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SUMMARY

Functional magnetic resonance imaging (fMRI) is emerging as a powerful tool for studying the process
underlying the working of the many regions of the human brain. The standard tool for analyzing fMRI data
is some variant of the linear model, which is restrictive in modeling assumptions. In this paper, we develop
a semiparametric approach, based on the cubic smoothing splines, to obtain statistically more efficient
estimates of the underlying hemodynamic response function (HRF) associated with fMRI experiments. The
hypothesis testing of HRF is conducted to identify the brain regions which are activated when a subject
performs a particular task. Furthermore, we compare one-level and two-level semiparametric estimates of
HRF in significance tests for detecting the activated brain regions. Our simulation studies demonstrate that
the one-level estimates combined with a bias-correction procedure perform best in detecting the activated
brain regions. We illustrate this method using a real fMRI data set and compare it with popular methods
offered by AFNI and FSL. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The past decades have witnessed a big boom in medical imaging technologies. Functional magnetic
resonance imaging (fMRI) is emerging as a powerful tool for studying the process underlying the
working of the many regions of the human brain. Though merely a decade old, fMRI has already
revolutionized neuroscience research.

With the growing flood of brain imaging data, statistical methods play an increasingly critical
role in extracting knowledge from experimental data, characterizing patterns of brain activity,
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and drawing inference about brain dynamics. Recent reviews of the statistical issues in fMRI
for brain imaging and the statistical methods for analyzing fMRI data can be found in Lange
[1], Lazar et al. [2], and Worsley et al. [3], among others. Several significantly challenging
issues arise in statistical modeling aspects. First, a typical fMRI data set for a single scan on
a single subject consists of a temporally highly correlated time series of measurements, taken
every 2 s or so for about an hour, on each of, say, 64× 64× 30 voxels throughout the brain.
Consequently, the total amount of data is enormous, and proper accommodation of both temporal
and spatial correlations is needed. Second, models relating fMRI signals to neural changes are
complex. The standard tool for analysis done within scans is a variant of the linear model, usually
fitted separately by least squares to each voxel [4]. Columns of the design matrix are typically
obtained from the schedule of applied stimuli, convolved with an assumed relationship between
these stimuli and the blood oxygenation level-dependent (BOLD) response. After that, perform the
tests of significance of the model parameters and draw colors on top of significant voxels. This
comprises the major idea of statistical parametric mapping (SPM) [5], popularly used in neuroimage
study.

In this paper, we intend to incorporate a novel semiparametric model that relaxes the above
parametric modeling assumptions. Unlike the general linear model approach in previous studies,
our approach has the advantage that we do not assume any a priori shape of the hemodynamic
response function (HRF), and that we do not assume a particular form of the temporal drift function.
Taking full advantage of these flexibilities will help reduce the bias due to model misspecification
and enhance the power of detection.

In Section 2, we introduce the one-level (in Section 2.3) and two-level (in Section 2.4) semi-
parametric estimations of HRF, based on the cubic smoothing spline approach. Section 3 discusses
semiparametric F-test statistics for identifying regions of the brain that are activated when a sub-
ject performs certain motor, sensory, or cognitive tasks. In nonparametric regression literature, it
is customary to apply two-level estimation to enhance the smoothness of the raw estimates from
one-level estimation; however, it is not convincingly clear whether two-level estimates really im-
prove upon the discriminating power of one-level estimates in semiparametric tests. Of particular
importance to fMRI data analysis is to evaluate whether two-level estimates really gain efficiency
over one-level estimates in statistical estimation and inference of HRF. Interestingly, our simulation
studies in Sections 4 and 5 provide empirical evidence for the opposite point of view and examine
the extent to which one-level estimates outperform two-level estimates for the estimation of HRF
and that one-level estimates combined with a bias-correction procedure perform best in detecting
the activated brain regions. In Section 6, we apply the semiparametric F-test associated with bias
corrected one-level estimates to a real fMRI data set, and compare the activated brain regions
using popular imaging analysis tools AFNI (at http://afni.nimh.nih.gov/afni/) [6]
and FSL (at http://www.fmrib.ox.ac.uk/fsl/) [7, 8]. Section 7 concludes this paper
with a discussion.

2. SEMIPARAMETRIC ESTIMATION OF HRF

2.1. Semiparametric model for single-voxel and single-run fMRI

The BOLD signal response to neuronal activity is heavily lagged and damped by the hemodynamic
response. Following Ward [9] and Worsley et al. [3], a single-voxel fMRI time-series data, for a
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given scan and a given subject, can be captured by the convolution model

y(t) =
∫ t

0
s(t − �)h(�) d� + d(t) + �(t) (1)

where y(t) is the measured noisy fMRI signal, s(t) is the external input stimulus at time t , which
could be from a design either block or event related and s(t) = 1 or 0 indicates the presence or
absence of a stimulus, h(�) is the HRF at time � after neural activity, d(t) is a slowly drifting
baseline of time t (usually a polynomial trend of at most third order), and �(t) is a zero-mean error
process, consisting of nonneural noise (due to respiration and blood flow pulsations through the
cardiac cycle) and ‘white noise’ (from random/thermal currents in the body and the scanner).

The HRF h(t) is the part of primary interest to neuroscientists. It should be a smooth function
and not identically zero if a voxel responds to the stimuli. We will propose a semiparametric
method for characterizing properties of the hemodynamic response in the presence of an unknown
smooth drift. Such characterization is essential for accurate prediction of the time-course behavior
of neuronal responses.

In practice, the output y(t) and the input s(t) are measured at discrete time points ti , i = 1, . . . , n.
The previous model (1) assumes that the fMRI signal, y(t), will be determined by the time-varying
stimuli for time points up to t . After discretizing (1), we get

y(ti ) = ∑
j :0�� j�ti

s(ti − � j )h(� j )� j + d(ti ) + �(ti ), i = 1, . . . , n (2)

where � j = � j −� j−1. Note that the peak response of HRF h(t) is reached after a short delay of the
stimulus and drops quickly to zero. See an example of h(t) given in Glover [10]. We thus suppose
h(t) = 0 for t>m and focus only on the values of h(t) at the first m time points. In practice, n far
exceeds m. For instance, m is 18 and n is 185 for each run in the real fMRI data set described in
Section 6. Assume that y and s have equal time resolutions of 1 s. Using matrix representation,
(2) becomes

y= Sh + d + e (3)

where

y=

⎡
⎢⎢⎢⎣
y(1)

...

y(n)

⎤
⎥⎥⎥⎦ , S=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s(0) 0 · · · 0

s(1) s(0) · · · 0

...
...

. . .
...

s(m − 1) s(m − 2) · · · s(0)

s(m) s(m − 1) · · · s(1)

...
...

. . .
...

s(n − 1) s(n − 2) · · · s(n − m)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, h=

⎡
⎢⎢⎢⎣
h(1)

...

h(m)

⎤
⎥⎥⎥⎦ , d=

⎡
⎢⎢⎢⎣
d(1)

...

d(n)

⎤
⎥⎥⎥⎦

and e= (�(1), . . . , �(n))T. A sufficient condition for the identifiability of model (3) is discussed in
Appendix A. It is easy to see that S is a Toeplitz matrix. Handling unequal time resolutions can
similarly be done.
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To incorporate the combined effects of multiple types of stimuli, s1(t), . . . , sr (t), associated
with HRFs, h1(t), . . . , hr (t), we build an extended model of (1) via

y(t) = s1 ∗ h1(t) + · · · + sr ∗ hr (t) + d(t) + �(t)

in which ∗ is the convolution operator as in (1). Analogous to (2), the discretized version of this
extended model is

y=S1h1 + · · · + Srhr + d + e

Apparently, for this extended model, model (3) continues to hold, with

S=[S1, . . . ,Sr ] and h=

⎡
⎢⎢⎢⎣
h1

...

hr

⎤
⎥⎥⎥⎦ (4)

Additionally, for multiple run fMRI data, we only need to supplement the matrix S by adding rows
composed of the Toeplitz design matrix for each run.

Model (3) is conceivably a semiparametric regression model, with a vector h of length rm for
parametric components and a vector d of length n for nonparametric components. The parametric
components (related to the unknown HRF) are of our primary interest, whereas the nonparametric
components (related to the unknown temporal drift) serve as nuisance effects, and the noise
components e are serially correlated.

2.2. Cubic smoothing splines

Before we discuss the semiparametric estimation of HRF, we start with a brief overview of the cubic
smoothing spline, which is a popular nonparametric curve-fitting method. For a sample of random
pairs {(Xi , Yi )}ni=1 from a population (X, Y ), suppose that the design variables, X1, . . . , Xn , are
points in an interval [a, b] satisfying a<X1< · · ·<Xn<b and we are interested in estimating
the regression curve g(x)= E(Y |X = x). The cubic smoothing spline estimator, denoted by ĝ,
minimizes the penalized sum of squared errors

1

n

n∑
i=1

{Yi − g(Xi )}2 + �
∫ b

a
{g′′(x)}2 dx, �>0 (5)

over the class of all twice-differentiable functions g. The smoothing parameter or the penalty factor
�, upon which the smoothing spline estimator depends, regulates the ‘rate of exchange’ between
fidelity to the observed data and smoothness of the fitted curve. Define hi = Xi+1−Xi , 1�i�n−1,
and two band matrices: R, which is (n − 2) × (n − 2) with elements given by

R(i, i) = (hi + hi+1)/3 if i = 1, . . . , n − 2

R(i, i + 1) =R(i + 1, i) = hi+1/6 if i = 1, . . . , n − 3

R(i, j) = 0 if |i − j |�2
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and Q, which is n × (n − 2), with entries given by

Q(i, i) = 1/hi if i = 1, . . . , n − 2

Q(i + 1, i) = −1/hi − 1/hi+1 if i = 1, . . . , n − 2

Q(i + 2, i) = 1/hi+1 if i = 1, . . . , n − 2

Q(i, j) = 0 if |i − j |�3

Define g= (g(X1), . . . , g(Xn))
T. According to Theorem 2.1 of Green and Silverman [11],∫ b

a {g′′(x)}2 dx = gTKg, where K =QR−1QT is a symmetric matrix. Thus, the criterion function
(5) can be rewritten as a quadratic form,

(y − g)T(y − g)/n + gT�Kg

Its minimizer gives the cubic smoothing spline estimator of g, represented by

ĝ= (I + n�K )−1y

where I is an identity matrix. We call

S = (I + n�K )−1 (6)

the smoothing matrix of cubic smoothing splines. This matrix carries information about the design
points and smoothing parameter, but does not rely on the configuration of the response variables.
Refer to Section 2.3 of Zhang [12] for further discussion on finite sample and asymptotic properties
of the smoothing matrices for higher-order smoothing splines.

2.3. One-level estimation of HRF

We first describe a one-level estimation of HRF in the semiparametric model (3). For a known
value of h, a cubic smoothing spline estimate of d is given by

d̂(h) = Sd(y − Sh)

where Sd is an n × n smoothing matrix as defined in (6) for the cubic smoothing splines, associated
with the design points {1, 2, . . . , n}, and the subscript d emphasizes the goal of estimating the
temporal drift. Substituting d in (3) by d̂(h), we get

ỹ≈ S̃h + e (7)

where ỹ= (I− Sd)y and S̃= (I− Sd)S. Treating (7) as a parametric regression model, the weighted
least-squares estimate of h is produced by

ĥrough = (̃ST R̂−1S̃)−1S̃T R̂−1̃y (8)

where R̂ estimates the correlation matrix R of e, namely, cov(e, e) = �2R, with variance �2. This
ĥrough supplies the one-level estimate of HRF.
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There is an extensive literature on the estimation of covariance matrices for correlated outcomes.
See Anderson [13], Diggle and Verbyla [14], Boik [15], and many others. To estimate the large
covariance matrix for the current fMRI data, we apply a computationally more feasible method
studied in Zhang et al. [16], which assumes the stationarity of the noise process and that the
autocovariance sequence vanishes for time lag exceeding 2.

2.4. Two-level estimation of HRF

We now describe a two-level estimation of HRF. Note that the one-level estimates of HRF at m
points are usually rough, since the smoothness of the underlying HRF is not taken into account.
To obtain a smooth estimate of the hemodynamic response curve h(t), the two-level estimation
simply applies the cubic spline smoothing to the one-level estimates ĥrough to produce refined
estimates

ĥsmooth = Sh ĥrough (9)

where Sh denotes an m ×m cubic spline smoothing matrix, associated with the design points
{1, 2, . . . ,m}, and the subscript h pinpoints the use of this smoothing matrix for estimating the
HRF h in (3). We call ĥsmooth the two-level estimate of HRF.

Following the estimation of HRF, the one-level and two-level estimates of the drift components
are formed by

d̂rough = d̂(̂hrough) = Sd(y − Ŝhrough) and d̂smooth = d̂(̂hsmooth) = Sd(y − Ŝhsmooth)

respectively.
We would like to make some remarks on the computational aspect of smoothing matrices Sd

and Sh . Note that for each fixed smoothing parameter, they do not vary from one session to another
session and thus each matrix only needs to be computed once. This feature will significantly reduce
the computational burden, particularly when n is large.

3. DETECTION OF ACTIVATED BRAIN REGIONS

Identification of a particular brain region with a specific function has become a central theme
in neuroscience. Traditional methods use SPM to identify activation foci or characterization of
distributed changes with spatial modes. Statistical inferences about the resulting SPM are made
using distributional approximations from the theory of Gaussian random fields [17, 18]. In order
to generate activation maps, statistical inference must be drawn from the estimated hemodynamic
responses. However, since in our approach the HRFs are estimated semiparametrically, existing
statistical inference procedures are not immediately applicable to our one-level and two-level
semiparametric estimates of HRF.

3.1. Hypothesis test for HRF

Determining whether the fMRI time series on a particular voxel responds to a given signal waveform
can be expressed in terms of a statistical test for the hypothesis

H0 : h1(t) = · · · = hr (t) = 0

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:3845–3861
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Testing HRF also plays an important role in comparing shapes of HRF across different tissue
types, corresponding to the hypothesis

H0 : hA(t) ≡ hB(t) for all t

where hA(t) and hB(t) are the corresponding HRFs at two different voxels (for e.g. the left and
right amygdalae), and in detecting contrast in the stimuli, i.e. testing for the hypothesis

H0 : hk(t) = 0 for a given k = 1, . . . , r

Under our semiparametric model (3), all these testing problems can be formulated in a more
general form

H0 : Ah= 0 versus H1 : Ah �= 0 (10)

where A is a full row rank matrix.

3.2. Semiparametric test statistics

We now discuss a semiparametric F-test. Recall that approximation (7) takes the form of a
general linear model. Suppose that the rank of A in (10) is k and that ĥ is an estimate of h. The
semiparametric F-test statistic for (10) can be constructed by

(Aĥ)T{A(̃ST R̂−1S̃)−1AT}−1(Aĥ)/k

r̂T R̂−1̂r/(n − rm)
(11)

where r̂= ỹ − S̃ ĥ, and the denominator in (11) serves as a variance estimator. The asymptotic
distribution of this test statistic under the null hypothesis can be approximated by an F distribution
with k and n − rm degrees of freedom. The results in Fan et al. [19] demonstrate that a class
of the generalized likelihood ratio statistics based on some appropriate nonparametric function
estimators is asymptotically distribution free and follows �2-distributions under null hypotheses
for a number of useful hypotheses and a variety of useful models including Gaussian white noise
models, nonparametric regression models, varying coefficient models and generalized varying
coefficient models. These results, when translated to the current setup, provide insights into the
distributional approximation.

The above semiparametric F-test statistic usually works reasonably well. Nonetheless, from the
identity, ỹ= S̃h + e+ {d − d̂(h)}, and numerical evidences in Figure 3, we observe that this test
may not be very accurate when the noise level is small. The loss of accuracy is mainly caused by
approximation (7), which entirely ignores an additive term d−d̂(h). This term is negligible when
the noise level is relatively large, but may become a significant source of bias when the noise
level is comparatively small. To remedy the bias problem, we adopt the following bias-corrected
semiparametric F-test statistic:

(Aĥbc)T{A(̃ST R̂−1S̃)−1AT}−1(Aĥbc)/k

r̂Tbc R̂
−1̂rbc/(n − rm)

(12)

where ĥbc = ĥ− (̃ST R̂−1S̃)−1S̃T R̂−1˜̂d and r̂bc = ỹ− S̃̂h−˜̂d, with ˜̂d= (I−Sd )̂d and d̂= Sd(y− Ŝh).
Note that for a large noise level, ˜̂d is negligible and thus the bias-corrected and uncorrected versions
will be similar.
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Table I. One-level and two-level semiparametric F-test statistics.

F1: ĥ= ĥrough, without bias correction F2: ĥ= ĥrough, with bias correction
F3: ĥ= ĥsmooth, without bias correction F4: ĥ= ĥsmooth, with bias correction

For both test statistics in (11) and (12), the HRF estimate, ĥ, could utilize either the one-level
estimate ĥrough or the two-level estimate ĥsmooth. Therefore, we have four options for constructing
semiparametric F-test statistics as listed in Table I. (There, d̂= d̂rough in F1 and F2, and d̂= d̂smooth
in F3 and F4.) In Sections 4 and 5, we will use simulation studies to explore whether two-level
estimates have efficiency over one-level estimates in detecting activated brain regions.

4. SIMULATION STUDY OF fMRI AT A SINGLE VOXEL

4.1. Estimation of HRF and drift

We simulate an fMRI experiment with a single run and a single type of stimulus. In the simulation,
the length of time series is 200, and 1000 realizations are conducted. For the reader’s convenience,
Appendix B summarizes the implementation details of semiparametric analysis for single-voxel
fMRI data.

• The time-varying stimuli are generated from independent Bernoulli trials such that
P{s(t) = 1} = 0.5.

• The HRF is h(t) = g1(1.5(t − 1))/a1 − g2(1.5(t − 1))/a2, t = 1, . . . , 18 (so that m = 18),
where g1(t) = (t − 5.5)5 exp{−(t − 5.5)/0.9} and g2(t) = 0.4(t − 5.5)12 exp{−(t − 5.5)/0.7},
a1 = max{g1(t)} and a2 = max{g2(t)}. Following Glover [10], the HRF here takes the dif-
ference of two gamma functions, the canonical form implemented in FSL.

• The drift function is d(t)= 10 sin{�(t/200 − 0.21)}, t = 1, . . . , 200.
• The noise process �(t) is the sum of independent noise processes �1 and �2 (see Purdon et al.

[20]); {�1(t)} are i.i.d. normal, with mean zero and variance 0.52162, 0.36892, 0.26082 and
0.18442, respectively; �2 is AR(1), i.e. �2(t) = ��2(t − 1) + z(t), with � = 0.638, and z(t)
follows the normal distribution, with mean zero and variance 0.52162, 0.36892, 0.26082 and
0.18442, respectively. These choices give the noise lag-one auto-correlation equal to 0.4 and
the signal-to-noise ratio (SNR) about 1, 2, 4, and 8, respectively where SNR= var(Sh)/var(e).

The one-level and two-level estimates of HRF and temporal drift are displayed in Figure 1 with
SNR= 1 and in Figure 2 with SNR= 8. Evidently, compared with the two-level estimates, the
one-level estimates are more centered around the actual values of HRF. On the other hand, the
drift function estimates are less affected by one-level and two-level estimations of HRF. Besides,
the HRF and drift estimates by our method outperform those by AFNI.

4.2. Hypothesis test for HRF

As an illustration, the hypothesis test for H0 : h= 0 versus H1 : h �= 0 is considered. This is used
for testing whether the brain activity in a voxel is triggered or not. To check the agreement between
the F distribution with null distributions of the semiparametric F-test statistics, the fMRI data are
simulated in the same way as above, except that h= 0.
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Figure 1. Comparison of one-level, two-level and AFNI estimates of HRF and drift. Top panel: boxplots
of ĥrough and ĥsmooth; the solid curves are the true function h(t). Bottom panel: solid curves denote
the true drift d(t), and the estimated curves from two typical samples are presented corresponding to
the 25th (the dashed curve), and the 75th (the dash-dotted curve) percentiles among the ASE-ranked

values, where ASE= ∑n
i=1 {d̂(i) − d(i)}2/n.

The QQ plots of the (1st up to 99th) percentiles of F-test statistics against those of the Fm,n−m
distribution are presented in Figure 3. In the top panel, the semiparametric F-test statistics use
the true covariance matrix and fix the smoothing parameters at their theoretically optimal values
(minimizing the mean-squared errors of estimators) for estimating HRF and drift in each simulation.
For the sake of clarity, only the cases of SNR equal to 1 and 8 are presented; the former is the ‘large
noise level’ case, whereas the latter is the ‘small noise level’ case. In either case, we observe that
the finite sampling distributions of F1 and F2, based on the one-level estimation, nearly perfectly
agree with the F distribution. In contrast, the sampling distributions of F3 and F4, based on the
two-level estimation, depart further from the F distribution. The QQ plots also lend support that
the bias-corrected versions, F2 and F4, are better than or at least as good as their bias uncorrected
counterparts, F1 and F3, respectively.

For a more realistic comparison, the semiparametric F-test statistics in the bottom panel of
Figure 3 use the estimated covariance matrices and data-driven smoothing parameters, following
Steps 1–7 in Appendix B. The results are similar in spirit to the ones in the top panel and continue
to support the bias-correction procedure when applied to either one-level or two-level estimation.
In this regard, the detection accuracy based on the test F3 is lower than any of the other three
semiparametric F-tests.
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Figure 2. Same as in Figure 1, except SNR= 8.

5. SIMULATION STUDY OF fMRI OVER AN ENTIRE BRAIN

5.1. Simulating the fMRI data

We simulate a whole brain fMRI data set, with the aim of mimicing true brain activity, to the
maximum extent feasible. The experimental design, timings and size are exactly the same as those
of the real data set in Section 6. An HRF profile is extracted from a voxel which shows the strongest
responses in the real data set. For each voxel, the simulated drift is obtained from an adequate
smoothing to the time series for the corresponding voxel of the real data set. The simulated noise
variance profile is determined from a variance map, which is made by a 5× 5× 5 spatial median
smoothing on median values of squared residuals of the real time series by subtracting the simulated
drift profile as mentioned before. The noise process �(t) is generated in a fashion similar to that
explained in Section 4.1. Specifically, the variances of �1(t) and z(t) are chosen to be equal such
that var{�(t)} is one-fifth of the variance map. The HRF profiles, in accordance with the stimuli
in the experiment, are added to two regions that are postulated to be truly active. In these two
zones, the HRFs have been rescaled to about 17 and 12 per cent of the amplitude of the original
HRF profiles. The purpose of rescaling HRFs and noise variance is to amplify the drift effect and
weaken the HRF response so that the estimation of HRF is more challenging. Plate 1 gives nine
different slices which highlight the two activated brain regions. Note that, throughout the paper,
we apply the same registration transform from the real brain data to the T 1 high-resolution image
of the subject’s brain.
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Plate 1. True activated regions (denoted by hot color) for the simulated fMRI data set.

Plate 2. Activated regions discovered by AFNI (on the left) and FSL (on the right) for the simulated fMRI
data set. The FDR level is 0.05.
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Plate 3. Activated regions discovered by our methods for the simulated fMRI data set.
Top panel: F1 (on the left) and F2 (on the right). Bottom panel: F3 (on the left) and

F4 (on the right). The FDR level is 0.05.
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Figure 3. Empirical quantiles (on the y-axis) of semiparametric F-test statistics (where the top panel uses
the true covariance matrix and the optimal smoothing parameters, and the bottom panel uses the estimated
covariance matrices and data-driven smoothing parameters) versus quantiles (on the x-axis) of Fm,n−m

distribution. Solid line: the 45-degree reference line.

5.2. Detection of activated brain regions

We compare the activated brain regions identified by our approach with methods offered by popular
softwares AFNI and FSL. The false discovery rate (FDR) level 0.05 is used for performing the
multiple comparison. To facilitate comparison and to help practitioners better view possible differ-
ences when applying different methods, Table II tabulates the HRF, drift and error implemented
in AFNI and FSL. Inspection of Plate 2 reveals that both AFNI and FSL fail to locate an activated
brain area, and that the other region, although correctly detected, has an appreciably reduced size
relative to the actual size. This detection bias suggests that the stringent modeling assumptions be
relaxed to ameliorate the effects of misspecification.

The brain regions detected using our approach are shown in Plate 3. All four versions of F-test
statistics are capable of locating both active regions, and F1 and F2 are superior to F3 and F4
in terms of the volume of the detected regions. Moreover, to eliminate tiny and scattered regions
which are potentially falsely discovered, we apply a new multiple comparison procedure (at FDR
level 0.05) proposed in Zhang et al. [16] to all four F-test statistics. The theoretical justification
for that procedure (controlling the FDR) can be found in Zhang et al. [16]. As evidenced in Plate 4,
all four versions achieve much more accurate detections than their counterparts in Plate 3, with
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Table II. HRF, drift, and error implemented in AFNI and FSL.

AFNI (tool 3dDeconvolve) FSL (tool FEAT)

h(t) Finite impulse response filter Difference of two gamma functions, which is the
canonical form

d(t) Quadratic polynomial Removed in the preprocessing, using high-pass
temporal filtering (Gaussian-weighted LSF straight
line fitting)

�(t) i.i.d. Autocorrelation estimated by Tukey tapering of the
spectrum of the residuals
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Figure 4. Raw fMRI time series from an activated brain voxel (49, 41, 10).

F1 and F2 continuing to outperform F3 and F4. Therefore, for applications to the real fMRI data
set in Section 6, we will employ only F1 and F2.

6. APPLICATION TO REAL fMRI DATA

6.1. Experiment design, data description, and analysis aim

In an emotional control study, subjects saw a series of negative or positive emotional images,
and were asked to either suppress or enhance their emotional responses to the image, or to
simply attend to the image. Therefore, there were six types of trials (i.e. six types of stim-
uli): negative–enhance (neg-enh), negative–attend (neg-att), negative–suppress (neg-sup),
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Plate 4. Same as in Plate 3, except the multiple comparison procedure uses Zhang et al. [16].
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Plate 5. Activated regions discovered for the real fMRI data set. Top panel: AFNI (on the left) and FSL (on
the right). Bottom panel: F1 (on the left) and F2 (on the right), using the multiple comparison procedure

in Zhang et al. [16]. The FDR level is 0.001.
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Figure 5. One-level and two-level estimates of HRF (for each of six stimuli) and drift (for each of six
runs) at an activated voxel (49, 41, 10). The initial estimate of drift follows Step 3 in Appendix B.

positive–enhance (pos-enh), positive–attend (pos-att), and positive–suppress (pos-sup).
The sequence of trials was randomized. The time between successive trials also varied. There were
24 trials each of the neg-enh, neg-sup, pos-enh, and pos-sup, and 11 trials each of the
neg-att and pos-att.

The size of the whole brain data set is 64× 64× 30. At each voxel, the time series has six runs,
each containing 185 observations with a time resolution of 2 s, thus TR= 2 s and the total length
is 1110. In contrast, the length of stimuli is 2220; the timing of the stimuli has a time resolution
of 1 s, and thus each HRF output will also be sampled at 1 s. Hence, the odd rows of the design
matrix S in (4) suffice for analysis.

The study aims to estimate the BOLD response to each of the trial types for 1–18 s following
the image onset. We analyze the fMRI data set containing one subject. The length of the estimated
HRF is set equal to 18.

6.2. Single-voxel fMRI analysis

Figure 4 plots the fMRI time series of six runs from an activated brain voxel (49, 41, 10). The
estimates of BOLD response to each stimulus type, as given by AFNI analysis, the one-level and
two-level semiparametric methods, are compared in the top panel of Figure 5. Note that since
the HRF is common to all runs, the HRF is estimated based on data from the combined runs. In
contrast, as the drift is specific to each separate run, data from that particular run are used in the
estimation of the drift.
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Figure 6. Same as in Figure 5, except from an activated voxel (24, 32, 7).

The activation effect detected by our methods appears to be stronger than that of AFNI. Mean-
while, the drift curve estimated by our methods exhibits a highly nonlinear pattern, which suggests
that AFNI misspecifies the drift to some degree. Henceforth, the one-level and two-level estimates
of HRF are expected to suffer less from model bias than AFNI estimates.

For an alternative activated voxel (24, 32, 7), the bottom panel of Figure 6 shows low-order
polynomial trends of the estimated drift functions using our methods. This tends to support the
specification of drift in AFNI. Figure 6 manifests that even for models ideally suited for AFNI’s
analysis of a particular voxel, our method yields HRF estimates favorably comparable with or
nearly indistinguishable from those calculated by AFNI.

6.3. Detection of activated brain regions

We compare the brain regions detected by our methods (based on F1 and F2) with AFNI and
FSL. Again, HRF in FSL is specified as the difference between two gamma functions, and the drift
term in AFNI is specified as a quadratic polynomial. We use FDR at level 0.001 to carry out the
multiple comparisons. This level is set to avoid excessive discoveries, most of which are thought
to be false. A comparison of the detected regions is visualized in Plate 5. Our detected regions are
closer to those afforded by AFNI, but our methods find activation in much more clustered regions
of the brain. For example, our results do not have the holes as seen in the detected regions on the
first slice of AFNI and FSL. AFNI gives more tiny scattered findings, which are more likely to be
false discoveries. FSL detects very scattered regions which are difficult to interpret. In addition,
the volumes of the detected regions by FSL are substantially smaller than those of the regions
deleted by AFNI and our methods.
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7. DISCUSSION

In this paper, we present a flexible semiparametric procedure based on the smoothing spline
approach for the modeling, estimation, and inference of HRF for brain fMRI data. We demonstrate
that, contrary to some conventional thought, the two-level estimation of HRF does not have
efficiency over the one-level estimation. Furthermore, in the ideal case that the true covariance
matrix structure of the error process is known, the proposed semiparametric F-test based on the
one-level estimation of HRF outperform its two-level counterpart in the detection of activated brain
areas. For realistic applications, we recommend the bias-corrected semiparametric F-test combined
with the one-level estimation. This test compares favorably with some popular imaging analysis
tools in which the modeling assumptions are more restrictive than those in our semiparametric
model. We intend to explore issues like more efficient estimation of large covariance matrix and
more rigorous investigation of the sampling properties of the semiparametric F-test statistics in
future work.

APPENDIX A: IDENTIFIABILITY OF MODEL (3)

Before showing the identifiability of model (3), we need the proposition.

Proposition A1
If the matrix cov(ST,ST) is positive definite, then model (3) is identifiable.

Proof
Suppose that there exist coefficient vectors h1, h2, d1, and d2 such that

Sh1 + d1 = Sh2 + d2 (A1)

or, equivalently, (h1 − h2)TST + (d1 − d2)T = 0. This, along with the fact that S is a stochastic
matrix and d1 and d2 are deterministic, implies that

0= cov{(h1 − h2)TST, (h1 − h2)TST} = (h1 − h2)T cov(ST,ST)(h1 − h2)

From the assumption cov(ST,ST)>0, we directly deduce that h1 =h2. Consequently, (A1) yields
d1 =d2. This completes the proof of Proposition A1. �

For model (3), we now check the validity of cov(ST,ST)>0 in Proposition A1. Let si denote
the i th column vector of the matrix ST. For i = 1, . . . ,m − 1, since certain entries in si are always
0 (due to the fact that S is a Toeplitz matrix), we can conclude cov(si , si )�0 (but not necessarily
cov(si , si )>0). In contrast, for i =m, . . . , n, noting that the vector

si =

⎡
⎢⎢⎢⎣
s(i − 1)

...

s(i − m)

⎤
⎥⎥⎥⎦
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does not contain entries which are always 0, we observe that

cov(si , si ) = diag[var{s(i − 1)}, . . . , var{s(i − m)}]>0

provided that 0<P{s(i)= 1}<1, and hence cov(ST,ST) = ∑n
i=1 cov(si , si )>0. The identifiability

of (3) is thus verified.

APPENDIX B: SINGLE-VOXEL ANALYSIS OF fMRI UNDER (3)

Step 1: Obtain an initial estimate of h using a difference-based method. The difference-based
estimate ĥ0 is based on the lag-one difference of y and S simultaneously to remove the drift term,
followed by an ordinary least-squares estimation of HRF.

Step 2: Estimate the noise variance and correlation matrix. Remove the estimated parametric
component; apply the second-order difference to the residual y − Ŝh0; obtain estimates R̂ of the
correlation matrix and �̂2 of the variance using the method in Zhang et al. [16], which assumes
the stationarity of the noise process and that the autocovariance sequence vanishes for time lag
exceeding 2.

Step 3: Get an initial estimate d̂0 of the drift, by applying a cubic smoothing spline to y− Ŝh0,
i.e. d̂0 = Sd(y − Ŝh0). The smoothing parameter in Sd can be selected via generalized cross-
validation and is searched over grid points which are logarithmically equally spaced between
decades 102.7× 10−7

and 101.1× 10−3
.

Step 4: Select the optimal data-driven smoothing parameter in Sd for the estimator ĥrough. The
optimal parameter minimizes the plug-in version of the mean-squared error of ĥrough, where the
unknown quantities, R, �2, and d, are replaced by R̂, �̂2, and d̂0 obtained in Steps 2 and 3 above.
The grid search is the same as in Step 3.

Step 5: Obtain the one-level estimate ĥrough of HRF, as in (8). Use the selected smoothing
parameter in Step 4 and estimate the covariances.

Step 6: Obtain the two-level estimate ĥsmooth of HRF, as in (9), where the smoothing parameter
in Sh is selected based on the Mallow’s Cp criterion. The smoothing parameter is searched over

grid points, which are logarithmically equally spaced between decades 104.7× 10−6
and 109.1× 10−4

.
Step 7: Calculate the semiparametric F-test statistics defined in (11) and (12) for each brain

voxel.
Step 8: If needed, obtain one-level and two-level drift estimates d̂rough and d̂smooth as in Step 3,

except that ĥ0 is replaced by ĥrough and ĥsmooth, respectively.
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