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ABSTRACT 

Traffic forecasting systems could be improved significantly by the development of 

interval prediction at a given probability (confidence level) as well as point prediction 

which seems to have drawn most attention from researchers in this field so far. Not only 

can the provision of interval prediction increase the user comfort by reducing error risk 

associated with the information, it can also be used to assess the predictor forwards (not 

afterwards) for model selection and preemption in an adaptive or cooperative setting.  

 Few concrete research results on interval prediction seem to be presented so far in 

this area, partially because of the increasing complexity of the prediction models. 

Although closed-form expressions of asymptotic estimation for prediction intervals are 

not usually available for nonparametric models such as neural networks, they can be 

derived for the local polynomial predictor. This paper addresses the issue of the interval 

forecasting (constructing prediction intervals for future observations ) of the traffic data 

time series.  

Two approaches will be investigated. First, an asymptotic result will be presented. 

Closed-form equations of prediction intervals for the multivariate local linear regression 

model have been derived under certain assumptions. Second, a bootstrap approach to 

generate prediction intervals with bias corrections will be proposed. The bootstrap 

procedure relies on few assumptions and is easy to implement for many prediction 

models. Finally, a case study using real-world traffic data will be presented for both 

approaches, along with the results compared with each other. The results coincide with 

expectations and have validated the proposed methods. 

 

KEYWORDS 

Interval Forecasting, Prediction Interval, Prediction Bias, Bootstrap, Local Linear 

Regression, Short-Term Traffic Prediction, Nonparametric Model 
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1 INTRODUCTION 

Short-term prediction by means of regression consists of two steps: The first step uses 

training data (historical and/or real-time) to approximate the conditional mean regression 

function (relationship) between inputs (data at one or more time instants) and the output 

(data at future time instants, with respect to the input data). Once this function is 

established, the second step uses it to estimate future data relative to current input. 

Usually, the value of the mean function for the given input data is used as the prediction.  

 

The regression model can be parametric (such as linear regression, AR model, 

Kalman filter, multifractal) or nonparametric (such as neural network, local polynomial, 

wavelet, chaos). For traffic prediction, Sun et al. (2003) studied the local linear regression 

model, which belongs to the family of the local polynomial regression in nonparametric 

models. The conditional mean function was used to obtain the prediction. 

Estimating bias, variance and prediction interval is not new for most parametric 

models. This is especially true for the linear regression predictor and for Gaussian data 

for which strategies have been well established. Although such measurements are in 

increasing demand in transportation application, the usually low accuracy of the 

parametric models for dealing with highly nonlinear, nonstationary traffic data, and the 

usually high complexity of the nonparametric models, have led to little research in this 

area. One related literature found so far, is a presentation by Rilett (2001) in which the 

LOESS1 is used to analyze historical traffic patterns such as mean, variance and 

confidence limit. 

Prediction intervals often can be constructed if the prediction of mean, bias and 

intervals can be calculated. Besides the conditional mean function mentioned above, the 

conditional variance function is needed to obtain intervals. The derivatives of the mean 

function can be used to obtain bias. All these results can be derived for the local 

polynomial regression by extending the results from global models to local models. For 

example, the prediction interval in linear models can be converted to local linear models 

(Schaal et al., 1994). 
 

1 a software program for smoothing multivariate scattered data by locally weighted least square criteria. 
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On the other hand, such derived expressions based on certain assumptions may 

not perform very well for real-world traffic data. For example, the mean function for 

traffic prediction is usually not smooth enough to have the second derivative. In that case, 

the bias cannot be estimated using the equations. Also, the residual error distribution for 

the small sample is often unknown instead of being assumed as normal or t-distribution. 

In this context, the more general bootstrap method may be proposed.  

Bootstrap is a simple resampling procedure which generates samples by randomly 

resampling the original training set with replacements (Enfron et al., 1993). The idea 

borrows the spirit similar to Monte Carlo simulation. It has found wide application in 

solving all kinds of “hard” real-world problems, in estimating bias and interval when the 

data distribution is unknown or sample size is small. Care must be taken in applying the 

bootstrap in nonparametric situations and dependent data such as time series. Several 

papers by Freedman and Peters (1984; 1987) documented the fact that the bootstrap does 

not give the correct answer for multivariate regression situations where the number of 

variables is of a similar order as the number of observations. This paper will propose a 

method of applying bootstrap to time series prediction when implemented by the local 

linear model. A bootstrap procedure that is plausibly similar for prediction interval was 

described by Cho et al. (2003), however, the prediction interval in that paper refers to the 

interval of prediction error which was calculated based on feedback errors of prediction 

in order to verify the accuracy of the forecast, which could be treated as a measure of 

uncertainty of the forecast. That is, the interval was calculated after the observations. 

Instead, the prediction interval in this paper is constructed for future observations before 

they arrive.  

This article is organized as follows. Section 2 will describe the closed-form 

equation and the bootstrap scheme of interval prediction, both for the local linear 

regression model. Section 3 will be devoted to numerical study. Discussion and future 

research directions will be provided in Section 4. 
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2 METHODOLOGY 

2.1. Asymptotic Prediction Interval for the Local Linear Regression Model  

This section will, first, briefly review the mean prediction of the local linear model and 

address the variance prediction. Then the estimator bias and variance will be introduced. 

Finally, interval prediction will be derived. 

 

2.1.1. MEAN AND VARIANCE PREDICTION 

Given the observations {( i
T
i Y,X ): i = 1, …, n} of the multivariate covariate X and a 

univariate response Y, the relationship between X and Y can  be modeled as:  

Y = m(X) + σ(X)ε,                                                      (1) 

where X and ε are not necessarily independent, ε is the additive error term with  

E(ε |X) = 0                                                                   (2) 

and 

Var(ε |X) = 1.                                                              (3) 

Here n is the number of the observations,  

X = (X1, …, Xd)T                                                        (4) 

And 

Xi = (Xi1, …, Xid)T                                                      (5) 

with d the dimension of X. 

It is of interest to estimate the mean regression function  

m(x) = E(Y|X = x)                                                       (6) 

and the possible heteroscedasticity (conditional variance function)  

σ2(x) = Var (Y|X = x),                                                 (7) 

where  

xT = (x1,.., xd)                                                              (8) 

is a point in Rd.  

Once the estimated mean regression function (denoted as m̂ ( )) is obtained, the 

fitted regression is used as a mechanism for prediction of response values. That is, if the 

prediction of Y at X = x is denoted as ŷ (x), then  

ŷ (x) = m̂ (x).                                                             (9) 
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ŷ (x) may be viewed as the estimated response. It is the estimated mean response at X = 

x.  

 

2.1.1.1. Mean 

A local polynomial model is formed at the query point x, much as a Taylor series model, 

a function in the neighborhood of a point. In the local linear model, the Taylor expansion 

terms up to the first (linear) order are used to make the local approximation. That is, the 

function m is estimated locally by a linear model: 

m(X) ≈  m(x) + gT(X - x),                                           (10) 

where g = (β1, …, βd)T. For the convenience of a matrix expression, redefine the vectors 

taking into account the constant term. Write  

β  = (β0, β1, …, βd)T,                                                   (11) 

where 

β0 = m(x),                                                                   (12) 

and 

X~  = (1, (X - x) T) T,                                                    (13) 

Then  

m(X) ≈  β X~                                                                (14) 

The observations {( i
T
i Y,X ): i = 1, …, n} are used as training data to estimate 

β . The weighted least square criterion is used to obtain the fit (Fan et al., 1996). The local 

model will fit nearby training points well with less concern for distant points by the 

weighting functions (kernels) with the bandwidth defining the validity region of the local 

model. The effective number of training points is modulated by the bandwidth of the 

kernels. 

The estimation of β   

ß̂  = arg ( ) ( )ßX-yWßX-y
ß

d
T

dmin                            (15) 

is  

ß̂  = ( 0β̂ ,…, dβ̂ )T = ( ) WyXWXX T
dd

T
d

1−
,                 (16) 

where  
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Xd =  



















−−

−−
−−

dndn

dd

dd

xXxX

xXxX
xXxX

L
MMM

L
L

11

2121

1111

1

1
1

,                         (17) 

W = diag{KB(Xi- x)},                                                 (18) 

 y = (Y1, …., Yn)T                                                        (19) 

And  

KB (u) = ||
1
B K(B-1u),                                                    (20) 

 where K( • ) is a multivariate probability density function with mean zero and the 

covariance matrix of µ2(K)Id, with Id the d × d identity matrix. B is called bandwidth 

matrix and |B| denotes its determinant. In this study, the weighting kernel K is chosen as a 

Gaussian function and B = hId, where h is called bandwidth. That is,  

K (u) = 
2))(( udise −                                                          (21) 

The distance function dis( • ) used in this study is the Euclidean distance.   

dis (u) = uuT                                                           (22) 

Thus   

m̂ (x) = 0β̂ ,                                                                 (23) 

and  

(
jx

m
∂
∂

^

)(x) = jβ̂ , j = 1, …, d.                                      (24) 

The prediction value ŷ  is equal to 0β̂ . That is,  

ŷ (x) = m̂ (x) = 0β̂ = qT β̂  = qT ( ) WyXWXX T
dd

T
d

1−
 

= px
Ty = ∑

=

n

i
ii Yp

1

)(x                                            (25) 

where  

q = (1, 0, …, 0)T.                                                        (26) 

The vector px, also written as p(x), will be useful for calculating the bias and 

variance of the local model.  

px = p(x) = ( )(1 xp , )(2 xp , …, )(xnp )T  
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= ( )( )T
T
dd

T
d

T WXWXXq
1−

                           (27) 

It is easy to find that  

xpp
x

T  = ( ) WXWXXq T
dd

T
d

T 1− ( )( )TT
dd

T
d

T WXWXXq
1−

 

            = ( ) qWXXq
1−

d
T
d

T                                          (28) 

and 

Σpi(x) = 1.                                                                   (29) 

2.1.1.2. Variance 

Atkeson et al. derived (1997) an estimate of σ2(x), the local noise variance, that is, 

the variance for the traffic data in our study. First, some additional quantities in terms of 

the weighted variables are defined. A locally weighted linear regression centered at a 

point x produces local model parameters β(x). It also produces errors (residuals) at all 

training points. The weighted residual ri(x) is given by: 

ri(x) = wi(x) T
iX β(x) - wi(x)Yi                                     (30) 

where  

wi(x) = )),(( xX idK .                                               (31) 

The training criteria which are the weighted sum of the squared errors is: 

C(x) = ∑
i

ir )(2 x  

= ( ) ( )ßX-yWßX-y d
T

d                                      (32) 

A reasonable estimator for the local value of the noise variance is 

)(
)(

)(

)(
)(ˆ

2
2

x
x

x

x
x

LLLL

i

n
C

n

r
== ∑σ                                        (33) 

where nLL is a modified measure of how many data points there are: 

)(xLLn  = ∑
=

n

i
iw

1

2 =∑
=







n

i

i

h
Xd

K
1

),( x
                            (34) 

In an analogy to unweighted regression (Myers, 1990), the bias of the estimate 

)(ˆ 2 xσ can be reduced by taking into account the number of parameters in the local linear 

regression: 
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s2(x) = )(ˆ 2 xσ
)()(

)(
xx

x

LLLL

LL

pn
n

−
                                     

= 
)()(

)(2

xx

x

LLLL

i

pn

r

−
∑                                               (35) 

where )(xLLp  is a measure of the local number of the free parameters in the local model: 

)(xLLp =∑ −

i
id

T
d

T
ii XXw 14 )( WXX                             (36) 

 

2.1.2. ESTIMATOR VARIANCE AND BIAS 

For any estimator m̂ (x), define 

Bias( m̂ (x)) = E { m̂ (x) | X= x} – m (x)                     (37) 

Var( m̂ (x)) = Var {m̂ (x) | X= x}                               (38) 

 = E {[ m̂ (x) – E {m̂ (x) | X= x}]2 | X= x}  

Mean Squared Error:  

MSE (x) = E {[ m̂ (x) – m (x)]2 | X= x}  

= Bias2(x) + Var(x)                                     (39) 

An important aspect of local polynomial learning is that it is possible to estimate 

the prediction error and derive confidence intervals (bounds) on the predictions. In order 

to develop the intervals, the parameter Var( ŷ (x)) must be determined. A standard error 

)(ˆ xys of ŷ (x) can be interpreted as the standard error of the estimator of mean response, 

conditional on x. The notion standard error, of course, evokes the image of precision or 

variation. In this case, it reflects the variation of ŷ at x, if repeated regressions were 

conducted, based on the same X- levels and new observations on Y each time.  

The variance and bias of the multivariate local linear estimator are shown below 

as given by Atkeson et al. (1997). 

E ( ŷ (x)) = E (qT ( ) WyXWXX T
dd

T
d

1−
)= E (px

Ty)  

= m(x) + px
T (m – Xdβ )  

= m(x) + px
T t                                            (40) 

where  

m = [m(X1), …, m(Xn)]T                                            (41) 
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and  

t = m – Xdβ .                                                              (42) 

Var ( ŷ (x)) = Var( m̂ (x))  

= E [ ŷ (x) – E ( ŷ (x))]2  

= σ2(x) px
Tpx                                              (43) 

From (40), it is easy to get 

Bias ( ŷ (x)) = Bias ( m̂ (x)) = E ( ŷ (x)) - ytrue(x)  

= E ( ŷ (x)) – m(x) = px
T m – m(x)  

= px
T t = px

T (m – Xdβ )                             (44) 

Since the estimate of σ2(x) can be given by (35), the estimator variance can be 

computed by using (43). If the estimator σ2(x) is substituted by s2(x), from (43) the 

standard error of prediction can be defined as 

)(ˆ xys = s(x)
xpp

x

T                                                      (45) 

Assessing the bias requires making assumptions about the underlying form of the 

true function, and the data distribution. The local linear model exactly matches any linear 

trend in the data.  

Using Taylor’s expansion (Fan et al., 1996) of m(X), the bias (44) can be 

estimated.  

m(X) = m(x) + gT(X - x) + higher terms of (X - x) 

= Xdβ  + higher terms of (X - x)                          (46) 

According to (44), the bias depends only on the terms higher than the linear term. 

Therefore, the bias of the local linear model can only be handled if m(X) is modeled as 

higher than the linear degree polynomial. That means, some degrees of smoothness of m 

are not used by m̂ . Denote τi = m(Xi) – Xdβ  = higher terms of (Xi - x) and τ = [τ1 τ2 … 

τn]T ,  the estimation of Bias ( ŷ (x)) is 

^
Bias ( ŷ (x)) = px

T τ                                                    (47) 

For example, if m(X) is a locally quadratic model, then 

m(X) = m(x) + gT(X - x) +
2
1

(X-x)TH(X-x),               (48) 
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where H is the Hessian matrix of second derivatives of m(X) at x. The estimated bias is 

^
Bias ( ŷ (x)) = ( )( ) ( )∑

=

n

i
i

T
iip

12
1

x -XHx - Xx .  

= 
2
1

px
T (X-x)TH(X-x),                           (49) 

 

H can be estimated if m(X) is modeled as a locally quadratic model. But this demands a 

new model and additional computation. Also, due to the roughness of the m(X) in the 

data which was used in the present study (refer to Figure 1 and 2), another approach, 

instead, is chosen to estimate bias.  

 

2.1.3. ASYMPTOTIC PREDICTION INTERVAL 

To derive confidence intervals requires the distribution of the error. Here, the 

error is assumed normal, ε ~ N(0,1). From Equation (1), Y ~ N(m(x), σ(x)).  

If m(x) is linear in x, the local linear estimator is unbiased (Atkeson et al. (1997)). 

That is,  

Bias ( ŷ (x)) = E ( m̂ (x)) – m(x) 

= E ( ŷ (x)) - ytrue(x) = 0.                          (50) 

The following section will first give the derivation of the prediction interval fo r 

the unbiased case and then will discuss the biased case. Under the condition of normal 

errors, ŷ (x) is normal, and a confidence interval at the 100(1- α)% confidence level for 

E(Y| x) can be written 

ŷ (x) )(ˆ2,2/ xyn st −± α                                                       (51) 

The expression in (51) is, indeed, that of a confidence interval and is not to be 

confused with the prediction level on a new response observation at X = x. The latter 

reflects bounds in which the analysts can realistically expect an observation of y at X = x 

to fall. 

The statistics ŷ (x), the point on the regression line at X = x, serves the dual 

purpose for the estimate of mean response and the predicted value. The standard error of 

prediction, given by (45), is used in constructing a confidence interval on the mean 
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response. However, it is not appropriate for establishing any form of inference on a future 

single observation. Suppose the mean response at a fixed X = x is not of interest. Rather, 

one is interested in some type of bound on a single response observation at x. Consider a 

single observation at X = x denoted symbolically by ynew(x), independently of ŷ (x). A 

prediction interval on y can be constructed by beginning with ynew(x) - ŷ (x).  

One way to derive confidence intervals for the predictions from local linear 

learning is to assume a local constant variance σ2(x) at the prediction point x and to use 

the result of Var ( ŷ (x)) (Equation 43).  

Considering  

Var (ynew(x) - ŷ (x)) = σ2(x) + σ2(x) px
Tpx  

= σ2(x) ( )xpp
x

T+1                             (52) 

This reflects both the additive noise in sampling at the new point (σ2(x)) and the 

prediction error of the estimator (σ2(x) px
Tpx). 

Under the assumption (50), 

E [ynew(x) - ŷ (x)] = E (Y|X = x) - E ( ŷ (x))  

 = m(x) – E( m̂ (x))   

= -Bias ( ŷ (x)) = 0, 

then, 

xppx

xx

x

T

new yy

+

−

1)(

)(ˆ)(

σ
~ N (0,1)                                           (53) 

under the normal theory assumptions. Since in many nonparametric regression situations, 

there may be only a few local data points in the neighborhood of x and the asymptotic 

normality is not close enough. Replace σ by s (see Graybill (1976)) and 

xppx

xx

x

T

new

s

yy

+

−

1)(

)(ˆ)(
~ tn-2                                                  (54) 

From (54) a probability bound or prediction interval can be placed on ynew, i.e., an 

interval in which ynew is contained with a fixed probability (1-α).  

This prediction interval is given by 

ŷ (x) xppx
x

T
n st +± − 1)(2,2/α                                      (55) 
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This expression of the prediction intervals is independent of the output values of 

the training data Yi, and reflects how well the data is distributed in the input space (see 

Equation (27)).  

When the bias is not zero, however, the variance only reflects the difference 

between the prediction and the mean prediction, and not the difference between the 

prediction and the true value, which requires knowledge of the predictor's bias. Only 

when the local model structure is correct will the bias be zero. 

Under certain regularity conditions, extending the univariate case by Fan et al. 

(1996), it can be shown that asymptotically 

)(ˆ

^

))(ˆ()(ˆ

x

xx

ys
yBiasy −

 à N (0,1)                                    (56) 

Therefore, the prediction interval can be estimated as  

ŷ (x) – 
^

Bias ( ŷ (x)) xppx
x

T
n st +± − 1)(2,2/α             (57) 

 

Since the t-distribution may not be valid for our data, the bootstrap method is proposed. 

 

2.2. Bootstrap Prediction Interval 

The bootstrap is a method for estimating the distribution of an estimator or a test statistic 

by resampling one’s data or a model estimated from the data. The bootstrap principle is 

that the distribution of (resampled – sample), which can be computed directly from data, 

approximates the distribution of (sample – true). Often, the bootstrap provides 

approximations that are more accurate than those of the first-order asymptotic theory.  

 The bootstrap method provides a direct computational way of assessing 

uncertainty in settings where no formulas are available, by sampling from the training 

data. Bootstrap is a popular method despite its disadvantage of being time consuming. In 

some sense, bootstrap is a versatile approach. In terms of obtaining prediction intervals, it 

could be applied to many prediction models and needs few assumptions. Bootstrap can 

provide a reliable solution and it is easy to implement when the asymptotic equations are 

not available or not valid. This may occur due to a small sample size, or because of the 

limitations set by the problem characteristics such as smoothness of the mean function.  
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From an original sample  

nΨ  = 1(Y , 2Y ,…, FY
iid

n ~)  

draw a new sample of n observations among the original sample with replacement s, each 

observation having the same probability of being drawn (= 1/n). A bootstrap sample is 

often denoted 

*
nΨ  = *

1(Y , *
2Y ,…, n

iid

n FY ~)*  the empirical distribution 

The behavior of a random variable θ̂  = θ ( nΨ , F) can be studied by considering the 

sequence of B new values obtained through computation of B new bootstrap samples. An 

approximation of the distribution of the estimate θ̂  = θ ( nΨ , F) is provided by the 

distribution of 
b*θ̂  = θ ( b

n
*Ψ , Fn), b = 1,…, B 

 

 

2.2.1. BOOTSTRAP BIAS 

In general, let θ be a parameter and θ̂  an estimate. Let *θ̂  be the bootstrap estimate 

calculated in the same way as θ̂ . Then the bootstrap assessment of the bias is 

Bias = Mean of ( *θ̂ ) - θ̂                                            (58) 

The bias-corrected estimate of θ is then 

θ = θ̂  - Bias = 2 θ̂  - Mean of ( *θ̂ )                            (59) 

 

2.2.2. BOOTSTRAP PREDICTION INTERVAL 

A residual-based bootstrap with bias correction is used to compute the prediction interval 

based on the percentile method (Efron et al., 1993). 

Denote the bootstrap distribution of *θ̂  by *
nG (t) = )ˆ( * tP

nF ≤θ , approximated by  

*ˆ
nG (t) = # Bt /}ˆ{ * ≤θ  

The percentile method consists in taking the 1-2α confidence interval for θ  as 

being 
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)]1(ˆ),(ˆ[
1*1* αα −

−−
nn GG                                                  (60) 

Theoretically this is equivalent to the replacement of the unknown distribution 

)ˆ(),( * tPFtG
nF ≤= θ  by the estimate G(t, Fn). 

The bootstrap interval prediction procedure can be divided into three steps: 

1. Given training data {( i
T
i Y,X ): i = 1, …, n} of size n (n = 14 for our case study), fit the 

local linear model m(X) and calculate the corresponding residuals iε̂ = Yi  - iŷ  = Yi  - 

m̂ (Xi), i = 1, …, n. Since Eε =0 and Var ε = 1 are assumed by our model (Equation 2 and 

3), iε̂  needs to be divided by the square root of Var( ŷ (x)) (Equation 45) before 

standardization to avoid a system error in the bootstrap. The standardization includes 

centering by subtracting the average (Freedman, 1981)  

iε~  = iε̂ - ∑
=

k

k
kn 1

ˆ1
ε , k = 1, …, n.                                   (61) 

 

2. Then, draw B bootstrap errors { *
iε (b), i = 1, …, n; b = 1, …, B} each of size n with 

replacement from the sample distribution given by the centered residuals. Finally B 

bootstrap outputs are formed as *
iY (b) = iŷ + *

iε (b) to get B bootstrap training datasets 

( T
iX , *

iY (b)), i = 1, …, n; b = 1, …, B. To each bootstrap dataset a local linear model is 

fitted as )(ˆ bm (X) and the prediction )(ˆ bm (x) for the testing data query point x is computed. 

To get the final prediction )(ˆ by (x), bias is estimated by using average of )(ˆ bm (x). A bias 

corrected prediction  

)(ˆ by (x) = 2 )(ˆ bm (x) - ∑
=

B

b

b xm
B 1

)( )(ˆ1 .                             (62) 

3. The prediction interval for ŷ (x) with the confidence level of 100(1- α) percent is 

obtained as [ ŷ (x)*(ψ), ŷ (x)*(1-ψ)], where ŷ (x)*(ψ) is the 100ψ-th percentile of the bootstrap 

distribution { )(ˆ by (x)}(b = 1, …, B) and ψ = 0.5α. For B = 400 bootstrap samples, a 95% 

pointwise confidence bound can be formed from the percentiles of prediction values for 

each x by finding the 2.5% × 400 = tenth smallest and largest values at each x: ŷ (x)*_low 

and ŷ (x)*_up. The prediction interval will be [ ŷ (x)*_low and ŷ (x)*_up]. 
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3 NUMERICAL STUDY 

The detailed process for obtaining data, preparing the data and providing the preliminary 

data analysis and experimental design is basically the same as in the study by Sun et al., 

(2003) for the point prediction performance of the local linear predictor. The differences 

between this numerical study from that of the point prediction study should be pointed 

out. 

First is  the performance index or evaluation criterion. Since the main concern of 

the interval prediction is the predicted bounds instead of the predicted value, therefore, 

the relative mean error (RME) won’t be used as the performance index. The expected 

result is that the predicted bounds should include the predicted values. That is, the 

predicted values should fall within the intervals formed by predicted upper bounds and 

lower bounds. Provided this premise is satisfied, the narrower the prediction intervals, the 

better performance. Obviously, under given confidence levels, the narrower prediction 

intervals reduce uncertainty and give better results. Also, when comparing different 

methods of interval prediction, results over multiple experimental runs may not require to 

be averaged. If consistent results for each run are observed and one-run results may be 

enough to infer comparison conclusions. In this paper, one-day results are given to 

illustrate the comparison since all other days show the same trends. It is expected that the 

bootstrap method is better in terms of giving narrower prediction intervals. 

 Secondly, results using 16-day data instead of 32-day data as the data set are 

given. Since it is found that the two data sets give the same comparison results for the 

two interval prediction approaches. But a smaller data set has less total computation time.  

In the same way, this study is based on Houston’s US-290 Northwest freeway 

eastbound traffic speed data collected from February 2002 to July 2002 every five 

minutes. The selected road segment for study is US-290 from the cross street Sam 

Houston toll way to the cross street Fairbanks. Two days form the testing set and the rest 

form the training set. For each day, the first two points were deleted because certain days 

missed those two points. The other missing data are replaced by the most recent time data 

for that day. Thus, each day has 286 data points. 
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Since the predictor uses two time instants data in covariates, the 3D figure 

visualizing the relationship between the future data and the current and past data is 

reproduced here (in Figure 1) for review. To some extent, the figure indicates that m(x) is 

not very smooth. 

A resampling size (B) of 500 is used in the bootstrap procedure. Figure 2 and 3 

show one-day prediction upper-bounds and lower-bounds at a confidence level of 95% 

computed by asymptotic equations and the bootstrap method, respectively. Figure 3.2 is a 

zoom-in view of Figure 3.1 for a clearer display. Figure 4 compares the one-sided 

prediction intervals obtained by these two methods. 

It is observed that the prediction intervals given by both methods can include the 

prediction values. That is, the predicted upper-bounds and lower-bounds can cover the 

predicted data. This is self-evident for the asymptotic method since the bounds are 

derived after computing one-sided intervals. So the results validate the proposed 

bootstrap procedure using the percentile method, where the bounds are computed directly 

from the data. On the other hand, the similarity of the trends of both results validates the 

asymptotic equations. 

The asymptotic equation approach provides a one-sided prediction interval with 

an average of approximately ± 10Mph and a maximum of around ± 16Mph.  

The bootstrap approach results in a prediction interval with an average of 

approximately ± 0.3Mph and a maximum of about ± 2.5Mph. It is much smaller and thus 

better than that of the asymptotic results. This is in accordance with the expected 

outcome of the experimental design.  

From Figure 4, it is shown that both approaches have a larger interval when 

entering and leaving peak hours than at other times. But the bootstrap method gives much 

more stable  intervals than the asymptotic method. This again proves the bootstrap is 

advantageous. 

 

4 DISCUSSION AND FUTURE WORK 

The work of this study has evolved from theoretical methodologies to software 

implementations in order to achieve more informational traffic forecasting by providing 

interval predictions. This paper has explored two approaches to compute prediction 
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intervals. First the asymptotic equations of prediction intervals were derived for the local 

linear predictor. Second a bootstrap method which does not rely on specific models or 

assumptions was proposed to obtain the prediction intervals. Then these two 

computational approaches were implemented in an experimental test, using a set of real-

world data. Note that the bootstrap method is very adaptable to many predictors. The 

experimental results for the local linear predictor were given and have validated the 

proposed methodologies. Four figures in this paper illustrate results visually, to compare 

the results of the two methods. The case study results are consistent with what are 

expected. That is, both methods are valid and the bootstrap method gives better results. 

Although the asymptotic prediction intervals, i.e., ± 10 to 16 Mph, seem 

somewhat large in this initial study, there may be reasons to account for this. One 

possibility could be the effect of ridge parameters, which also induce bias. This was not 

considered in the formula derivation. Also, the small sample size and the roughness of the 

real-world data (shown in Figure 1) may violate the t-distribution assumption and the 

second-order smoothness assumption in the local linear model. Another aspect is the 

bandwidth parameter, which is very important in both point prediction and interval 

prediction. More choices of bandwidth should be tested in the numerical study to obtain 

optimal results. Such factors could affect the outcome of an asymptotic prediction. 

Remarkably, the bootstrap method does not rely on those assumptions and therefore it has 

yielded very promising results which are much better than the asymptotic method.  

Since the bootstrap method is both accurate and easy to implement, it is a 

promising method and strongly recommended for traffic forecasting practice. A cautious 

view to such an excellent result suggests that further investigation would be prudent 

before this approach can be extended to predictors other than the local linear predictor. 

This is because the refined bootstrap method, as used in this paper, requires the 

computation of predictor variances, which may not be available for other predictors. 

Future work also includes more study on the asymptotic results of the local linear 

predictors due to the directness of its computational method as well as its theoretical 

potential.  It does not need the resampling required in the bootstrap method. Additionally, 

the model selection/preemption achieved by interval prediction should also be included in 

future research.   

TRB 2004 Annual Meeting CD-ROM                                                                                        Paper revised from original submittal.



Sun et al.                                                                                                                                                     19 

 

REFERENCES 

 

Atkeson, C., Moore, A. and Schaal, S. (1997). “Locally Weighted Learning”. Artificial 

Intelligence Review, 11, 1-5, pp.11-73. 

 

Cho., H and Rilett, L. (2003). “Forecasting Train Travel Time”. TRB 2003 Annual 

Meeting CD-ROM. 

 

Enfron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman and 

Hall. 

 

Fan, J. and I. Gijbels. Local Polynomial Modelling and its Applications. London: 

Chapman & Hall, 1996. 

 

 

Freedman, D.A. (1981). “Bootstrapping regression models”. Annals of Statistics, 9, 

1218-1228. 

 

Freedman, D., Peters, S. (1984). “Bootstrapping a Regression Equation: Some Empirical 

Results (in Theory and Methods) ”. Journal of the American Statistical Association, Vol. 

79, No. 385. (Mar., 1984), pp. 97-106. 

 

Härdle, W., Horowitz, J. and Kreiss, J. (2001). “Bootstrap Methods for Time Series”. 

SFB 373 (HU Berlin) Discussion Paper 59 (2001) 

 

Hastie, T., Tibshirani, R. and Friedman, J. (2001) The Elements of Statistical Learning; 

Data Mining, Inference, and Prediction. Springer. 

 

Neumann, M.H., and J.-P. Kreiss (1998). “Regression-type Inference in Nonparametric 

Autoregression”. Annals of Statistics, 26, 1570-1613. 

 

TRB 2004 Annual Meeting CD-ROM                                                                                        Paper revised from original submittal.



Sun et al.                                                                                                                                                     20 

 

Peters, S. and Freedman, D. (1987). “Better Bootstrap Confidence Intervals: Comment 

(in Theory and Methods)”. Journal of the American Statistical Association, Vol. 82, No. 

397. (Mar., 1987), pp. 186-187. 

 

Rilett, L. & Eisele, B. (2001). “Investigation of Travel Time Reliability Estimates for ITS 

Data”. Presentation in May 2001, Texas A&M University and Texas Transportation 

Institute. 

 

Schaal, S., & Atkeson, C. G. (1994). “Assessing the quality of learned local models”. In J. 

Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in Neural Information Processing 

Systems 6 (pp. 160-167). San Mateo, CA: Morgan Kaufmann. 

 

Sun, H., Liu, H., Xiao, H., He, R. and Ran, B. (2003). “Short-Term Traffic Forecasting 

Using the Local Linear Regression Model”. To appear in Transportation Research 

Record, Journal of the Transportation Research Board. 

 

TRB 2004 Annual Meeting CD-ROM                                                                                        Paper revised from original submittal.



Sun et al.                                                                                                                                                     21 

 

LIST OF FIGURES 

Figure 1. The Relationship of One-step Future Traffic Speed Data versus Current and 
Past Traffic Speed Data for 32 days .......................................................................... 22 

Figure 2. 95% Prediction Upper and Lower Bounds for One-Day Traffic Time Series, 
Computed by Asymptotic Equations of the Local Linear Predictor ......................... 23 

Figure 3.1. 95% Prediction Upper and Lower Bounds for One-Day Traffic Time Series, 
Computed by the Bootstrap Procedure for the Local Linear Predictor .................... 24 

Figure 3.2. Zoom-In Results of 95% Prediction Upper and Lower Bounds for One-Day   
Traffic Time Series, Computed by the Bootstrap Procedure for the Local Linear 
Predictor ……………………………………………………………………………25 

Figure 4. Comparison of One-Sided Prediction Intervals at 95% Confidence Level for 
One-Day Traffic Time Series, Computed by Asymptotic Equations and the 
Bootstrap Procedure for the Local Linear Predictor, Respectively. ......................... 26 

 

TRB 2004 Annual Meeting CD-ROM                                                                                        Paper revised from original submittal.



Sun et al.                                                                                                                                                     22 

 

 

 
Figure 1. The Relationship of One-step Future Traffic Speed Data versus Current 

and Past Traffic Speed Data for 32 days 
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Asymptotic Prediction Interval at 95% Confidence Level for One-Day Traffic
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Figure 2. 95% Prediction Upper and Lower Bounds for One-Day Traffic Time 

Series, Computed by Asymptotic Equations of the Local Linear Predictor 
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Bootstrap Prediction Interval at 95% Confidence Level for One-Day Traffic
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Figure 3.1. 95% Prediction Upper and Lower Bounds for One-Day Traffic Time 

Series, Computed by the Bootstrap Procedure for the Local Linear Predictor 
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Bootstrap Prediction Interval at 95% Confidence Level for One-Day Traffic
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Figure 3.2. Zoom-In Results for 95% Prediction Upper and Lower Bounds for One-
Day Traffic Time Series, Computed by the Bootstrap Procedure for the Local 
Linear Predictor 
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Asymptotic vs. Bootstrap Prediction Interval at 95% Confidence Leval for One-Day Traffic
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Figure 4. Comparison of One-Sided Prediction Intervals at 95% Confidence Level 
for One-Day Traffic Time Series, Computed by Asymptotic Equations and the 
Bootstrap Procedure for the Local Linear Predictor, Respectively. 
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