard deviation

in parentheses.

ISE0 ISE1 TP FN

L = 10

Nonsparse
PLSE 1.6899 (0.0574) 0.3516 (0.0719) – 0 (0)

LocKer 0.0090 (0.0037) 0.0134 (0.0040) – 0 (0)

Sparse
PLSE 1.4547 (0.0712) 0.0921 (0.0402) 0.2177 (0.2269) 0 (0)

LocKer 0.0117 (0.0044) 0.0286 (0.0113) 0.6507 (0.1580) 0 (0)

L = 13

Nonsparse
PLSE 1.7498 (0.0713) 0.3881 (0.1143) – 0 (0)

LocKer 0.0069 (0.0036) 0.0116 (0.0040) – 0 (0)

Sparse
PLSE 1.5041 (0.0708) 0.0842 (0.0382) 0.2127 (0.2165) 0 (0)

LocKer 0.0090 (0.0036) 0.0112 (0.0099) 0.9550 (0.1115) 0 (0)

L = 15

Nonsparse
PLSE 1.7761 (0.0642) 0.3724 (0.0838) – 0.0017 (0.0117)

LocKer 0.0068 (0.0035) 0.0111 (0.0038) – 0 (0)

Sparse
PLSE 1.5229 (0.0757) 0.0943 (0.0371) 0.2530 (0.2117) 0.0739 (0.0613)

LocKer 0.0096 (0.0038) 0.0237 (0.0092) 0.8528 (0.0432) 0.0139 (0.0375)

L = 20

Nonsparse
PLSE 1.8080 (0.0809) 0.3674 (0.0803) – 0.0169 (0.0356)

LocKer 0.0061 (0.0037) 0.0101 (0.0044) – 0 (0)

Sparse
PLSE 1.5288 (0.0709) 0.1153 (0.0430) 0.2679 (0.1899) 0.1237 (0.0847)

LocKer 0.0097 (0.0038) 0.0256 (0.0106) 0.8808 (0.0675) 0.0024 (0.0187)
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Table 4: The averaged ISE0, ISE1, TP and FN across 100 runs for PLSE and LocKer

using various values of L when n = 200,m = 20 in Poisson cases, with standard deviation

in parentheses.

ISE0 ISE1 TP FN

L = 10

Nonsparse
PLSE 1.7484 (0.0582) 0.3319 (0.0678) – 0 (0)

LocKer 0.0059 (0.0023) 0.0095 (0.0026) – 0 (0)

Sparse
PLSE 1.5469 (0.0651) 0.0791 (0.0340) 0.1689 (0.2231) 0 (0)

LocKer 0.0084 (0.0034) 0.0241 (0.0066) 0.6560 (0.1649) 0 (0)

L = 13

Nonsparse
PLSE 1.8154 (0.0661) 0.3414 (0.0652) – 0 (0)

LocKer 0.0046 (0.0022) 0.0086 (0.0028) – 0 (0)

Sparse
PLSE 1.5771 (0.0760) 0.0813 (0.0345) 0.2748 (0.2236) 0.0020 (0.0200)

LocKer 0.0064 (0.0027) 0.0091 (0.0064) 0.9954 (0.0283) 0 (0)

L = 15

Nonsparse
PLSE 1.8283 (0.0694) 0.3395 (0.0529) – 0 (0)

LocKer 0.0046 (0.0022) 0.0084 (0.0030) – 0 (0)

Sparse
PLSE 1.5891 (0.0652) 0.0856 (0.0322) 0.2806 (0.2482) 0.0745 (0.0573)

LocKer 0.0068 (0.0032) 0.0180 (0.0093) 0.8691 (0.0493) 0.0238 (0.0368)

L = 20

Nonsparse
PLSE 1.8344 (0.0665) 0.3262 (0.0581) – 0.0105 (0.0224)

LocKer 0.0044 (0.0024) 0.0076 (0.0030) – 0 (0)

Sparse
PLSE 1.5903 (0.0665) 0.0973 (0.0300) 0.2870 (0.2094) 0.1162 (0.0778)

LocKer 0.0056 (0.0029) 0.0103 (0.0079) 0.9430 (0.0278) 0.0087 (0.0331)
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S5.2 Asymptotic distribution

In this section, we explore the asymptotic distribution of γ̂ by numerical

study. We consider the sparse setting in Gaussian case with sample sizes

being 100, 200, 300, 400, respectively. For various sample size settings, we

conduct 100 runs and compute (γ̂−γ0)>Ω2
n(γ̂−γ0) for each run. To reduce

computational cost, we fix L = 13 in the estimation. Figure 1 shows the

Q-Q plot of (γ̂ − γ0)>Ω2
n(γ̂ − γ0) for each sample size. We can find that

(γ̂ − γ0)>Ω2
n(γ̂ − γ0) is getting closer to Gaussian distribution with the

increase of sample size, which is consistent with the result in Theorem 3.
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Figure 1: Q-Q plot of (γ̂ − γ0)>Ω2
n(γ̂ − γ0) for the sparse setting in Gaussian case with

sample sizes being 100, 200, 300, 400, respectively.
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